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Summary

Lipophilicity is a key physicochemical descriptor used to understand the
biological profile of (bio)organic compounds, xenobiotics and a broad variety of
biochemical, pharmacological, and toxicological processes. This property is
estimated from the partition coefficient between aqueous and nonaqueous
environments for neutral compounds (Pn) and corrected for the pH-dependence
of ionizable compounds as the distribution coefficient (D). In this context, in this
doctoral thesis the Miertus-Scrocco-Tomasi continuum solvation model was used
to check the suitability of some reported and proposed formalisms to estimate the
distribution coefficient for a set of small acidic and basic compounds. The results
indicate that in general the simple pH-dependence model of the ionizable
compound in water suffices to predict the partitioning at or around physiological
pH. However, at extreme pH values, where ionic species are predominant, more
elaborate models provide a better prediction of pH-dependent distribution curves
of log D for both acidic and basic compounds as well as for amino acid analogues.
New theoretical treatments for the lipophilicity profile of ionizable compounds
were proposed to account for the electroneutrality in the phases of the n-
octanol/water system. In this context, was used the theory of ion-transfer across
the interface between two immiscible electrolyte solutions (ITIES). Experimental
research is being carried out to see the scope of those formalisms developed in this

thesis.

Taking advantage of the successful results in small compounds, a lipophilicity
scale adapted to different pH conditions was built for the 20 natural amino. The
environment-dependence was introduced from the Dunbrack’s backbone-
dependent conformational library using two weighting schemes for the rotamers:
solvent-like (SolvL) and protein-like (ProtL) lipophilic schemes. The veracity of our
scale was corroborated with successful correlations with other consolidated
experimental scales. Characterization of short disordered peptides (retention times
in RP-HPLC, log Pn and log D74 values) was best described using the former

approach, and biological properties of peptides with available three-dimensional



structure (local context-dependent lipophilicity e.g binding free energies) with the
second one. Our theoretical lipophilicity scale was thus characterized by its
versatility and adaptability, which confers a unifying character. Future studies
will address the application of this methodology to the calculation of lipophilic
parameters for no proteogenic amino acids, other conformations of the actual
residues (proline cis) and other fragments relevant to proteins. On the other hand,
the applicability of the present versatile scale is vast and promising, including for

instance the use as scorings for protein-protein docking protocols, among others.



Resumen

La lipofilicidad es un descriptor fisicoquimico clave utilizado para comprender el
perfil biolégico de los compuestos (bio)organicos, xenobiéticos y una amplia
variedad de procesos bioquimicos, farmacolégicos y toxicolégicos. Esta propiedad se
estima a partir del coeficiente de reparto entre ambientes acuosos y no acuosos para
compuestos neutros (Pn) y corregido para la dependencia del pH de los compuestos
ionizables como el coeficiente de distribuciéon (D). En este contexto, en esta tesis
doctoral se usé el modelo de solvatacion continua de Miertus-Scrocco-Tomasi para
verificar la idoneidad de algunos formalismos reportados y propuestos para estimar
el coeficiente de distribucién para un conjunto de pequefios compuestos acidos y
basicos. Los resultados indican que, en general, el modelo simple de dependencia del
pH del compuesto ionizable en agua es suficiente para predecir la particiéon en o
alrededor del pH fisiolégico. Sin embargo, a valores extremos de pH, donde
predominan las especies id6nicas, los modelos més elaborados proporcionan una
mejor prediccion de las curvas de distribucién dependientes del pH de log D tanto
para compuestos dcidos como bésicos, asi como para analogos de aminoacidos. Se
propusieron nuevos tratamientos tedricos para el perfil de lipofilicidad de
compuestos ionizables para explicar la electroneutralidad en las fases del sistema -
octanol/agua. En este contexto, se utiliz6 la teoria de la transferencia de iones a
través de la interfase entre dos soluciones de electrdlitos inmiscibles (ITIES por sus
siglas en inglés). Se estan llevando a cabo investigaciones experimentales para ver el

alcance de los formalismos desarrollados en esta tesis.

Aprovechando los resultados exitosos en pequefios compuestos, se construy6 una
escala de lipofilicidad adaptada a diferentes condiciones de pH para los 20
aminodcidos naturales. La dependencia del entorno se introdujo a partir de la
biblioteca conformacional dependiente del “backbone” de Dunbrack utilizando dos
esquemas de ponderaciéon para los rotdmeros: el esquema lipofilico tipo solvente
(SolvL) y tipo proteico (ProtL). La veracidad de nuestra escala se corroboré con
correlaciones exitosas con otras escalas experimentales ya consolidadas. La

caracterizacion de péptidos cortos desordenados (valores de tiempos de retenciéon en



“RP-HPLC”, log Pxn y log D74) fue mejor descrita

utilizando el primer esquema, y las propiedades biolégicas de los péptidos con
estructura tridimensional disponible (lipofilicidad dependiente del contexto local y
energias libres de unién) con la segunda. Nuestra escala teérica de lipofilicidad se
caracterizd por su versatilidad y adaptabilidad, lo que le confiere un caracter
unificador. Los estudios futuros abordardn la aplicacién de esta metodologia al
cdlculo de parametros lipofilicos para aminodcidos no proteogénicos, otras
conformaciones de los residuos actuales (prolina cis) y otros fragmentos relevantes
para las proteinas. Por otro lado, la aplicabilidad de la escala versatil actual es amplia
y prometedora, incluyendo, por ejemplo, el uso como ponderantes para protocolos

de acoplamiento de proteina- proteina, entre otros.
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CHAPTER 1. INTRODUCTION

1. INTRODUCTION

The physicochemical characterization of various types of compounds, including
(bio)organic compounds and xenobiotics, is of utmost significance in environmental,
biochemical and pharmaceutical research, because it covers diverse areas in drug
discovery and development, such as absorption, distribution, metabolism, excretion
and toxicity (ADMET) properties, quantitative structure-activity relationships
(QSAR), molecular recognition, and guidelines for agrochemicals. For such purpose,
both experimental and theoretical techniques have been constantly improved in
recent years to deliver a more detailed description of molecular properties, especially

those related to lipophilicity.

Lipophilicity (Lip), expressed as the differential solubility of solutes in aqueous and
nonaqueous (organic) environments, is regarded as the most important and used
physical chemistry descriptor to quantify this property. Thus, the n-octanol/water
system has served as standard method to quantify lipophilicity in both theoreticall-4

and experimental methods.>-7

This doctoral thesis tackles the computation of lipophilicity by computing the free
energy of solvation in both, water and n-octanol using the version of the implicit
solvation model IEFPCM/MST parametrized in Barcelona. The response in the last
solvent was further calibrated in this work for nitrogen-containing heterocyclic
molecules as well as a variety of ionic compounds. Also, the theoretical models of
lipophilicity were refined and proposing a general formalism where the theory of
ion-pairing and the Galvani potential in the interphase of the immiscible solvents
were considered. The performance of the refined lipophilicity models was tested by
calculations of the distribution coefficient to physiological conditions for a set 35
ionizable compounds. Further, calculations were extended to several drugs and
amino acid analogues, which were considered to examine the pH-dependent
lipophilicity profiles. Finally, taking advantage of the successful results for

computing the distribution coefficients to physiological conditions as well as for
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reproducing lipophilicity profiles in amino acid analogues, a new lipophilicity scale
was developed for amino acids, which incorporate the effect of the pH but also an
environment-dependence by using two weighting schemes for the rotamers given in
the Dunbrack’s backbone-dependent conformational library. From those schemes
were derived the Solvent-like (SolvL) and the Protein-like (ProtL) lipophilic

approaches.

This dissertation, therefore, is structured in various chapters. In Chapter 1, the
history of the emergence of partition schemes as descriptors of lipophilicity as well as
their state of the art until today are described. Also, the most common theoretical and
experimental methodologies to calculate/measure the lipophilicity are reviewed.
Finally, besides the application to small molecules, the impact of lipophilicity in the
tield of amino acid through the so-called “hydrophobicity scales” is discussed. Chapter
2 points out the main objective as well as the specific aims of this thesis. The results,
in conjunction with new data derived from ongoing work are described in Chapter 3,
together with their discussion. The methodology, including the computational and
experimental techniques employed in this thesis is described in Chapter 4. Finally,
the main conclusions are given in Chapter 5 together with the future perspectives

emerging from this doctoral thesis.
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1.1 Lipophilicity
1.1.1 History

The differential solubility of solutes in aqueous and nonaqueous (organic)
environments, known as lipophilicity, is a fundamental physicochemical property for
understanding a wide range of biochemical, pharmacological, and toxicological
processes of bioactive compounds.#>7-13 This property has been estimated from the
partition coefficient (Px; eq 1) between aqueous (w) and nonaqueous environments,

typically n-octanol (o), for a neutral compound (HX).

The first general description for the partition coefficient was presented in 1872 by
Berthelot and Jungfleisch'* and further elaborated for neutral species by Nernst in
1891.15 This descriptor set the basis for the lipoid theory of narcosis, also known as
Meyer-Overton rule, which stated that not structurally related narcotic compounds
must be fat-soluble, its action is more pronounced in cells where lipids are vital (i.e.
nerves), and the relative potency depends on its partition coefficient between water

and a fatty system.1617
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Figure 1. Correlation between the partition coefficients for narcotic compounds
(trional (1), tetronal (2), butyl chloral hydrate (3), sulfonal (4), bromal hydrate (5),
triacetin (6), diacetin (7), choral hydrate (8), ethyl urethan (9), monoacetin (10),
benzamine (11), methyl urethan (12), ethanol (13)) in the olive oil/water system and
the minimum narcosis concentration in tapoles.8-20

Figure 1 shows the original data that Meyer and Baum used to support their theory
based on the partition coefficient between water and olive oil of thirteen narcotic
compounds.!8-20 This theory showed that earlier hypothesis that related the narcotic
potency of a compound with the number of ethyl groups and its susceptibility to

form an active form?!, or to its lower solubility in water?> were not correct.

The Meyer-Overton rule also explained the permeability of small molecules through
membranes using the partition coefficient (eq 2) as long as the mechanism of

transport was assumed to be simple diffusion.

P =N M (2)

where P, denotes the permeability coefficient of a solute, P, and D,, stand for the

partition and diffusion coefficient, respectively, for a solute, and d is the membrane
thickness. At present, although violations to this rule have been reported, it

continues having great acceptance.?
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1.1.2 Definitions

In spite of being used in the literature, there is still ambiguity regarding the correct
use of the terms lipophilicity and hydrophophicity?*. According to the International
Union of Pure and Applied Chemistry (IUPAC), lipophilicity “represents the affinity of
a molecule or a moiety for a lipophilic environment. It is commonly measured by its
distribution behaviour in a biphasic system, either liquid-liquid (e.g., partition coefficient in
I-octanol/water) or solid-liquid (retention on reversed-phase high-performance liquid
chromatography (RP-HPLC) or thin-layer chromatography (TLC) system)”,? while
hydrophobicity “is the association of non-polar groups or molecules in an aqueous

environment which arises from the tendency of water to exclude non-polar molecule” .26

In this context, lipophilicity (Lip) is a more complete and general descriptor than
hydrophobicity (Hpho), which in fact can be viewed as a part of lipophilicity, as noted

in eq 3, which provides a qualitative expression for lipophilicity.?”

Lip = Hpho + polarity + ionic interactions 3)

In addition to the above-described definition for lipophilicity, hydrophilicity (Hphi)
can be defined as “the tendency of a molecule to be solvated by water”.? From these
definitions, lipophilicity can be proposed as the balance betwen hydrophobicity and
hydrophilicity, as schematically shown in Figure 2. Accordingly, the lipophilicity
represents a balance between the factors that energetically favour affinity by apolar
environments and those that do not. In other words, lipophilicity refers to the
hydrophobicity of a molecule minus the penalty due to hydrophilic interactions with

the polar environment.
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ﬁ Lipophilicity (Lip) ﬂ
(oo9m £ 9 =

J/ J/
Q Q00

. S —n®

Hydrophobic (Hpho) Hydrophilic (Hphi)

Lip = Hpho - Hphi

Figure 2. Lipophilicity (Lip) can be represented by the differential solubility of solutes
in aqueous (blue) and nonaqueous (organic, yellow) environments. Lipophilic
compounds (left) present mostly hydrophobic components that favor their
preference towards oily environments, whilst poorly lipophilic compounds (rigth)
are more likely to be in water because of the predominance of their hydrophilic
features.

Despite the efforts made to clarify definitions as lipophilicity, hydrophobicity and
hydrophilicity, the relationship between those concepts is still controversial and the
division between them is definitely not easy to recognize.?* This is illustrated in Table
1, which shows some definitions for the terms hydrophobicity and hydrophilicity.
For instance, in surface science the differentiation between hydrophobic and
hydrophilic surfaces rely on the static water contact angle 8, so that the former term
is characterized by 8 > 90° and the last one by 6 < 90°. Note that this separation is just
given for a change in 2° and so, it is not free of controversy because using this angle
crossover Teflon surface has been denominated as hydrophilic even when its
repulsion by water is evident.?? An improved definition using the receding angle (6r)
was recently given by Law?’ (see Table 1). On the other, the distinction between
hydrophobic and hydrophilic compounds have also been performed using the free
energy of hydration, considering a threshold value of around -27 mcal/m? (see Table

1).31

30 Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules



CHAPTER 1. INTRODUCTION

Table 1. Examples of Various Types of Classification for the Terms Hydrophobic and
Hydrophilic Used in Surface Science and Physical Chemistry Topics.

Field Variable Hydrophilic Hydrophobic = Superhydrophobic

static

Surface contact angle 0 <90° 0> 90° 6> 150°

Science3? d'( 9) 1

recedii Ange  gr <900 Or > 90° Or 2 145°
(Or)
Physical AG, ,

Chemistry3! ’ <27 > 27 NAs
y (mcal/m?)

a NA: Not Applicable

From a molecular point of view, the distinction between hydrophobic and
hydrophilic properties is fundamental to understand a wide range of properties,
such as the formation of micelles, ligand binding and protein folding.32-3> The
“hydrophobic effect”, in a thermodynamic perspective, depends on the solute size, the
crossover length scale being close to 1 nm.3¢-38 Entropy is considered to dominate the
hydration of small hydrophobic molecules where water can keep the hydrogen-bond
network around them. On the other hand, for large hydrophobic solutes there is a
loss of hydrogen bonds, giving rise to an enthalpy-driven contribution that can
conduct to aggregation favoured by van der Waals interactions between apolar
molecules.? In this process, water-mediated interactions can be either attractive, as it
has been usually accepted, or repulsive (hydrophobic solutes are driven apart),
depending on the solute size, being attractive when the buried water-exposed area

buried is larger than 1 nm?2.34
Overall, hydrophilicity, hydrophobicity and lipophilicity are physical chemistry

descriptors closely related, but the precise understanding at the molecular level is

still subject to debate.
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1.1.3 Applications

Lipophilicity is a permissive physicochemical concept in the sense that several apolar
environments can be adopted to quantify this descriptor (e.g. olive 0ill8-20, fatty
acids®0, alkanes*! and cycloalkanes??, n-octanol43, membrane mimics#4-4 among many
others®). However, since 1964 Hansch et al*3 set down the n-octanol/water system as
a standard method to quantify lipophilicity (log Pn) in both theoreticall* and
experimental methods.>7 The relevance and impact of this work has been clearly
reflected by Lipinski’s rule of five® where the partition coefficient was crucial for
determining the drug-likeness of compounds. Hence, the partition of a compound in
two immiscible phases has represented an essential property for the prediction of

ADMET properties.

Pn-based models are not able to explain the partition of ionizable compounds. Figure
3 depicts the composition of (bio)organic compounds with ionizable groups. For
individual natural amino acids, 35% of them have an ionizable side chain, but this
percentage can reach almost 100% if peptides and/or proteins are considered.
Similarly, most drug-like compounds included in chemical libraries contain ionizable
groups.#650 Therefore, distinct neutral and ionized species may exist at a given pH,
and handling the acid/base properties of compounds has added value in fields like
drug discovery®! and in agrochemical studies.5? For instance, it is well-known that
the absorption of bioactive compounds is influenced by the pH changes along the
human gastrointestinal tract, with a maximal absorption of weak acids in the jejunum
(pH ~ 4.5) and weak bases in the ileum (pH ~ 8.0).53 Similarly, herbicides with a pKa <
5 are preferred because in this way relatively high concentrations of the herbicide can

be achieved within the phloem sap.52
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AA

side chains

Drugs

Figure 3. Overall composition of marketed drugs and amino acid side chains.

For an ionizable compound (HX) where both neutral and ionized species may exist at
a given pH in aqueous solution, the total partitioning of the compound between
aqueous and organic phases is better described by the distribution coefficient (D),
which generally considers the equilibrium concentrations of the neutral and ionized
forms.>* Different formalisms have been proposed to derive the formal description of

this descriptor, as will be detailed later in this thesis.

Following the considerations outlined above, it is expected that distribution
coefficient works better as a lipophilic descriptor for ionizable compounds than the
partition coefficient. In fact, drug-like compounds are characterized more efficiently
using this descriptor (log Dss < 5)!1, chemicals with no concern for acute aquatic
toxicity are classified with higher sensitivity using log D74 (£ 1.7)>® and drug
distribution among milk fat and skim milk are better predicted employing log Des

than the pH-independent log Pn.%0-%8

The n-octanol/water distribution coefficient (D) is the most widely lipophilic
descriptor used, as an inheritance given by the partition coefficient (Pn), and has a
major impact in drug discovery. Figure 4 illustrates the classification of drug-like
compounds according to the log D values® and their implications in drug
development to physiological conditions (log D74).%® Thus, it is recommended to

maintain log D values comprised between 0 and 3 in order to keep an acceptable
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level of in vivo clearance, but also other ADMET properties as solubility, passive
permeability and low metabolic liabilities are affected by log D>, reflecting the

impact in optimization of ADMET properties.t!

Figure 4. Proposed log D ranges as a guide to success in ADMET properties. >

It is worth noting that both n-octanol/water partition (Pn) or distribution coefficients
(D) are simple surrogates of biological and/or chemical systems. According to
Ribeiro et al.??, they are rudimentary approaches to lipid vesicle-based methods,
which are highly recommended as the best models for the study of lipophilicity4862,
However, Sugano et al®® advocate that these descriptors can still be considered as the
“qold standard” for lipophilicity due to the good correlation with oral absorption in
rats, the fraction of a dose absorbed in humans, and the Caco2 membrane permeation

for a varied set of up 500 drugs.

To date, the n-octanol/water system remains alive and this can be seen especially
reflected in the research of the pharmaceutical industry sheltered in the concept of

lipophilic efficiency (LipE; eq 4).27/51/61,63-66

LipE=-log (potency) -Lip 4)

where potency can be represented by K4 (dissociation constant), which is usually
replaced by Ki (inhibitor constant) or ICsp (half-maximal inhibitory concentration) or
ECso (half-maximal effective concentration), and Lip stands for lipophilicity, generally

estimated from calculated or experimental n-octanol/water biphasic framework.%4
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LipE is a metric that normalizes the potency of a compound by its lipophilicity and
explicitly considers the balance between these two variables.?”5! It can be read as the
difference between partition/distribution to a specific target (potency) and
partition/distribution in a model system (lipophilic measurements).®! It was
conceived with the aim of contrasting different chemical series and assessing the
impact in potency of small structural (lipophilic) modifications within series of
compounds.®® The usage of LipE in drug discovery and development has been
imperative and recommended at all stages of discovery process. As a practical
guideline, the best strategy is try to increase or at least maintain potency while

lipophilicity is reduced.?”/67.68

1.1.4 Theoretical Physicochemical Models of Lipophilicity Profile

The transfer free energy of neutral or ionic solutes between water and an organic

phase (AAG™), typically n-octanol, can be related to the difference in the solvation

Y .

free energy upon transfer from the gas phase to the two solvents (AG and AG_ ;

Scheme 1). Using this approach, it is possible to calculate the partition coefficient of a

neutral (Pn) or ionic (P1) compound.

Scheme 1. Thermodynamic Cycle Used to Determine the Transfer Free Energy of a
Neutral (HX) or Ionic (X-) Compound between Two Immiscible Solvents.

HX X-
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Since the equilibrium between neutral and charged species is a function of pK, and
pH in the aqueous phase, different theoretical formalisms have been proposed to
estimate the distribution coefficient (D) for ionizable compounds. For the sake of
simplicity, the focus here will be limited to the distribution coefficient for monobasic

and monoacid compounds.

In 1940, Jacops® established the pH-partition theory by noting that the ionization in
aqueous phase of weak electrolytes affected the cell permeability. This theory states
that for an ionizable compound only its uncharged form can move through a cell
membrane by passive diffusion. Hogben and collaborators”%7! supported this theory
in the 1950s from their studies of stomach and intestinal absorption of acidic and
basic drugs, which partitioned preferably in conditions of low and high pH,
respectively. Indeed, this theory illustrates the simplest and most widely used model

to account for the pH dependence on the partition of ionizable compounds (Scheme

2) .54,71,80-84,72-79

Scheme 2. Mechanism of n-Octanol/Water Partition for an Ionizable Neutral
Compound (HX).

HX
n-octanol
[Fx]
PN NV VoV VoV Vo VoV VN B 0
water [HX]w +[X_]w
K
HX - x°
pH

In this model, only the neutral species of an ionizable compound (HX) can partition
between water and n-octanol, whereas both neutral and ionized species may exist in
aqueous solution at a given pH. Under these circumstances, the distribution
coefficient (D) of the compound between aqueous and organic phases depends on

the pH of the aqueous solution, as noted in eq 5.

logD =log P, -log(1+10°) ®)

where 6 = pH — pK for acids and 8§ = pKa — pH for bases.
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Nevertheless, the studies by Auerbach® and coworkers on the extraction of
quaternary ammonium salts from aqueous solutions to organic solvents’486-89
demonstrated that ions can cross the interphase between water and an immiscible
organic medium. Levine?® used the same type of compounds to analyse its intestinal
absorption and, even though it was poor, they could pass through the biological
membranes. Furthermore, Winne and Hogerle”! showed deviations of the pH-
partition theory in intestinal absorption curves of benzoic acid and aminopyrine,
mainly due to the local pH effects but also to the partition of charged compounds.
These facts suggest that explaining the partition of ionizable organic species in
solvent models or the gastrointestinal absorption on the basis of pH-partition theory

was not cogent.”>%2

In agreement with the experimental evidence of the ion partition (P), more elaborate
models have been proposed to refine the distribution model of ionizable compounds.
The most straightforward correction comes from the assumption that a certain

amount of the ionic species may also partition between water and n-octanol (Scheme

3) .5,44,99-106,49,53,93-98

Scheme 3. Mechanism of n-Octanol/Water Partition for Both Neutral (HX) and Ionic
(X") Species

HX ——= X°
Px % = - [Hx]o +[X_l
water [HX}W + [X* JW
HX A x°
pH

For a monoprotic acid (HX) the total partition of the solute can be expressed in terms
of the partition constant of the neutral compound and of the ionic species (see

Scheme 1), as noted in eq 6.

log D =log (R, +R-10°) ~log(1+10°) 6)
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This approach challenges both experimental and computational chemistry due to the
difficult of obtaining reliable values of partition of ionic species, which are usually
largely hydrophilic. On the one hand, classical experimental methods such as shake-
flask, pH-metric (potentiometric) and HPLC methods cover ranges of log P between -
2, -1 and 0 (log P units), respectively.197108 In this regard, electrochemistry methods
(lower log P range around -8)* are recommended. On the other hand, using
thermodynamic cycles (see Scheme 1) challenges the suitability of theoretical models
for estimating the differential solvation of ionic species with chemical accuracy. Thus,
the solvation free energy of neutral solutes is generally determined from partition
coefficients between the gas phase and aqueous solutions, and the experimental
uncertainty increases with the solvation free energy, limiting the applicability of this
technique to solutes with solvation free energy (in absolute terms) less than -12
kcal/mol.1% Accordingly, ionic compounds require the use of indirect approaches

based on the use of suitable thermodynamic cycles.110-114

In the partitioning schemes presented before, no account is made of the presence of
the counter ion (C;) for the dissociated organic species (X7). The most accepted
hypothesis states that the transfer of charged species are accompanied by counter

ions, reflecting the formation of ion pairs (X'Cy). For instance, Colaizzi and Klink!5

concluded that absorption of tetracycline antibiotics in the duodenum of the dog
(where those compounds are completely ionized) occurred via the formation of a
charge-neutral ion pair. In this context, Scheme 3 may be modified to include the

contribution arising from ion pairs (Scheme 4).
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Scheme 4. Mechanism of n-Octanol/Water Partition for Neutral (HX), Ionic (X') and
Ion Pair (X"C]) Species.

© ® © ®
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w

Although at low concentration of the compound the ion pair (X'C) may dissociate

at large extent in aqueous solution, the low permittivity of the organic phase may
favour the formation of the ion pair.1® This makes it necessary to account for the

partitioning of this species, Prp (eq 7), and for the formation constant of the ion pair

(eq 8).

[x-c;]

P, = ?
[x<i] ’
el o

Toxch

According to Inagi et al.,'1” the log D of a compound can be written as a function of

the partition coefficients of the neutral, ionic species, and of the ion pair (eq 9).

logD =log (B, +(B, K, [C;])-10°)-log((1+K,, [C;])-10°) 9)
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Using the same mechanism exposed in the Scheme 4, Ingram et al.l'® used other

considerations and proposed a expression to determine the log D as follows:

PN . (105 n 10(6+108[Cf}PK1p)J n PIP ) 10(Iog[cf}p;<n,) N PI

11100 5 100 qlecifess)

log D =log (10)

For practical purposes, however, the application of eq 10 has been largely limited not
only by the scarce availability of accurate values of the partitioning constants (mainly
P1 and Prp), but also for the association constant of the ion pair (Kip).1"® The most
common approximation to this formalism considers that the partition of the ionic
compound (Pi) is negligible7.95125117-124 (see Scheme 4), and thus the distribution

coefficient can be determined from eq 11.

logD =log(PN +P, ~105)—108(1+105) (11)

1.1.5 Methods to Determine Lipophilicity

Conceptually, as detailed in the models shown in the previous section, in order to
determine the lipophilicity for a given compound, it is necessary to
measure/compute the partition of the neutral and ionic species of a given compound,
the pK. and takes into account the background salt used. Experimentally, these
variables can be extracted from a lipophilic profile curve (apparent partition versus
pH). There are several experimental approaches that can be classified as direct (shake-
flask and potentiometric) and indirect (RP-HPLC) methods of measuring
lipophilicity. Those methods have been reviewed and compared meticulously in the
literature 2498108126 In addition to quantifying lipophilicity, they are the basis for
development of high quality predictive in silico models®” which are helpful at early
stages of the drug discovery and development process but also for applications in
food#0% and xenobiotic®2% either in academia, industry and/or government

regulations. Some experimental methods will be reviewed in the next sections.
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1.1.5.1 Experimental Methods

1.1.5.1.1 Direct: Shake-Flask Method

The shake-flask method (see Figure 5) consists of dissolving the analyte in the
biphasic system, usually n-octanol and water, inside a test tube. Once both phases are
mutually saturated, the system is shaken and left to rest for a few hours until
reaching the partition equilibrium. Once the equilibrium between all interacting
components is attained, an appropriate analytical method (e.g UV /VIS spectroscopy)

is used to determine the concentration of substances dissolved in both phases.10”

Figure 5. Separator funnel containing two immiscible solvents used for the shake-
flask method.

The standard shake-flask measurement is a time-consuming, labour-intensive
process, which allows partition/distribution coefficient determination in a narrow
range of -2 to 4 (mainly determined by the analytical methods used for concentration
measurements). The partition coefficient depends on the relative solubility of a
substrate in a polar and nonpolar solvent, and the log Pnx has to be corrected for
ionization. Difficulties arise with very hydrophilic or very hydrophobic compounds,
usually because of solubility issues, emulsion formation, and adsorption onto vessel
walls. Another problem concerns compounds that can have tautomerism equilibria

or be affected by the conversion between zwitterion and neutral forms.1?”
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Using this method is possible to obtain a lipophilicity profile by measuring the
partition in a range of pH values. This classical technique is still used as a benchmark

method against which other methods are validated.”®

1.1.5.1.2 Direct: Potentiometric Method

Potentiometric methods are based on the measurement of the activity of ions from

the potential of an ion-selective membrane electrode (Figure 6).

Figure 6. Equipment to perform pH-metric and pK. experiments used in the
determination of lipophilicity of compounds. (Sirius Analytical http://www.sirius-
analytical.com)

This method is useful for compounds with ionizable groups where pH metric
titrations can be performed. Here, the difference in the pK. values in the two
immiscible solvents is exploit to estimate the partition coefficients. Using this
methodology is possible to determine partition of neutral and ion-paired

compounds’?” inside a range of -1 to 8 (log P units).%®

In order to obtain both, the log Pxand the apparentlog Pi(usually associated to the
log Prp) it is necessary to perform sequential assays®. Accordingly, one assay would
be made without n-octanol, obtaining the pK,, and the next ones would have
differents amounts of this solvent, obtaining n values for poKa(1). Then, in the case of
performing three assays (n = 2), the partition of the neutral and ionic specie can be

obtained using the eq 12 and 13, respectively.
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1.1.5.1.3 Indirect: High Performance Liquid Chromatography Methods

High-performance liquid chromatography (HPLC) is a chromatographic method that
is used to separate and quantify components of a mixture of compounds in analytical
chemistry and biochemistry. The differential elusion time of each compound directly
relates to the compound partition between the mobile and the stationary phases. The
retention factor (k) can be related to the partition coefficient of the compound
between the mobile and the stationary phase, according to eq 14.

logk=log(R, /D)+log [VLJ (14)

m

where (Vs/Vm) represents the ratio of the stationary and mobile phases to obtain the

absolute value of the chromatographic partition coefficient.

There are two major approaches for investigation of lipophilicity using HPLC:
isocratic and gradient methods.1?¢ In the first ones, previous estimation of probable
compound lipophilicity and measurements at different mobile phase concentrations
are needed.’?6128 The gradient method consists in programmed increase during the
chromatographic process of organic solvent in the aqueous mobile phase. Thus, the
pool of compounds is eluted of the column (stationary phase) allowing
measurements in a range of 0 to 5 of logarithm partition coefficients. In most of cases,
impurities rarely affect results and simultaneous analysis of several substances are

possible.12?
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1.1.5.2 Theoretical Methods

In addition to experimental methods for quantifying lipophilicity, an extensive
variety of computational approaches for estimating this descriptor have also been
developed.1-3130 These approaches can be classified in substructure and property-
based methods, which encompass a wide variety of formalisms, from atomic (e.g
ACD/logD®! and ChemAxon/logD'%), fragmental and molecular contributions to
quantum mechanical (QM)-based strategies (e.g IEFPCM/MST133-136¢ and SMD1%7
models), and lately fashionable, machine learning methods. Theoretical methods are
imperative when is wished to analyze a huge amount of compounds what would be

experimentally unviable.

1.1.5.2.1 Substructure-Based Methods

Beyond simplicity and low expensiveness, fragment-based methods are able to
dissect the lipophilicity of a compound, which is a property of the whole molecule, in
empirical contributions of atoms and/or fragments. Accordingly, it can be utilized to
gain insight into the molecular determinants that govern the interactions between
bioactive molecules and receptors. Thus, within the framework of atoms/groups
based methods for estimation of partition coefficients, fragmental and atom-based

techniques follow a general additive scheme as show in eq 15.

logR =2 af+> " bF, (15)

where log Pn is the sum of the weighted (a;) contribution of each atom/fragment (f;)

and a correction factor (b;F;).

Leo and Hansch?® exposed the first fragmental method, named cLOGP. It allowed to
extrapolate log Pn starting from a list of experimentally fitted fragmental
contributions to lipophilicity. Then, Ghose? proposed the ALOGP method using a list
of 120 atom types for carbon, hydrogen, oxygen, nitrogen, sulfur, and halogens.138-140

Another version of these methods, the XLOGP!4! was based on the summation of
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atomic contributions derived from experimental lipophilicity data of 1831 organic

molecules, which includes correction factors for some intramolecular interactions.

1.1.5.2.2 QM-based Methods

The paramount importance of lipophilicity in molecular recognition justifies the
efforts conducted to develop quantum mechanical (QM)-based strategies for the
calculation of lipophilic descriptors. A straightforward strategy for the computation
of lipophilicity/hydrophilicity patterns of molecules comes from QM self-consistent
reaction field (SCRF) models, which rely on the description of the solvent as a
continuum polarizable medium that reacts against the perturbing field created by the

charge distribution of the solute.

The Miertus-Scrocco-Tomasi (MST) solvation model has been used to develop 3D
distribution patterns of lipophilicity using log P as descriptor. The MST model is a
parametrized version of the polarizable continuum model developed by Tomasi and
coworkers!42143 at both semiempirical, Hartree-Fock and B3LYP levels.133-13¢ From the
solvation free energies in water and n-octanol, one can derive the n-octanol/water
partition coefficient, which is a property of the whole molecule. Nevertheless, by
decomposing the solvation free energy into atomic contributions, one can obtain the
3D profile of lipophilicity from the corresponding atomic contributions to the log P.

For a molecule (M) containing N atoms, this is achieved by decomposing the log P

(or the corresponding transfer free energy, AG,"') into electrostatic (logP, .),

cavitation (log P, ) and van der Waals (log P, .) components, which can be derived

i i

from the polar (AG}’) and non-polar (AG] ,AG,, ) contributions to the solvation

cav,i’

free energy (eqs 16 and 17)

AGL =" AGET =Y (AGYT +AGY T +AGY ) (16)

tr,M tr,i ele,i vdW i

logR,, =Y logh, =Y (logP,  +logP,, +logP,, ) )
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Partitioning of the electrostatic term into atomic contributions can be made resorting
to a perturbation approximation of the coupling between the solute charge

distribution and the solvent reaction field!#4, leading to eq 18.

logP,, =2 { W' Efﬂq—k‘-E;i‘f (18)

ele,i
kei?’k—i’ lei}’l—r

where W’ is the solute wave function in the gas phase, and K and L stand for the

total number of reaction field charges in water (g, ) and n-octanol (¢ ), located at

ey w o]
positions I, and I, .

The atomic decomposition of the cavitation and van der Waals terms takes
advantage of the linear dependence with the solvent-exposed surface of the atoms in

the molecule (egs 19 and 20).

=1 ST P,i (19)
N —0

logP,,,, = Em 5" A& (20)

where AG, ™ =AG; . -AG, ., withAG,  being the cavitation free energy of atom i,
AP =E5"-&", with & being the atomic surface tension, and S, denotes the

contribution of atom i to the total molecular surface (S, ).

Other IEFPCM approach widely used in the literature to compute solvation energies
and thus, lipophilic descriptors, is the universal solvation model based on solute

electron density (D) called SMD continuum solvation model. In this model the

standard-state free energy of solvation (AG_, ) is computed according to eq 21.

AG_, =AG,,, *+G_,. +AG. (21)

solv conc
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where AG,, , denotes the electronic (E), nuclear (N), and polarization (P) terms of the
solvation energy; G, . stands for the changes associated with the cavitation (C),

dispersion (D) and local structure (S) of the solvent and AG;nc accounts for the

concentration change between the gas-phase standard state and the liquid-phase
standard state (this term is 0 for 1 mol/L or well 1.89 kcal/mol for 1 atm).13” This
model has been recently used to calculate the lipophilicity of cytisinel® (nicotinic

receptor partial agonist) and thiosemicarbazide derivatives'#> (drug candidates).

1.1.6 Lipophilicity in Amino Acids, Peptides and Proteins

Proteins and their constituents, amino acids residues, perform their task in diverse
environments, from water-like to less polar environments. Solvation free energy, as a
measure of the energy cost to transfer a molecule from vacuum to solvent, has been
extremely useful to unravel the mechanism of protein folding to native structure,
protein function and molecular recognition.!4¢ Derived magnitudes such as transfer
free energies and thereby lipophilicity has also been used to describe the balance of a
molecule to interact with different solvation environment. So, lipophilicity plays a
crucial role in many chemical and biochemical events such as transport and
distribution of biological molecules, solubility, molecular recognition, aggregation
and protein folding among many other implications.¥” Recently, more than 7000
peptides are known and approximately 140 peptide drugs are currently being
considered in clinical trials. In that sense, the rapid and accurate determination of
their physicochemical properties is of vital importance in peptide drug discovery.148
However, the quantification of peptide and protein lipophilicity presents a
significant challenge since has a multidimensional nature that depend on the
environment conditions like thermodynamic variables (temperature, concentration,
pH, pressure), additives (salts, osmolytes) and even on residue sequence (primary
structure), surface topography (secondary and tertiary structures) and size. 149150

As a consequence of the aforementioned, a manifold of lipophilicity scales have been

developed, giving insight into the biological world using this descriptor.
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1.1.6.1 Lipophilicity Scales of Amino Acids

Since the quantitative description of solvent accessible surface area (SASA) by Lee
and Richards!®! to account for the interaction among proteins and solvent, and the
solubility of amino acids in ethanol and dioxane by Nazaki and Tanford!®?, several
efforts have been made in order to quantify the stability to remove nonpolar amino
acids from water to nonpolar environment. This phenomenon is called “the
hydrophobic effect” and it is well known that this repulsive free energy between water
and the nonpolar side chain of amino acids depends on the SASA of the latter. Table
2 reports a set of values for the free energy of transfer of nonpolar medium to water
for different models, employing nonpolar side chain of amino acid analogues, amino

acid or peptides models.153-159

Table 2. Values for the Free Energy of Transfer of Nonpolar Medium to Water for
Nonpolar Side Chain of Amino Acid Analogues, Amino Acids or Peptides Models.

AAG transfer from nonpolar medium to

Reference water per nonpolar accessible surface
(cal/molA2)
Chothia et al. (1974) 2 22
Reynolds et al. (1974) b 23+2
Fauchere-Pliska (1983) 209+25
Rose et al. (1985) 2 18.9+0.7
Einserberg-McLachlan (1986) 16 £2
Wimley et al. (1996) ¢ 22.8+0.8
Moon-Fleming (2011) d 23

2 By means of amino acid solubility in ethanol and dioxane, ® hydrocarbons solubility in water,
¢ partition between water and n-octanol of amino acid and/or peptide systems and 9 partition in a
biological system.

Nevertheless, amino acid contains also ionizable side chains and thus not just
hydrophobic interactions should be taking into account but also polar and ionic
interactions. Again, the lipophilicity reappears as the appropriate descriptor to
understand the preferences for certain environments (bulk solvent or buried in a

protein) of these biomolecular building blocks.
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Several methods have been proposed for the fast and reliable quantification of
lipophilicity of peptides, but the so-called “hydrophobic scales” based on amino acid
contributions has found specially acceptance. The hydrophobic scales present a
relative ranking of hydrophobicity for each of the 20 natural amino acids using
various experimental, statistical and theoretical measurements. Consequently, scales
are usually classified as biological-based, knowledge-based or bulk-solvent-based
(Table 3). As expected, those scales have been subjected to many reviews, as

illustrated by Simm et al.1¢0, Peters et al.1®1 and MacCallum et al.16

Table 3. Lipophilicity Contribution of 20 Coded Amino Acids (Including Two
Tautomers for His) Expressed as log P/D Coefficients.

Scales
Bulk-Solvent Biological-Based =~ Knowledge-Based Consensus
Residue Adapted Scales Scales Scale Scale
Fauchere- Eisenberg- Hopp- Wimley Moon- Hessa  Janin Koehler Kyte-
Pliska McLachlan Woods etal. Fleming etal. etal. etal. Doolittle

Ala 0.31 0.49 0.36 0.00 0.00 -0.08 0.30 0.12 1.31
Arg -1.01 -1.53 -2.19 1.55 271 -1.88 -1.40 -0.40 -3.28
Asn -0.60 -0.44 -0.15 -0.42 -2.53 -1.50 -0.50 -0.36 -2.55
Asp -0.77 -0.88 -2.19 -2.43 -2.15 -2.55 -0.60 -0.53 -2.55
Cys 1.54 0.28 0.73 0.26 -0.36 0.09 0.90 -0.01 1.82
GIn -0.22 -0.16 -0.15 -0.42 -2.20 -1.72 -0.70 -0.34 -2.55
GIn -0.64 -0.55 -2.19 -2.48 -1.20 -1.96 -0.70 -0.51 -2.55
Gly 0.00 0.00 0.00 0.10 -1.26 -0.54 0.30 0.15 -0.29
His(5) 0.13 0.47 0.36 0.04 -3.47 -1.50 -0.10 -0.28 -2.34
His(g) 0.13 0.47 0.36 0.04 -3.47 -1.50 -0.10 -0.28 -2.34
Ile 1.80 1.39 1.31 0.94 1.14 0.44 0.70 0.28 3.28
Leu 1.70 1.39 1.31 1.04 1.32 0.40 0.50 0.22 2.77
Lys -0.99 -0.42 -2.19 1.18 -3.93 -1.98 -1.80 -0.66 -2.85
Met 1.23 1.75 0.95 0.61 0.55 0.07 0.40 0.15 1.39
Phe 1.79 1.68 1.82 1.32 1.61 0.23 0.50 0.34 2.04
Pro 0.72 0.88 0.00 0.02 1.11 -1.63 -0.30 -0.36 -1.17
Ser -0.04 0.01 -0.22 -0.01 -1.34 -0.61 -0.10 -0.04 -0.58
Thr 0.26 0.38 0.29 0.06 -1.30 -0.38 -0.20 0.01 -0.51
Trp 225 1.90 248 1.53 0.28 -0.22 0.30 0.02 -0.66
Tyr 0.96 1.17 1.68 0.58 0.80 -0.50 -0.40 0.09 -0.95
Val 1.22 1.09 1.09 0.54 0.57 0.23 0.60 0.18 3.07
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It is important to note that apart from the theoretical or experimental source of data,
each scale gives a slightly distinct model of lipophilicity. For instance, in the bulk-
solvent adapted scales Fauchere-Pliska'® used partitioning of N-acetyl-L-amino-acid
amides between n-octanol and water in a neutral pH. Similarly, Eisenberg-
McLachlan and coworkers!®® build their scale using the summation of the atomic
solvation parameter multiplied by the atomic solvent accessible surface area (SASA,
for the amino acid X in Gly-X-Gly sequence in a extended conformation) for each
atom in an amino acid. The atomic solvation parameter was taken, in fact, from the
Fauchere-Pliska scale. Hopp-Woods scalel®* put special attention to charged amino
acids by virtue of their role in antigenic determinants, since they are very common in
these regions. Wimley et al. scale'® also used the n-octanol/water transfer energy for

a pentapeptide model (AcWL-X-LL) but employed a pH =9.

On the other hand, biological scales are exemplified the studies of Kyte-Doolittle!,
Moon-Fleming!¢” and Hessa et al.1%8. In the Kyte-Dolittles scale water-vapour transfer
free energies in conjunction with the interior-exterior distribution of amino acid side-
chains were considered to build the hydrophaty scale (consensus scale). Moon-
Flemings scale was developed using a p-barrel system inside a membrane where the
transfer free energy for a given was measured at pH 3.8. Hessa et al. scale is based on
the recognition of artificial helices by the Sec61 translocon, thus it gives an estimate
of the relative stability of a residue to be inserted into a cell membrane at

physiological conditions.

Finally, knowledge-based scales are developed from statistical methods taken
information from an average hydrophobicity values of amino acids in folded
proteins (Koehler et al. scale’®®) or well from transfer energy from molar fraction of

buried and accessible amino acids in proteins (Janin scalel”0).

To sum up, lipophilicity scales have been built for specific purposes. Though there is
a significant degree of correlation between the most cited ones, there are conceptual
differences, which give rise to discrepancies in the predicted lipophilicities,
particularly at non-physiological pH values.
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2. AIM

The main objective is to refine the theoretical models of lipophilicity estimated as the
n-octanol/water distribution coefficient in (bio)organic compounds and
biomolecules. To this end, a general formalism where the theory of ion-pairing and
the Galvani potential at the interphase of the immiscible solvents has been proposed.
The models have been applied to a variety of small molecules, including ionizable
monoacid and monobasic substances. For the specific case of amino acid analogues, a
lipophilicity scale has been developed, which opens the way to explore the

recognition and binding in peptides and proteins.

With this general aim, the specific objectives that encompass the research developed

in this work are indicated as follows.

2.1 Testing Models for Lipophilic Profiles of (Bio)Organic Compounds.

The first aim is the refinement of the Miertus-Scrocco-Tomasi (MST) continuum
solvation model, which relies on the integral equation formalism of the polarizable
continuum model (IEFPCM), to account for the solvation free energy of nitrogen-

containing heterocyclic molecules, as well as ionic compounds, in n-octanol.

Second, it also aims to develop a formalism for predicting the pH-dependent
lipophilicity profile, taking into account the effect of counter ion accompanying the
ionizable (bio)organic compound. In this context, the aim is to use the theory of ion-

transfer across the interface between two immiscible electrolyte solutions (ITIES).
Finally, the refined MST model will be used to determine the lipophilicity profile in

conjunction with different physicochemical models for the partition of ionizable

compounds.
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2.2 Exploring the Effect of Galvani Potential on the Lipophilicity Profile.

Our aim here is to revise the suitability of a general formalism, which includes the
effect of both the Galvani potential and ion-pairing, for determining lipophilicity
profiles of monoacid and monobasic compounds at different ionic strength

conditions, and validated against experimental data.

2.3 Development of a Lipophilicity Scale for Amino Acid Residues.

The final aim is to develop a lipophilicity scale for the natural amino acids using
implicit solvation calculations in n-octanol and water, which account for the
structural (conformational) dependence of residues and adapted to pH conditions.
As a potential application, attention will be placed to the analysis of peptides
involved in Alzheimer's disease for a better understanding of the relationship

between lipophilicity and toxicity.
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3. RESULTS AND DISCUSSION

In this dissertation, we have first refined the parametrization of the MST model for
neutral nitrogen-containing aromatic compounds but also for ionic compounds in n-
octanol. Together with the free energy of solvation in water, these improvemenst
have been exploited for the computation of partition coefficients of neutral and ionic
compounds. Furthermore, we have studied different theoretical models of pH-
dependent lipophilicity profiles based on the n-octanol/water distribution coefficient
in (bio)organic compounds and biomolecules. In order to refine the formalisms
reported in the literature, we have taken into account the effect of counter ion
accompanying the ionizable (bio)organic compound using the theory of ion-transfer
across the interface between two immiscible electrolyte solutions (ITIES). Thus, we
have revisited a new formalism for predicting the pH-dependent lipophilicity profile.
The suitability of different formalisms to estimate the distribution coefficient for a
wide range of pH values has been examined for a set of small acidic and basic

compounds.

For the sake of completeness, a general formalism, which combines the acid
dissociation constant in water, pH, background salt and partition of neutral, ionic,

and ion-pair species, is proposed and its validity is being tested experimentally.

From these initial studies, an extension of the research line has allowed us to obtain
successful results for computing the distribution coefficients to physiological
conditions as well as for reproducing pH-adapted lipophilicity profiles in amino acid
analogues. Thus, we have elaborated a lipophilicity scale for the 20 natural amino
acids from theoretical computations that take into account the structural dependence
of the conformational preferences of amino acids as well as the influence of pH in
order to provide a consistent description of pH-adapted lipophilicity profiles in

peptides and proteins.
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Two weighting schemes have been considered to derive Solvent-like and Protein-like
lipophilicity scales, which have been -calibrated by comparison with other
experimental scales reported in the literature, as well as by examining properties
such as the retention time of small peptides, and the recognition of antigenic
peptides. Finally, the lipophilicity scale have been applied to the study of the

differentiated toxicity of 11 AP peptides involved in Alzheimer's disease.

3.1 The Miertus—Scrocco—Tomasi Model: Framework for Continuum Solvation
Calculations.

In this thesis, the theoretical computation of solvation free energy in n-octanol and
water was needed to achieve the objectives of the thesis. This is a considerable
challenge since the model has to be capable of describing the specific interactions of
the solute in the two solvents, as a preliminary requirement to the computation of the

free energy of transfer (Scheme 1).

QM-SCRF continuum models have been one of the most powerful approaches that
have succeeded in this context. Among these methods, the MST model has proven to
be a robust approach due to the rigorous formalism utilized for describing
electrostatic and non-electrostatic interactions, and to the precise parametrization
against experimental data, including properties such as solvation free energies,
partition coefficients, tautomerism equilibria, ionization, and solvent-induced

spectral shifts (Scheme 5).

Within this strategy, the solvation free energy accounts for the reversible work
necessary to transfer a molecule from gas phase to a specific solvent at constant
temperature, pressure and concentration. This thermodynamic process can be

divided into three contributions

AG , =AG, +AG +AG (22)

vdW
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where AG_ denotes the cavitation free energy, AG ,, is the van der Waals term

(considering dispersion and repulsion interactions), and AG,, is the electrostatic free

energy component.

Scheme 5. Miertus-Scrocco-Tomasi (MST) Model: Framework for Continuum

Solvation Calculations (AG_, ).

The cavitation free energy (AG_ ) is computed following Pierotti’s scaled particle

theory!”! adapted to molecular-shaped cavities according to the procedure proposed
by Claverie!”2. In this model, the atomic cavitation free energy is computed according

to:

N NS
AGaw - Ei:l AGcav,i - Eiﬂ S_AGP,i (23)
T

where AG, . stands for the cavitation free energy of the isolated atom i in Pierotti’s

formalism, S; is the solvent-exposed surface of such an atom, and St denotes the total

surface of the atom.
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CHAPTER 3. RESULTS AND DISCUSSION

solvent induced by ionic species, and the structural perturbation of the solvent
molecules in the first hydration shell relative to the bulk solvent, was treated by
reducing the solvent-excluded surface in the IEFPCM/MST model. Thus, the
optimum cavity for the hydration of charged compounds was defined by scaling the
atomic radii of the groups bearing the formal charge by a factor of [1.13, which

implies a reduction of ca. 10% relative to neutral solutes.

3.2 Refinement of the MST Model for Solvation of Neutral Nitrogen-Containing
Aromatic Compounds in n-Octanol.

One of the initial aims of this study was to refine the parametrization of the MST
model for neutral nitrogen-containing aromatic compounds (see Figure 7), as they
are key structural elements in many biologically relevant molecules and drugs, but
were poorly represented in the data set of compounds considered in the original

B3LYP/6-31G(d) parametrization of the IEFPCM/MST model.

First, preliminary calculations performed for a subset of 12 heterocyclic organic
compounds (2-7, 9, 11-13, 15, and 16; see Figure 7) revealed the need to adjust the
surface tension of the pyridine-like nitrogen atom for solvation in n-octanol. Thus,
the original atomic surface tension assigned to the N-type atom
(n = -0.115 kcal mol! A2) was found to underestimate the solvation free energy in
n-octanol, and a better agreement with experimental data was achieved upon
adjustment to a surface tension of -0.161 kcal mol! A2, which was therefore adopted
in the refined version (see Figure 8). Additional studies were performed to check the
surface tension for the pyrrole-like nitrogen atom (NH-type), even though in this
case the adjustment of the original surface tension (&xn = -0.234 kcal mol?! A?) to
-0.295 kcal mol'A2 was found to have a lower effect on the solvation free energy in

n-octanol (see Figure 8).
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Figure 7. Pyridine and pyrrole-like nitrogen atom type which the atomic surface
tension (&) in the van der Waals component of the free energy of solvation in n-
octanol was adjusted for the data set of 19 neutral nitrogen-containing aromatic
compounds. Nitrogen atoms subjected to reparametrization are shown in blue.
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miia

Figure 8. Representation of the change of the mean unsigned error (mue) between the
experimental and computed log Pn with the refined IEFPCM/MST model (n-octanol)
as a function of the factor that scales the default atomic surface tension (&) in the

AG_ term for the pyridine-like (left) and pyrrole-like (right) nitrogen atom in

aromatic compounds.

The effect of these refinements is shown in Table 4, which reports the solvation free
energies determined with the original and refined parameters, as well as the
experimental datal”* for the set of compounds. The adjustment of the surface tension
of these two atom types sufficed to improve significantly the ability of the
IEFPCM/MST model for predicting the log Px values of these compounds. This is
noted in the reduction of the root-mean square deviation (rmsd) from 1.9 (log P
units) in the original parametrization to 0.8 for the refined version (Table 4), as well
as in the comparison between experimental and calculated log Pn values, as the
refined surface tensions (& and &nn) improve the regression correlation with the

experimental values from 0.85 to 0.93 (see Figure 9).
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Table 4. Calculated and Experimental n-Octanol/Water Partition Coefficient (log Pn)
for the Series of Neutral Nitrogen-Containing Aromatic Compounds Used in the
Refinement of &y and Ena Atomic Surface Tensions for n-Octanol.

Computed log Pn Computed log Px

Compound? (original) (refined) Bl
6-methyluracil (1) -1.7 -0.5 -1.2
9-methyladenine (2) -2.9 -0.3 0.0
adenine (3) -4.1 -1.1 -0.1
albendazole (4) 2.0 3.7 2.7
caffeine (5) -0.2 0.9 -0.1
clonidine (6) 1.1 2.8 1.6
cytosine (7) -4.3 -2.2 -1.7
diphenylamine (8) 3.1 3.7 3.5
fluconazole (9) -1.2 1.1 0.4
fluorouracil (10) -2.2 -0.9 -0.9
guanine (11) -5.9 -2.7 -0.9
imidazole (12) -2.2 -1.1 -0.1
metronidazole (13) -0.9 0.0 0.0
phenytoin (14) 2.0 3.2 2.5
pyridine (15) 0.4 0.9 0.7
pyrimidine (16) -0.8 0.1 -0.4
pyrrole (17) -0.2 0.5 0.8
thymine (18) -1.8 -0.5 -0.6
uracil (19) -2.3 -1.1 -1.1

mse © 1.4 -0.1
mue © 1.4 0.6
rmsd ¢ 1.9 0.8

aSee Figure 7 PRef 174.  Mean signed error (mse), mean unsigned error (mue), and root-mean square
deviation (rmsd) calculated relative to the experimental values are given in log P units.
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Figure 9. Comparison between experimental and calculated n-octanol/water log Px
for the series of neutral nitrogen-containing aromatic compounds. Calculated values
determined from IEFPCM/MST calculations using the original parametrization of
the IEF-MST method (green) and the refined atomic surface tension for N- and NH-
atom types (blue).

3.3 Calibration of the MST Model for Ionic Compounds in n-Octanol.

In the MST model the electrostatic contribution to the hydration free energy of
charged species is determined by reducing the solvent-exposed cavity of the charged
atoms by a factor close to 10%.17> While this strategy proved to be valuable for
calculating the solvation of univalent ionic species in water, its suitability in other
solvents has never been checked. Therefore, for our purposes here, it is necessary to
calibrate the reliability of this strategy for the solvation of ionic compounds in n-
octanol. To this end, calculations were performed for a set of 27 compounds,
including 9 anions (22, 29-31, 36, 37, 39 and 41; see Figure 10) and 18 cations (20, 21,
23-28, 32-35, 38, 40, 43-46; see Figure 10), taking advantage of the availability of

partition coefficients for these charged species.80.95104,119,123,155,165,176
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Figure 10. Data set of 27 ionizable compounds used to refine the MST solvation
model for solvation in n-octanol. Atoms subjected to reparametrization are shown in

blue and red for cations and anions, respectively.
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Comparison of the calculated and experimental log P; values determined for these
compounds suggested that the optimal scaling factor, A, for solvation in n-octanol
must be reduced by around 19%, which implies that the scaling factor used for
neutral compounds (A = 1.50) must be close to 1.20 for charged chemical groups. This
adjustment enhances the contribution of the electrostatic component to the solvation
free energy for charged compouds, following the trends reported for the hydration of
monovalent ions,'”® an effect interpreted from the balance between the gain in
solvent-solute stabilization energy triggered by the solute's electron density
redistribution upon solvation and the energy cost associated to distortion of the

electron density by the solvent reaction field.177-17

Due to the formal simplicity of this correction, the suitability of the atomic surface
tension was further checked. In the case of cations with a localized charge on the sp3
nitrogen atom, it was necessary to enlarge the surface tension of the nitrogen atom
(NH atom type) by a factor of 17% (&xn = -0.274 kcal mol! A2; see Figure 11). This
enlargement was also extended to the methylene/methyl groups bound to the
protonated nitrogen atom (&crix = -0.227 kcal mol! A2; see Figure 11), which may be
related to the inductive effect noted in the increased chemical shift observed in 'H-
NMR studies (see Table 5).18 This effect is known to be less important for the carbon
atoms bound chemical groups with delocalized charges (i.e., carboxylate anions; see

Table 5), where no further adjustment was needed.
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12 4

1.

Figure 11. Representation of the change of the mean unsigned error (mue) between
the experimental and computed log P1 with the refined IEFPCM/MST model (n-
octanol) as a function of the factor that scales the default atomic surface tension (&) in

the AG_ term for NH and CHx atoms for 16 cations (cation 23 and 24 were not
included).

Table 5. The Substituent a-Effect in TH-NMR for Anionic and Cationic Organic
Compounds.

Neutral species Charged species diff (ppm)
OH (ppm) ain & OH (ppm) ain & SH,charged = SH,neutral
o) 0
o \QJ\ 0.2
\)J\OH O@
2.18 2.38
o) o)
o o
/\/LKOH /\)ko@ 0.2
2.16 2.33
o NH a NH
\/ 2 \/® 3 04
2.65 3.06
a N e
N N_® 0.4
2.65 3.04

a http:/ /sdbs.db.aist.go0.jp/sdbs/cgi-bin/ direct_frame_top.cgi
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The log Pivalues calculated for the whole set of ionic organic compounds using the
new parameters are presented in Table 6, which also collects the experimental data.

The mean signed error was reduced from 4.1 to -0.2 (log Prunits), and the rmsd was
decreased from 4.7 to 1.1 (log Pi units) after implementation of the preceding
adjustments in the MST model. Furthermore, Figure 12 shows the improved
correlation between the refined log Pi values and the experimental ones, which
corrected the systematic tendency to overestimate the hydrophilicity of the charged
compounds in the original parametrization of the IEFPCM/MST method. For the
sake of comparison, it is worth noting that the refined log P1 values are in agreement
with the behavior observed for the values estimated by using empirical methods,

such as ACD/I-Lab®! and ChemAxon!3? methods (see Figure 12)
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Table 6. Experimental and Computed log P Values for the Set of

Compounds Used in the Refinement of the MST Method.

27 lonic

Compound 2 Colrgg;fed Colrgg;fed Expl
(original) (refined)

2-2-pyridyl-ethylammonium (20) -1.7 -0.4 -230
2-phenethylammonium (21) -7.1 0.4 -1.6°
2-4-dichlorophenoxyacetate (22) -5.5 -0.7 -0.9c
3-carboxyanilinium (23) -9.2 -1.6 -09¢
4-carboxyanilinium (24) 94 -1.6 -04 ¢
4-methyl-N-ethylbenzylammonium (25) -6.4 -1.9 -0.84
4-methyl-N-heptylbenzylammonium (26) -3.6 0.1 214
4-methyl-N-pentylbenzylammonium (27) -4.7 -0.9 0.84d
4-phenylbutylamine (28) -6.1 1.5 0.7 ¢
5-phenylvalerate (29) -6.1 -0.4 -1.0¢
N-acetyl-L-aspartic amide (30)f -6.8 -2.8 -2.68
N-acetyl-L-glutamic amide (31)f -6.2 -34 258
N-acetyl-L-histidine amide (32)" -7.9 -1.7 -3.48
N-acetyl-L-lysine amide (33)f -7.7 -1.8 -2.88
amitriptyline (34) -1.1 1.3 0.2¢
desipramine (35) -2.7 0.0 03¢
diclofenac (36) -4.3 0.7 0.7 ¢
ibuprofen (37) -5.9 -0.7 -0.2¢
imipramine (38) -0.6 1.8 05¢
indomethacin (39) -2.7 21 0.6¢
lidocaine (40) -2.6 -0.7 -05¢
naproxen (41) -5.5 -0.6 -0.2¢
pentachlorophenol (42) -1.9 1.8 1.31
tetrabutylammonium (43) 1.2 3.3 237
tetraethylammonium (44) -2.8 -0.8 -0.9]
tetramethylammonium (45) -5.6 -2.7 -2.07
tetrapentylammonium (46) 3.0 5.1 3.8

mse k 41 -0.2

muek 4.1 0.9

rmsd k 4.7 1.1

a See Figure 10.  Ref. 123. < Ref. 99. d Ref. 238. ¢ Ref. 95. f Values derived from log D74 data reported in
ref. 66, assuming full ionization of the compounds at physiological pH. 8 Refs. 165 and 155.h Estimated
from additive scheme (see Methods). i Ref. 119. ] Ref. 176. X\Mean signed error (mse), mean unsigned
error (mue), and root-mean square deviation (rmsd) calculated relative to the experimental values are

given in log P units.
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Figure 12. Comparison between experimental and calculated log P; values for the

series of 27 ionic compounds (acidic and basic compounds are shown in blue and

green, respectively). Calculated values were determined from IEFPCM/MST

computations using the original (top left) and refined (top, right) parameters, as well
as ACD/I-Lab (bottom left) and ChemAxon (bottom right).
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3.4 Refinement of Lipophilic Profiles of (Bio)Organic Compounds.

In the simulation of pH-dependent lipophilicity profiles based on the n-
octanol/water for (bio)organic compounds, as presented in the introduction of this
thesis, the log Pn and pKa values are the minimal data for a theoretical model (eq 5).
The degree of refinement of these models explicitly brings about a greater complexity
and imposes the need for using more variables (i.e log P;, and/or log Pip), which
should a priori be rewarded by greater accuracy. As mentioned before, the refined
MST model enables the calculation of reliable values of log Pn and log Pj, opening
the door to the study of the computation of distribution coefficients (D) employing

different formalism.

In this work, an alternative theoretical formalism for the lipophilicity profile of
ionizable compounds was proposed to account for the electroneutrality in the phases

of the n-octanol/water system (Scheme 6).

Scheme 6. Mechanism of n-Octanol/Water Partition for Neutral (HX) and Ionic
Species (X and C;) Influenced by the Electric Potential at the Interphase (A;¢)

X - e X@ C1®
n-octanol . Y .
Py || o P/’X, NaVaVa AO¢ SN P/,c,
water
K
HX - x© c,®
pH
[HX+X'+CI+}
D= °
[HX+X'+CI+}

w
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This development was aimed to look upon the effect of the counter ion (C))

accompanying the ionizable (bio)organic compound (X"). In this context, the most

accepted hypothesis reported in the literature relies on the formation of ion pairs (
XC)).0795125117-124 However, electrochemistry offers another perspective based on

powerful methods for studying and predicting the behaviour of ionic species of an

ionizable compound in the interface between two immiscible electrolyte solutions

(ITIES).

The formalism presented here uses the pioneering theories of Hung!® and
Kakiuchi®?, whose foundation assumes the electroneutrality of each phase and
allows to derive expressions for the partition for an ionic compound from the initial
concentrations of the ions in the solution, its standard Gibbs free energy of transfer,

and the volume ratio of the two phases.

On the basis of the ITIES theory, the standard partition coefficient of a given ionic

species i is given by!8?

ziF

log P’ =4t
5 T T RTIn10

A“p, (26)

where R is the gas constant, T the absolute temperature, F is the Faraday constant, z
stands for the net charge of i and A“¢, is the standard transfer potential of the ionic

specie i, which only depends on the chemical structure.

As expected, there are other ions in the solution and the Galvani potential difference

in the interphase (A;¢) is a function of their type and concentration. Thus, for the

ionic organic species (X ) the apparent partition is given by eq 27.184

z F
log P =log P’ +—X__A" 27
Bl o8 R 0™ 27)
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It can be demonstrated that if the two immiscible electrolyte solutions are dilute, and

that all ionic species are fully dissociated in both phases (i.e., no ion pair formation),

for a generic electrolyte C;A™ the Galvani potential difference can be rewritten as'®?

A“¢’

[ CI

RN

AYg= o (28)

Employing eq 26 in eq 28, it can be deduced that the apparent partition can be

expressed as

o

app = P’
pI,X’ - pI,X’ PI,CI+ (29)

Using this approach, the distribution coefficient is given by

logD = 1Og(pN e PP .106) ~log(1+10°) (30)

which explains in an alternative way to the ion pair theory why the distribution

coefficient increases in the presence of a more hydrophobic counter ion.

In addition, if one assumes that the partitioning of the main ionic species

corresponds to the generic electrolyte (C/A”; Scheme 7), as in cases of high ionic

strength, the Galvani potential difference in the interphase (A”¢ ) depends entirely

on those species and permits to rewrite eq 29 as noted in eq 31.

(31)

In this way, the distribution coefficient can be expressed as

P
51-10° |- log(1+10°) (32)

o

logD=log| P +P

LA™

74 Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules



CHAPTER 3. RESULTS AND DISCUSSION

Scheme 7. Mechanism of n-Octanol/Water Partition for Neutral (HX) and Ionic
Species (X”, A"and C/) Influenced by the Electric Potential at the Interphase (AJP)

Formed by the Salt Background (C/A™).

HX e x © CI® A@
n-octanol
PN NS Plo,x* b PIO,C/* ahdd Azl(p o PIO,A’
water
HX 2 x® c® A°
pH

XX +C+A |

D=

(XX +C+A" |

Eq 32 indicates that for an acidic compound (HX), there will be an increase in the

lipophilicity when a salt (C;A"™) is added whenever the partition of the cation (C/)

increases and decreases to the anion (A~) independently of the standard partition of

its ionic form (X-)

As a final remark, it must be noted that partitioning of a cationic species, X*, would
give rise to distribution coefficients formally analogous to eqs 30 and 32, which are
omitted here for the sake of brevity. It is also worth noting that the preceding
formalisms limit the distribution coefficient to the partition of both neutral and ionic

species of an ionizable compound.

With the aim to look for a unified model that includes both the effect of the Galvani
potential and ion-pairing for determining lipophilicity profiles of monoacid and
monobasic compounds, a general theoretical formalism was proposed (Scheme 8),
whose validity is currently being tested experimentally in collaboration with Prof.
Clara Rafols and Prof. Marti Rosés, members of the research group PhysChem (Fac.

Chemistry) at the University of Barcelona.
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Scheme 8. Mechanism of n-Octanol/Water Partition for Neutral (HX) and Ionic
Species (X~,A"and C;') Influenced by the Electric Potential at the Interphase (A;¢)

and Ion Pair Formation (C;A").

n-octanol
Neutral Partition | onic Partition o -
pH correction Galvani Potential lon-Pair Partition
K? Ke
HX a X@ A@ CI@ P X@ C|®
i PI’X- A“I)V(b P'vA’ PI,C‘* Pe
HX x© A© ® —— x© c®
Ky K
water

It can be demonstrated that using the refined models presented previously, the

distribution coefficient in the framework of Scheme 8 leads to eq 33.
logD = log(PN ¥ (pla)zrj +P, K" -[C;]) : 105) - log(l +(1+Kp - [CT)- 105) (33)

where P can be reduced to eq 27 or 29 depending on the concentration of the salt

added for determining the lipophilicity profile of the ionizable compound (HX).

Base on the formalism proposed in Scheme 8, the P"7 given in eq 29 and 31 would

be representative of extreme cases. Thus, eq 29 makes reference when the organic
ionic species and its counter ion are the ions that dominate the potential differences
in the interphase. On the other hand, eq 31 stands for the situation where the

background salt is the major factor that contributes to the potential difference. One
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could make an approximation in intermediate cases defining a variable, r_,

I

according to eq 34,

r, = — (34)

where X represents the ionic organic species, and A"~ stands for the ionic species

with the same charge from the background salt. Here, for the sake of brevity we limit

ourselves to the specific case of an acidic compound (HX). So, the P"" can be

approximated using this variabler_, although future work is still necessary to

I

calibrate the formal dependence of r_, which could adopt either linear (eq 35) or a

exponential (eq 36) models.

pr=p e /B () B (1) )

(36)

From these two last equations, if the r. is known, and the standard partition of ech

ion in the background salt, the standard partition for the organic ion of interest can

be derived.
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3.5 Estimation of n-Octanol/Water Distribution Coefficients at Physiological

Conditions (log D7.4).

The log D74 values compiled for a set of 35 ionizable small molecules (see Figure 13)

were used as a test set to calibrate the suitability of the adjustments introduced in the

refined IEFPCM/MST model.

. o C’\\s\\/NHz
e« - D O

47 48 49 50
/
N
0 cl
~ N )‘\/E N/> Q N O - H N {J
| = —
O)\ N N/ J) ;N(\) cl §
| \T Cl \Q\
N
H
51 52 53 54

o 5 &

59 60 61 62

63 64 65 66

78 Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules



CHAPTER 3. RESULTS AND DISCUSSION

L 0
HO__O N R(Nto
L, =0 (0
OH o 0 7/ \/\OH
67 68 69 70

HoN

H i : 2
)k”/\)k% )J\N/\/\”/OH o

71 72 73 74
cl
X LT 2 O e
RN ﬂJ\ o AH cl OH
cl
75 76 77 78

MN%”& O H\fo @E: F
oSy oS

79 80 81

Figure 13. Data set of 35 ionizable compounds used to calibrate the MST solvation
model for estimating the distribution coefficient.

These compounds encompass a broad range of chemical diversity in selected
physicochemical properties (see Figure 14), such as molecular weigth (up to 400
Dalton), number of rotatable bonds (up to 8), number of aromatic rings (up to 3), and

number of hydrogen bond donors (up to 5) and acceptors (up to 7).
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Figure 14. Histograms of molecular properties (molecular weight, number of
rotatable bonds, number of aromatic rings and hydrogen bond acceptors and donors)
for the set of 35 small molecules.

In order to reproduce the experimental distribution coefficients within the
framework of the partition formalisms represented by eqs 5, 6, and 30, log Pn and log
P1 values were estimated from MST calculations, whereas the pK. of these
compounds and the partition coefficient of the counter ion were taken from
experimental data (see Table 7). We first evaluated the capacity of the refined MST

model for predicting the experimental log Py of these compounds. This comparison
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is shown in Table 7 and Figure 15. The rmsd between experimental and calculated
values is 1.1 (log Pn units), and the calculated values exhibit a good correlation with
the experimental ones (r = 0.94). Furthermore, these trends compare well with the
values predicted by using empirical methods (ACD/I-lab or ChemAxon; Figure 15),
although they exhibit a slightly better correlation with the experimental data, which
likely reflects the most extensive parametrization of fragmental contributions that

lies behind these methods.138185

Since the distribution coefficient takes into account the partition of both neutral and
ionic species of ionizable compounds, it provides an indirect approach to test the
reliability of the calculated P; values. This is more challenging, because the measured
log D may be affected by the experimental conditions, such as the nature of the
background salt and the concentration of the solution, which would influence the
potential difference between the two phases.18¢ Moreover, different formalisms have
been proposed to combine log Pn, log Prand pKa to estimate the log D. Accordingly,
the log D74 was determined using the log Px and log P values determined from
IEFPCM/MST computations, and were combined with experimental pK. values

reported for the set of compounds (see Table 7).
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Table 7. Experimental and Computed Data for the Set of 35 Ionizable Compounds
Used to Analyze the Performance of the MST Solvation Model for Estimating the
Partition and Distribution Coefficient (Data taken from refs. 6, 7, 99 and 155).

Exptl. Exptl. Comp. Exptl. Comp. log D74

Compound? pKa logPn logPn log D74 eqb eq6 eq30
albendazole (47) 4.21 2.7 3.7 3.3 37 37 37
amitriptiline (48) 9.40 4.9 6.5 2.8 45 45 45
antipyrine (49) 1.40 0.4 2.0 0.2 20 20 20
bumetanide (50) 3.60 2.6 2.6 01 -12 -02 -1.0
caffeine (51) -092 01 0.9 0.0 08 08 08
clomipramine (52) 9.40 52 6.7 3.3 47 47 47
clonidine (53) 8.05 1.6 2.8 0.6 21 21 21
clozapine (54) 7.50 3.2 5.5 3.0 51 51 51
cyclobenzaprine (55) 8.47 52 6.3 29 52 52 52
desipramine (56) 10.4 4.9 5.7 1.4 27 27 27
diazepam (57) 3.30 2.8 4.5 2.7 45 45 45
diclofenac (58) 415 4.5 5.6 1.1 23 24 23
diphenylamine (59) 1.03 3.5 3.7 3.4 37 37 37
estradiol (60) 10.7 3.7 42 4.0 42 42 42
fluconazole (61) 294 0.4 1.1 0.5 1.1 11 11
fulbiprofen (62) 422 42 42 0.9 1.0 22 1.0
ibuprofen (63) 491 4.0 3.2 1.3 07 07 07
imipramine (64) 9.40 4.8 59 2.5 39 39 39
indomethacin (65) 4.50 43 49 0.8 20 24 20
lidocaine (66) 8.01 24 2.8 1.6 21 21 21
loratadine (67) 4.58 52 74 4.4 74 74 74
maleic acid (68) 183 -05 -15 50 -71 -45 -35
metoclopramide (69) 9.27 2.6 2.2 0.5 03 03 03
metronidazole (70) 2.60 0.0 0.0 -0.1 0.0 00 0.0
mesoridazine (71) 8.89 3.9 6.5 1.8 50 50 5.0

N-acetyl-L-aspartic amide (72) 390 -2.0 -2.3 26 58 -28 -26
N-acetyl-L-glutamic amide (73) 420 -19  -15 25 47 34 -29
N-acetyl-L-histidine amide (74) 7.00  -1.9 -0.9 35 -1.0 -09 -1.0

N-acetyl-L-lysine amide (75) 111 08 -04 28 -18 -1.8 -31
naproxen (76) 4.15 3.2 2.7 03 -06 -03 -05
paracetamol (77) 9.38 0.5 -0.1 03 -01 -01 -01
pentachlorophenol (78) 4.83 5.0 3.8 25 1.2 19 12
pentoxifylline (79) 0.28 0.3 1.6 0.3 1.6 16 1.6
phenytoin (80) 8.33 2.5 2.0 22 1.9 19 19
triflupromazine (81) 9.40 5.5 6.6 3.4 46 46 46

mse b -0.6 -06 -09 -08

mueP 0.9 1.3 11 11

rmsd P 1.1 1.6 14 14

a See Figure 13. P Mean signed error (mse), mean unsigned error (mue), and root-mean square
deviation (rmsd) calculated relative to the experimental values are given in log P units.
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Figure 15. Comparison between experimental and calculated log Pn for a set of 35
small molecules. Computed values were determined by wusing the refined
IEFPCM/MST calculations (top), and by using ACD/I-Lab log D (bottom left) and
ChemAxon (bottom right).

Table 7 reports the log D74 values obtained from IEFPCM/MST calculations. In
general, there is a slight tendency to overestimate the hydrophobicity of the
compounds, as noted in the mean signed error (mse) of ~ -0.7 (log D units) found for
eqs 5, 6, and 30, while the rmsd amounts to ~ 1.5 (log D units). The performance of
the IEFPCM/MST model is similar for the three formalisms examined in this study,
with a slightly larger rmsd when eq 5 is used. Similar regression equations between
calculated and experimental log D74 values are also found (r ~ 0.92), albeit Figure 16
shows a slightly larger deviation from the perfect linear regression for the values
obtained with eq 5. For this latter formalism the largest errors (given in log D units in

parenthesis) are found for the subset of amino acid analogues N-acetyl-L-aspartic
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acid amide (+3.2), N-acetyl-L-glutamic acid amide (+2.2) and N-acetyl-L-histidine
amide (+2.5), as well as for mesoridazine (-3.1), loratadine (-3.0), cyclobenzaprine (-
2.3), clozapine (-2.1), and maleic acid (+2.1). Nevertheless, when the partition of the
ionic species is taken into account (Egs. 4 and 9), the deviation found for aspartic and
glutamic analogues, and for maleic acid is largely reduced, whereas the value

predicted for N-acetyl-L-histidine amide remains unaffected.
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Figure 16. Comparison between experimental (determined by the shake-flask
method) and calculated log D74 for 35 ionizable small molecules. Computed values
were derived from IEFPCM/MST (blue) calculations using eqs 5 (top), 6 (bottom
left), and 30 (bottom right).

84 Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules



CHAPTER 3. RESULTS AND DISCUSSION

To further check the reliability of the log Pi values, the calculated log Pn values were
replaced by the experimental ones, and the log D74 was determined using eqs 5, 6,
and 30. The distribution coefficients obtained by limiting the IEFPCM/MST
calculation to the partition coefficient of the ionized species (log Pr) reduces the rmsd
between predicted and experimental data to ~ -0.8 (log D units), and the correlation
coefficient is increased to 0.96 (Table 8). Note that these statistical parameters
compare well with the values estimated using empirical methods (ACD/I-Lab,

ChemAxon), as noted in Table 8 and Figure 17.

Table 8. Statistical Parameters of the Comparison between Experimental and
Calculated log D74 Values for the Series of 35 Small Molecules.

Method mse mue rmsd r
ACD/ I-Lab 0.0 0.5 0.8 0.95
ChemAxon 0.2 0.5 0.8 0.95
IEFPCM/MST, eq 5 -0.6 1.3 1.6 0.91
IEFPCM/MST, eq 5 (exptl. log Pn) 0.1 0.5 0.8 0.96
IEFPCM/MST, eq 6 -0.9 1.1 14 0.92
IEFPCM/MST, eq 6 (exptl. log Pn) -0.3 0.4 0.6 0.96
IEFPCM/MST, eq 28 -0.8 1.1 14 0.91
IEFPCM/MST, eq 28 (exptl. log Pn) -0.2 04 0.5 0.97
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Figure 17. Comparison between experimental and calculated log D74 for the set of 35
small molecules. Values were obtained using (left) ACD/ I-Lab and (right)
ChemAxon. N-acetyl-L-aspartic acid amide, N-acetyl-L-glutamic acid amide and N-
acetyl-L-histidine amide are shown as red dots.

Overall, these results give confidence to the partition values of ionic species
determined with the refined IEFPCM/MST method, especially taking into account
the limited extension of the model refinement, and the single-conformation approach
adopted in present -calculations. Nevertheless, the wuse of representative
conformational ensembles may be required to obtain more accurate estimates of log

D74in flexible molecules able to form distinct patterns of intramolecular interactions.

187-189

3.6 Simulation of pH-Dependent Lipophilicity Profiles.

While the preceding results support the refined IEFPCM/MST method, there is
generally little difference between the distinct formalisms previously tested (eqgs 5, 6,
and 30) for calculation of log D74. This may reflect the fact that all molecules are
approved drugs with high log Pn values, and that the log D was calculated at

physiological pH, while the contribution of ionic species may be expected to be more
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relevant at extreme pH values. Hence, we decided to determine the lipophilicity
profile of 7 drugs and 4 amino acid analogues between pH 2 and 12, taking
advantage of the experimental data about the pH-dependent partitioning of these

compounds, 80.99,119,155,165

For ibuprofen, warfarin and pentachlorophenol, the three formalisms give similar log
Pn values at low pH, where the neutral species predominates (see Figure 18).
However, the profiles diverge at intermediate pH values (between 6 and 8),
following the increased population of the anionic species. Eq 5, which does not take
into account the partition of the ionic species, gives rise to a profile that decreases
steadily with increasing pH. In contrast, eqs 6 and 30 show an asymptotic behavior at

basic pH.

For imipramine, amitriptyline, desipramine, and lidocaine all the methods exhibit the
same log D at pH ~ 10, which arises from the partition of the neutral species. The pH-
dependence of the profiles is similar up to acidic solutions (pH < 5), where the
contribution of the cationic species is more important. Again, eq 5 shows a
continuous decrease in log D with decreasing pH, whereas the profiles obtained from
eqs 6 and 30 show the appearance of an asymptotic behavior at low pH. Note,
however, that the appearance of this asymptotic value occurs at lower pH values for
eq 30, leading generally to a larger deviation with regard to the experimental profile
compared with the results obtained from eq 6, which reproduces well the general
trends of the experimental sigmoidal profile. On the other hand, it is worth noting
that the IEFPC/MST profiles obtained with eq 6 compare well with the pH-
dependent profiles obtained from empirical methods (ACD/I-Lab and ChemAxon;
see Figure 19).
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Figure 18. Comparison of n-octanol/water distribution coefficient profiles of selected

drugs using eq 5 (red), 6 (blue), and 30 (green). The experimental data are shown in

black.
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The pH-dependent lipophilicity profile determined for the set of amino acid

analogues is shown in Figure 20.
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Figure 20. Comparison of n-octanol/water distribution coefficient profiles of selected
amino acid analogues using eq 5 (red), 6 (blue), 30 (green), and experimental data
(black).

As noted above, eq 5 works worse at extreme pH, as expected from the neglect of the
contribution arising from the partition of ionic species. On the other hand, eqs 6 and
30 give similar profiles that reproduce the experimental values for the whole range of
pH values. Furthermore, for the analogues of aspartic and glutamic acids the
IEFPCM/MST results obtained for eqs 6 and 30 improve the pH-dependent profiles
obtained from empirical methods, which predict a much higher hydrophilic behavior
for pH values larger than 5 and lower than 9 for aspartic/glutamic acid and lysine,

respectively (compare Figure 20 and Figure 21).
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Figure 21. Comparison of n-octanol/water distribution coefficient profiles of selected
amino acid analogues using ACD/I-Lab (cyan), ChemAxon (purple) and
experimental data (black).

Overall, the results support the suitability of eq 6 for estimating the pH-dependence
of the distribution profiles of ionizable compounds. The limited success found for eq
30 is surprising, especially when one takes into account the results obtained for
amino acid analogues, but it may reflect the marked influence of inorganic ions on
the experimental measurements of the distribution coefficient of ionized
compounds.118121,124190,191 [n general, shake-flask experiments are performed in wet n-
octanol/water systems using 0.15 mol/L KCI or NaCl, and reliable values for the
inorganic standard partition coefficients have been reported. 256061 However, it is
also known that the distribution coefficient can be expected to increase substantially
when a more hydrophobic cation is added in excess to the system, as has been
reported for both ibuprofen and pentachlorophenol.809911 Finally, the potential
contribution due to the formation of ion pairs may also have a significant effect of the
distribution coefficient of ionized compounds, especially when the salt concentration

is large enough relative to the ionized compound.118125
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3.7 Verification Experimental of the Effect of Background Salt Concentration in

the Partition of Ionic Species.

The effect of the background salt in the determination of distribution coefficients has
been actually discussed before (see Scheme 8). Here, we have analyzed the effect of
the concentration of KCI in the experimental determination of log Px and log P; for
indomethacin (acid compound; 65) and chlorpromazine (basic compound; 82) using

the potentiometric method (see Table 9).

Table 9. Potentiometric Determination of the log Pn and log P; Using Different
Background Salt Concentrations (KCl) in the Aqueous Phase for Deriving the
Standard Partition of the Organic Ionic Species.

Aqueous Derived log F7
Compound KCl log Px log P (r.)
(mol/L) :
eq 35 eq 36
o 0 4.27+0.03 n.da i -
O\F (0) (0)
] i )
1x1075 4.47+0.03 n.da
O ) (=0) (=0)
~o 0.2 1.0
1x10-3 4.45+0.09 1.01+0.18
X (0.6) (0.6)
0.5 0.5
(65) 0.15 459+0.10 1.47+0.13
(1.0) (1.0)
0 5.05+0.03 n.da i -
(0) (0)
1x1075 5.13+0.02 n.da A i
(0) (0)
2.0 2.8
N “ 1x10-3 5.20+0.01 0.70+0.03
C[S X (0.6) (0.6)
(82) 0.15 5.0240.04 1.14+0.07 21 2.1
' e e (0.6) (0.6)

ano detectable (n.d; log P1 <-1)
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This work is being performed in collaboration with the PhysChem Group (Faculty of
Chemistry, University of Barcelona), and we only report preliminary results collected
up to now. The partition of the neutral species is poorly affected by the absence or
presence of different concentrations of KCl in the aqueous phase. However, as
expected, the partition of ionic species was more sensible to the background salt, it
being affected as a function of the concentration of KCI, especially at high
concentrations (0.15 and 1x10- mol/L). In the case of low salt concentrations, no

partition for the ionic species was detected.

At the time of submitting this thesis, present results do not suffice to calibrate the
formalism that exploit the partition of the ionic species for both indomethacin and
chlorpromazine. Additional potentiometric measurements (see Methods) will be
recorded in future studies in order to obtain accurate values of apparent log Prin all

background salt concentrations studied.

3.8 Development of a Structure-Based, pH-Dependent Lipophilicity Scale of

Amino Acids from Continuum Solvation Calculations.

Taking advantage of the successful results for computing the distribution coefficients
to physiological conditions as well as for reproducing lipophilicity profiles in amino
acid analogues, it was planned to develop a new lipophilicity scale for amino acids.
There are many lipophilicity scales reported in the literature, which have generally
been designed under specific conditions for extracting structural information (i.e.,
distribution probability of amino acids for some kind of secondary structures) or
preferences towards diverse phases (e.g., solution, stationary phase or membrane
environments) from a given sequence, which may restrict the capacity of being
extrapolated to other environments (e.g., solvents, sorbents, membranes or proteins)

and conditions (e.g., pH or ionic strength).
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The lipophilicity scale was built from theoretical computations that take into account
the structural dependence of the conformational preferences of amino acids as well
as the influence of pH in order to provide a consistent description of pH-adapted
lipophilicity profiles in peptides and proteins. Here attention was paid to the set of
natural amino acids, but the methodological strategy is intended to be easily adapted
to nonstandard residues, such as nonproteinogenic residues, or to chemical
modifications, such as phosphorylation, sulphonation and nitrosation, which
regulate enzyme activity and signalling processes. Here, the theoretical formalism
represented by eq 5 was selected to describe the distribution coefficient (D) of each

residue using as model system the corresponding N-acetyl-L-amino acid amides.

Two schemes were explored for weighting the contribution of each conformational
state to the differential solvation in the two solvents. In one case, Pn and Pr were
determined using a Boltzmann's weighting scheme to the relative stabilities of the
conformational species of a given residue in the two solvents, leading to the solvent-
like scale (SolvL). In the second scheme, named protein-like scale (ProtL), the
contribution of each conformation was directly taken from the population
distribution reported in the backbone-dependent conformational library. Therefore,
these weighting schemes are expected to yield scales better suited for reflecting the
lipophilic balance of amino acids well exposed to bulk solvent or in a protein-like
environment, respectively. Finally, the effect of pH on the log D values was
introduced from the experimental pKas of ionizable residues in peptide models in

aqueous solution!921% and in folded proteins!9419 for the SolvL and ProtL scales.

The values of these lipophilicity scales for the amino acids at physiological pH are
shown in Table 10 and Figure 22. ProtL data are averages of the logD74 values
determined separately for a-helix and B-sheet structures, which are depicted in
Figure 22 (top). Taken Gly as reference, the ProtL scale comprises logD74 values
ranging from -3.91 (Arg) to 3.99 (Phe), reflecting the extreme values of hydrophilic
residues (Arg, Asp, Glu and Lys), and hydrophobic ones (Trp, Phe) (see Figure 22).
These trends are also found in the SolvL scale, even though the distribution of logD7.4

values vary from -1.35 (Glu) to 2.62 (Phe). This trait is also found in other scales, as
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knowledge-based methods generally give rise to a narrower range of lipophilicites

compared to other experimental scales.’®® In our case, this arises from the distinct

weighting factors used in ProtL and SolvL scales, leading to larger differences in the

logD74 values of polar and ionizable amino acids, which show a preference for

extended conformations (see Figure 23), likely reflecting the formation of stabilizing

interactions (e.g salt bridges) or the solvent exposure to bulk water in proteins.19619

Table 10. Solvent-like (SolvL) and Protein-like (ProtL) Lipophilicity Scales Based on
the log D Values Determined for N-Acetyl-L-Amino Acid Amides at Physiological

pH. The Experimental pK, of Side Chain Ionizable Groups, and Calculated Partition

Coefficients of Neutral (log Pxn) and Ionized (log P1) Residues are also Given.

. Exp. pKa log Px log P1 log D742
Residue
SolvL  ProtL  SolvL ProtL SolvL ProtL SolvL ProtL

Ala - - -1.16 -2.47 - - -1.16 (0.85)  -2.47 (0.66)
Arg 12.5b 12.5b -2.86 -3.66 -2.99 -7.38 -2.99 (-0.98)  -7.04 (-3.91)
Asn - - -2.98 -3.97 - - -298 (-0.97)  -3.97 (-0.84)
Asp 3.90¢ 3.504 -2.26 -3.18 -2.80 -8.54 -2.80(-0.79)  -5.87 (-2.74)
Cys 9.83¢ 6.804 -0.16 -147 -4.19 -5.78 -0.16 (1.85)  -2.17(0.96)
GIn - - -2.22 -4.00 - - -2.22 (-0.21)  -4.00 (-0.87)
Glu 4.20¢ 4.20d -1.49 -3.79 -3.38 -6.20 -3.36 (-1.35)  -5.96 (-2.83)
Gly - - -2.01 -3.13 - - -2.01 (0.00)  -3.13 (0.00)

His (8) 7.00¢ 6.604 -1.20 -4.67 -4.06 -5.97 -1.35(0.66)  -4.56 (-1.43)

His (¢) 7.00¢ 6.604 -0.72 -4.98 -4.06 -5.97 -0.87 (1.14)  -4.97 (-1.84)
Ile - - -0.50 -0.38 - - -0.50 (1.51)  -0.38 (2.75)
Leu - - 0.05 -1.36 - - 0.05 (2.06) -1.36 (1.77)
Lys 11.1¢ 10.54 -0.40 -2.19 -3.24 -6.81 -3.18 (-1.17)  -5.08 (-1.95)
Met - - -0.51 -1.83 - - -0.51 (1.50)  -1.83 (1.30)
Phe - - 0.61 0.86 - - 0.61 (2.62) 0.86 (3.99)
Pro - - -0.77 -1.44 - - -0.77 (1.24)  -1.44 (1.69)
Ser - - -2.04 -4.12 - - -2.04 (-0.03)  -4.12 (-0.99)
Thr - - -1.22 -3.01 - - -1.22(0.79)  -3.01 (0.12)
Trp - - 0.33 0.16 - - 0.33 (2.34) 0.16 (3.29)
Tyr 10.3¢ 10.34 -0.49 -1.80 -4.21 -9.59 -0.49 (1.52)  -1.80(1.33)
Val - - -0.93 -1.68 - - -0.93 (1.08)  -1.68 (1.45)

a Values for ionizable residues are shown in italic. Log D74 values relative to glycine
parenthesis. ® Ref 192. <Ref 193. 4Ref 194. ¢ Ref 195.
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Figure 22. Representation of SolvL (blue) and ProtL (yellow) lipophilicity scales
(values relative to Gly) at physiological pH (top). ProtL scale values for twenty-one
amino acid residues (relative to Gly). Black circle, orange box and green triangle

represent the log D74 values for total, a-helix and B-sheet conformers respectively
(bottom).
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Figure 23. Distribution of the accessible surface area (Backbone + Side Chain) for
conformational species of Arg (top, left), Lys (top, right), Asp (middle, left), Glu
(middle, right), Asn (bottom, left) and GIn (bottom, right) using the Dunbrack's
backbone-dependent conformational library. The weigth of each rotameric species in
this conformational library is also shown (blue line).
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The sensitivity of the lipophilicity of ionizable residues to pH changes is shown in
Figure 24, which compares the log D values at pH 2.1, 7.4 and 9.0, chosen as
representative values of the pH changes along the gastrointestinal tract. The
hydrophilicity of acid/basic amino acids is enhanced at basic/acidic pHs, as
expected from the predominance of the ionic species. In the SolvL scale, it is worth
noting the hydrophilic nature of protonated His at acidic pH, and the slight
hydrophobicity of protonated Glu. In contrast, the ProtL scale exhibits a higher
sensitivity to pH, as noted in the large changes in the log D values of Asp and Glu,
which are decreased 2-3 log D units upon deprotonation, the reduced hydrophilicity
of Lys at basic pH, and the change from hydrophobic (at acid and physiological pH)
to hydrophilic (at basic pH) of Cys. This reflects the ability of these scales to reflect
the pH influence on the lipophilicity of ionizable residues, which may be affected by

the local environment in proteins.1981%

Figure 24. Representation of the pH dependence of the SolvL and ProtL lipophilicity
scales for ionizable amino acids (values relative to Gly). Values determined at pH of
2.1, 7.4 and 9.0 are shown in orange, green and gray, respectively, and the values of
the neutral Species (log Pn) are shown in black.
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To calibrate the suitability of these scales, comparison was made with the log D74
values reported by Fauchére and Pliska,'® which were experimentally determined
from the partitioning of N-acetyl-L-amino acid amides between n-octanol and water

at physiological pH (Figure 25).

- s
-
s
s

Figure 25. Comparison between (left) SolvL and (right) ProtL lipophilicity scales
derived from the IEFPCM/MST solvation model (expressed as log D7z4) and
Fauchere-Pliska experimental values for the twenty N-acetyl-L-amino acid amides (r:
pearson correlation coefficient; mse: mean signed error; mue: mean unsigned error;

rmsd: root-mean square deviation).

Comparison with the SolvL values gives satisfactory results, as noted in a correlation
coefficient (r) of 0.96 and a mean unsigned error (mue) of 0.33 logD74 units for a set
of experimental values ranging from -3.36 to 0.61. The correlation coefficient is
slightly worse (r = 0.92) and the mue increases to 1.68 for the ProtL scale. For the sake
of comparison, the same analysis was performed by using logD7.4 values obtained
from computations with the SMD solvation model,'¥ in conjunction with the two
weighting schemes, and the results also revealed a better performance for the
solvent-adapted scheme (r = 0.85, mue = 0.83; Figure 26). On the other hand, the
SolvL scale also performed better than the empirical estimates of logD74 obtained
from ACD/ILab®3! (r = 0.88, mue=0.60) and ChemAxon!32 (r = 0.92, mue=0.65) when
compared with the experimental values reported by Fauchere and Pliska (Figure 26).
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-

Figure 26. Comparison between Faucheére-Pliska experimental log D74 values and
theoretical estimates obtained by using the SMD model with (top left) solvent-
adapted, (top right) protein-adapted weighting factors, (bottom left) ACD/I-Lab and
(bottom right) ChemAxon for the twenty N-acetyl-L-amino acid amides (r: Pearson
correlation coefficient; mse: mean signed error; mue: mean unsigned error; rmsd:
root-mean square deviation).
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Table 11 shows the comparison of the SolvL and ProtL lipophilicities with other
experimental scales, including four bulk solvent-based scales (Fauchére-Pliska,!5
Eisenberg-McLachlan,®” Hopp-Woods,®¢ Wimley et al.15), two biological-derived
(Moon-Fleming,1¢7 Hessa et al.1%8) and two knowledge-based (Koehler et al., 1 Janin et
al.170) scales, and a consensus (Kyte-Doolittle'®®) one. The bulk solvent-based scales
rely on experimental measurements of the transfer between n-octanol and water
(Fauchere-Pliska, Eisenberg-McLachlan) at physiological pH or at basic conditions
(pH = 9.0; Wimley et al.), and between ethanol and the vapor phase (Hopp-Woods).
Excellent correlations are found with Fauchére-Pliska, Eisenberg-McLachlan, and
Hopp-Woods scales (0.89 < r < 0.92), whereas a worse correlation (r = 0.60) is found
with Wimley et al. scale. However, this can be attributed to the formation of salt
bridges between Arg/Lys residues with the terminal carboxyl group in n-octanol for
the AcWL-X-LL pentapeptides used as model systems, as noted by 3C-NMR
studies.’>® Exclusion of Arg and Lys enhances the correlation coefficient to 0.87. On
the other hand, the bulk solvent-based lipophilicities are consistently closer to the
values collected in the SolvL scale (mue of 0.36-0.92 log P/D units) than to the ProtL
ones (mue of 0.84-1.24 log P/D units).

The correlation coefficients obtained with biological-, knowledge-based and
consensus scales are still satisfactory (0.74 < r < 0.94), but tend to be lower than the
values obtained with the bulk solvent-based transfer scales. This is not unexpected
keeping in mind that the lipophilicites are derived from statistical analysis of
topological distributions of residues in proteins (Koehler et al., Janin et al.), or from
complex biochemically-adapted assays, such as the transfer of amino acids from
water to a phospholipid bilayer (Moon-Fleming), the recognition of artificial helices
by the Sec61 translocon (Hessa et al.), or the combination of water-vapor transfer free
energies with the interior-exterior distribution of amino acids in the consensus (Kyle-

Doolittle) scale.
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Table 11. Statistical Parameters of the Comparison of the SolvL and ProtL Scales with
other Lipophilicity Scales. Comparison Was Made Using the Values Adapted to the
Specific pH of each Scale and Relative to Gly.

SolvL ProtL
Scalea
mseP mue rsmd r mse mue rsmd r
Bulk-Solvent Adapted Scale
Faucheére-Pliska -0.20 0.36 0.46 0.94 0.36 0.98 1.28 0.92

Eisenberg-McLachlan -0.20 0.44 0.57 0.90 0.36 1.08 1.35 091

Hopp-Woods -0.49 0.60 0.74 091 0.07 0.84 1.08 0.89

-0.60 1.02 1.16 0.59 0.04 1.24 1.64 0.61

Wimley et al.< (0.87)  (0.92) (1.03) (0.87) (-030) (1.03) (1.25) (0.87)

Biological-Based Scale

Moon-Fleming -0.12 0.57 0.67 0.94 0.24 0.72 0.93 0.91

Hessa et al. -0.92 0.93 1.18 0.79 -0.36 1.08 1.46 0.82

Knowledge-Based Scale

Koehler et al. -0.91 1.10 1.33 0.78 -0.35 1.55 1.87 0.80

Janin et al. -1.06 1.11 1.32 0.78 -0.51 1.36 1.71 0.74

Consensus Scale

Kyte-Doolittle -0.81 1.43 1.71 0.72 -0.25 1.13 1.41 0.78

2 A physiological pH was considered in all cases, but for Wimley et al. and Moon-Flemin., since the
corresponding pH was fixed at 9.0 and 3.8 following the specific experimental conditions.

b mse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson
correlation coefficient. mse, mue and rmsd are given in log Px/D units.

¢Values in parenthesis obtaining upon exclusion of Arg and Lys. Since this scale was built up using
model pentapeptides (AcWL-X-LL) at pH 9.0, Arg and Lys formed a salt bridge with the terminal
carboxyl group in n-octanol as noted by 13*C-NMR studies.158

It is worth noting that by using the relatively simple n-octanol/water system for
deriving the lipophilicity of amino acids, even subject to a controversial capacity as a
mimic of biological environments, it was possible to correlate efficiently present
values with those reported by Moon-Fleming and Hessa et al., which were compiled
from more complex biological systems (Figure 27). Surprisingly, the Moon-Fleming
scale, where the chemical equilibrium occurs between the unfolded hydrated protein
to those that folds in a B-barrel inside a membrane, was practically emulated. The

outlier is represented by the residue arginine (Arg) whose lipophilicity is greater in
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the Moon-Fleming scale than in our ProtL scale, maybe due to stabilization of other
parts of the protein and/or a deformation of the membrane to reduce its
hydrophobic thickness.1¢7.200 In the case of Hessa et al. scale, proline (Pro) introduces
the biggest deviation in the trend. This may be rooted to the nature of the
experimental measurements made by Hessa et al., which represents a translocon
(protein complex) to bilayer partitioning. The segment insert into the membrane (H-
segment) adopts a oa-helix structure, and therefore Pro is being classified as
hydrophilic residue because is a strong helix breaker. In the Elofsson review¢! about
hydrophobic scales, it is stated that better scales classify Pro as a hydrophilic residue.
However, Rossky?0! advocates that Pro should be a hydrophobic residue. The lack of
agreement between authors highlights the different nature of each hydrophobic
scale. As a matter of fact, Elofsson do their comparison of scales on the preferences of
transmembrane helices by certain amino acids, as a result of a biological perspective
of hydrophobicity. On the other hand, the approach by Rossky et al. is based on
studies at atomic level to represent protein surfaces, cavities and pores. Our scale

considers Pro to be slightly hydrophobic.

R

Figure 27. Comparison between ProtL Scale derived from the IEFPCM/MST
solvation model for the twenty N-acetyl-L-amino acid amides and Moon's (left) and
Hessa's (rigth) experimental biological scales. All values are expressed as log D
relative to Gly. (r: Pearson correlation coefficient; mse: mean signed error; mue:
mean unsigned error; rmsd: root-mean square deviation).
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The sensitivity of the results to the pH was examined by extending the comparison to
the lipophilicities determined for the SolvL and ProtL scales at pH values of 3.8, 7.4,
and 9.0 (note that the acidic and basic pH values were chosen in the studies reported
by Moon-Fleming and Wimley et al., respectively). In general, there is little difference
between the correlation coefficients obtained at pH 7.4 and 9.0 (Figure 28). However,
a larger effect is found in the comparison of the log Dss, as there is a general decrease
in the correlation coefficient, which is remarkable for the bulk solvent-based transfer
scales, especially in the case of Hoop-Woods and Wimley et al. The only exception is
found in the comparison with the Moon-Fleming scale, as the highest correlation
coefficient is found for the ProtL values corrected at pH 3.8. These findings support
the suitability of the SolvL/ProtL scales to account for the pH influence on the

lipophilicity of amino acids.

0.C

Figure 28. Representation of the Pearson correlation coefficient in the comparison of
the SolvL scale with bulk solvent-based scales (blue lines), and ProtL scale with
biological-based (green lines), knowledge-based (red lines) and consensus (gray
lines) lipophilicity scales at pH 3.8, 7.4, and 9.0.
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3.9 Validation of the Hydrophobic Effect Using the Theoretical Lipophilicity Scale.

In addition to determine a ProtL scale, the Dunbrack’s backbone-dependent
conformational library also allows us also to determine the solvent accessible surface
area (SASA) for all rotamers using the program naccess?2. The entire SASA for each
rotamer was decomposed into the backbone and side chain contributions in order to
examine the effect of transferring the nonpolar side chain of each apolar residue from
n-octanol to water as a function on its SASA, the aforementioned “hydrophobic effect”.

Furthermore, since the [IEFPCM/MST model (see Scheme 5) permits to decompose

the total free energy of transfer between n-octanol and water into electrostatic (AGj; )

and non-electrostatic components (cavitation AG;, and van der Waals AG}, terms),

we also evaluated the non-electrostatic cost of transfering the side chain for all amino

acids (AAGY

o) PeT accessible surface area (see Figure 29).

Figure 29. Correlation of the average transfer free energy of n-octanol to water for the
side chain of amino acids with the average of solvent accessible surface area in the N-
acetyl-L-amino acid amides conformers. (Dashed line depicts the average transfer
free energy of water to n-octanol for the side chain of nonpolar amino acids and
dotted line depicts the average non-electrostatic term in the transfer free energy of n-
octanol to water for the side chain in the twenty natural amino acids).
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Our computations using those two approaches reveal that the hydrophobic effect
amounts to 20.0 + 2.7 cal/mol A2 and 24.6 + 3.0 cal/mol A2 to the stability of
removing apolar side chains or non-electrostatic terms from water to n-octanol,
respectively. Our average hydrophobic effect (22.3 cal/mol A2) matches previously
experimental values (see Table 2). Therefore, despite of explaining the stability of
proteins in solution or inside membranes (Moon-Fleming), the hydrophobic effect
also works in the stabilization of amino acid analogues-determinate experimentally
(Fauchere- Pliska'®®) or computed (our approach) in solvent systems to an equivalent

degree.

3.10 Application of the Lipophilicity Scale to Small Peptides Properties.

The reliability of the SolvL/ProtL scales has been calibrated by comparing the
cumulative lipophilicity with the (RP-HPLC) retention time determined for different
sets of peptides.203.204 Given the small size of the peptides (< 13 residues) and the lack
of well defined secondary structures, non-additivity effects can be expected to play a
minor role.20> Accordingly, the cumulative lipophilicity was determined assuming an

additive scheme (see Methods).

The first test comprises eight 10-mer peptides with equal charge that differ in the
content of hydrophobic residues (see Table 12).206

Table 12. Experimental RP-HPLC Retention Time for Eight Model Decapeptides and
Cumulative Lipophilicity Determined with the SolvL and ProtL Lipophilicity Scales.

Retention log D74
Peptide 2 Sequence factor k’

(min) SolvL ProtL
PeplLeu DKDKGGGGLG 4.80 -17.09 -34.04
Pep2Leu DKDKGGGLLG 11.97 -15.03 -32.27
Pep3Leu DKDKGGLLLG 16.22 -12.97 -30.50
Pep1Cys DKDKGGGGCG 0.52 -17.30 -34.85
Pepllle DKDKGGGGIG 4.73 -17.64 -33.06
Pep1Met DKDKGGGGMG 227 -17.65 -34.51
Pep1Phe DKDKGGGGFG 6.11 -16.53 -31.82
PeplVal DKDKGGGLVG 1.86 -18.07 -34.36

a Ref. 206
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The SolvL cumulative lipophilicity yields a correlation coefficient of 0.96 (Figure 30),
which compares with the value estimated from the hydrophobic surfaces of peptides
derived from molecular dynamics simulations (r = 0.97),2% whereas a slightly lower
correlation was found for the ProtL scale (r = 0.91; see Table 13). For this simple set of
homogeneous peptides, most of the experimental lipophilicity scales generally

yielded correlations higher than 0.9 (see Table 13).

Figure 30. Relationship Between the Cumulative Lipophilicities Determined from the
SolvL Scale Versus (A) the Retention Time for Eight 10-mer Peptides (pH 7.4; Ref.
38), (B) 248 Unique 13-mer Peptides (pH 2.1; Ref. 207,208), (C) log Pn for 118 Random
Peptides (Ref. 42), and (D) log D7.4for 116 Random Peptides (Ref. 209).

Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules 107



CHAPTER 3. RESULTS AND DISCUSSION

A more challenging test is the set of 248 analogues of the influenza virus
hemagglutinin 13-mer peptide (98-110) Ac-YPYDVPDYASLRS-NH, with equal
length, but different net charge at the experimental acidic conditions (pH = 2.1),207,208
comprising 36 peptides with two charged amino acids (Arg combined with His or
Lys), 105 peptides with a single charged residue (Arg, Lys, or His), and finally 17
neutral peptides. The SolvL cumulative lipophilicity correlates satisfactorily with the
retention time determined for the whole set of peptides (r = 0.85; Figure 30B). Among
bulk solvent-based scales, Fauchére-Pliska, Eisenberg-McLachlan and Hopp-Woods
also provided reasonable correlations coefficients (0.74 < r < 0.85; Table 13 and Figure
31), but a worst correlation was found for Wimley et al., although this may be
attributed to the different pH used in this latter scale (pH = 9.0) and the experimental
assay conditions (pH = 2.1). The performance of biological-, knowledge-based and
consensus scales was also worse (0.55 < r < 0.64; Table 13 and Figure 31), but for
Moon-Fleming (r = 0.78), likely reflecting the acidic pH conditions considered in the

derivation of this lipophilicity scale.
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Table 13. Correlation of Retention Time for 8 Model Decapeptides with the Same
Charge,?% and for 218 Peptides??7208 with Three Different Charge States Using the
Cumulative Hydrophobicity with Our Adaptive Hydrophobicity Scale and with
Others Experimental Scales.

Set of 10-mer Peptides Set of 13-mer Peptides

Scale
(pPH 7.4) (pPH 2.1)

Fauchere-Pliska 0.96 0.85
Eisenberg-McLachlan 0.95 0.79
Hopp-Woods 0.99 0.74
Wimley et al. 0.99 0.36
Moon-Fleming 0.99 0.78
Hessa et al. 0.96 0.61
Koehler et al. 0.76 0.64
Janin et al. 0.39 0.55
Kyte-Doolittle 0.93 0.60
ProtL 0.96 0.85
SolvL 0.91 0.77
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=0.55

Figure 31. Representation of the RP-HPLC retention time of 248 13-mer peptides
(Refs. 207,208) versus the lipophilicity determined from experimental scales in Table
13.

Then, given the relevance of partition (log Pn)/distribution (log D7.4) coefficients for
ADMET properties of peptides,'4® the suitability of the SolvL scale was further
checked for reproducing the differences in log Pn/log D74 of a set of random
peptides.??” The SolvL-based additive scheme yielded promising results, as noted in r
values of 0.93 and 0.83 in reflecting the experimental range of logPn and logD7.4 for
sets of 118 and 116 peptides, respectively (Figure 32 C, D). Compared to
experimental scales, a similar predictive power was attained for Fauchere-Pliska and
Eisenberg-McLachlan scales (r = 0.90) for the set of 118 log Pn data, and for Hopp-
Woods (r = 0.88) for the set of 116 logD74 values, but with a larger mue (around 2.3
versus 0.7 for the SolvL scale; Tables 14 and 15).
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Table 14. Statistical Parameters of the Comparison? of the SolvL and ProtL Scale with
Others Hydrophobicity Scales Against log Px Values for 118 Random Peptides.

Scale r mse mue rsmd
Fauchere-Pliska 0.90 -2.53 2.53 2.64
Eisenberg-McLachlan 0.89 -2.29 2.29 2.38
Hopp-Woods 0.74 -2.07 211 2.31
Wimley et al. 0.70 -1.54 1.67 1.81
Moon-Fleming 0.69 -0.80 1.12 1.34
Hessa et al. 0.22 0.29 0.98 1.29
Koehler et al. 0.45 -0.35 0.87 1.12
Janin et al. 0.38 -0.65 1.08 1.28
Kyte-Doolittle 0.50 -2.85 3.00 3.60
ProtL 0.60 1.35 1.68 2.00
SolvL 0.93 -0.55 0.71 0.94

amse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson
correlation coefficient. mse, mue and rmsd are given in log Px/D units.

Table 15. Statistical Parameters of the Comparison? of the SolvL and ProtL Scale with
Others Hydrophobicity Scales Against log D7.4 Values for 116 Random Peptides.

Scale r mse mue rsmd
Fauchere-Pliska 0.76 -2.76 2.76 2.88
Eisenberg-McLachlan 0.75 -2.58 2.58 2.69
Hopp-Woods 0.88 -2.32 2.33 243
Wimley et al. 0.52 -1.94 1.94 2.23
Moon-Fleming 0.79 -1.16 1.24 1.48
Hessa et al. 0.72 -0.22 0.60 0.73
Koehler et al. 0.76 -0.90 1.01 1.19
Janin et al. 0.61 -1.12 1.21 1.38
Kyte-Doolittle 0.52 3.04 3.17 3.76
ProtL 0.79 1.46 1.82 211
SolvL 0.83 -0.52 0.73 0.95

amse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson
correlation coefficient. mse, mue and rmsd are given in log Px/D units.

In these test cases, the ProtL scale performed worst (0.60 < r < 0.91; Figure 32) than
the SolvL one, suggesting that the Boltzmann-weighting scheme is better suited for

describing the lipophilicity of residues in structureless peptides.
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Figure 32. Representation of the cumulative lipophilicities determined from the ProtL
scale versus (A) the retention time for eight 10-mer peptides (pH 7.4; Ref. 206), (B)
248 unique 13-mer peptides (pH 2.1; Ref. 207, 208), (C) log P~ for 118 random
peptides (Ref. 209), and (D) log D7.4 for 116 random peptides (Ref. 209).

Finally, our SolvL scale also can be applied in colloid chemistry. Here, it has been
demonstrated that sea spray aerosols, represented commonly by sodium chloride
(NaCl), can contain important quantities of organic compounds. Interestingly, NaCl-
amino acid aerosols mixtures have shown a differentiated hydration in relation to the
amino acid present. In the Dar’s study?!9, a hydrophobicity scale served qualitatively

as a gauge of hygroscopicity for 7 aerosols studied. For the sake of comparison, our
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SolvL scale was tested obtaining a quantitative relation with the hygroscopicity of

the aerosols (see Figure 33).

I~

Figure 33. Representation of the normalized water content at 50 % of relative
humidity (RH) for 7 NaCl-amino acid aerosols mixtures as a function of the log D74
using the SolvL scale relative to Gly.

3.11 Application of the Lipophilicity Scale to Local Context-Dependent
Lipophilicity of Peptides.

On the other hand, our ProtL scale was applied in the determination of the local
context-dependent lipophilicity, which must be able to differentiate peptides or
proteins with the same sequence but different topology. In this respect, although
literature has shown the usefulness of hydrophobicity scales?!, these approaches
have been criticized!>0212 because they just have been used as simple summations of
individual hydrophobic descriptors, making them unable to find differences when
the identity and quantity of amino acids is the same even when their order along the

peptide sequence is variable.

We developed other additive scheme where the cumulative lipophilicity was
determined taking into account the fraction of solvent-exposed area of the peptide

residues, supplemented with two correction parameters that account for the
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contribution due to the involvement of the backbone in hydrogen bonds,?'? and to
the burial of apolar residues from water to hydrophobic environments!'é” (See
Methods). Thus, using this model our scale would have a potential application in
differentiating either sequences of the same composition with different order, which
should lead to a different molecular arrangement, as well as identical sequences with
conformational differences (e.g structures obtained from a molecular dynamics

simulations, NMR experiments or different crystallization conditions).

At first exploration, the tridimensional structure of the transmembrane segment of
the influenza M2 protein that includes residues 25 to 46 was considered. This
segment has been obtained using different experimental methods: an ensemble of
structures derived from ssNMR experiments refined with MD simulations in water?!4
(hydrophilic environment), and other from a detergent-solubilized state with octyl-
D-glucoside crystalized with the vapour diffusion hanging drop method?!®

(hydrophobic environment).

As expected, Figure 34 (left) illustrates that the X-ray average structure is more
hydrophobic than the average ssNMR one, highlighting the effect of the environment
on the final three-dimensional arrangement. To reveal the reason of the hydrophobic
differences, we analysed the individual residue contribution to the global
hydrophobicity in each average structure and we found that the exposure of
ionizable residues (Asp44 and Arg45) determines the hydrophobic variance between
those structures. As is shown in Figure 34, the X-Ray structure presents a cation-n
interaction between Trp41/Arg45, which is more favoured in protein environments
than in aqueous solutions,?1¢217 increasing the lipophilic profile of this structure. On
the other hand, the ssNMR structure present Asp44 and Lys45 directed to the
solvent, enhancing its hydrophilicity, especially at physiological pH where both

residues are present as charged species.
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14
12

Figure 34. Lipophilicity profile (ProtL scale) for two average structures from the
transmembrane segment of the influenza M2 protein (residues 25-46) derived of
ssNMR experiments refined with MD simulations in water (PDB code 210j, blue line)
and X-ray using the vapor diffusion hanging drop method (PDB code 4rwc, yellow
line)

We also tested a protein crystalized with the same technique, but under different
solvent conditions, which may influence the protein structure.?18219220 Figure 35
compares the lipophilicity profile for two crystal structures of the Bl
immunoglobulin-binding domain of Streptococcal Protein G221, the orthorhombic from
(1pga) crystalized using 20 % isopropanol (IPA) and 50% of 2-methyl-2,4-pentanediol
(MPD) and the trigonal (1pgb) using 70 % of MPD, both under acidic conditions (pH
4.0-4.5). In acidic conditions the orthorhombic crystal generated a more hydrophobic
profile than the trigonal one, which is in agreement with the lower global polarity of
the solvent used in the crystallization of 1pga and the greater number of crystal
contacts in this type of crystal (expected lower hydration?’!). We demonstrate that
the main difference observed in both hydrophobic profiles is due to the exposure of
Lys residues in the crystals. Figure 35 (bottom) revels that Lys residues (marked in
blue in the sequence) are less exposed to the solvent and for that reason they are less

hydrophilic.
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15

Figure 35. Lipophilicity profiles (ProtL scale) for two structures of the Bl
immunoglobulin-binding domain of Streptococcal Protein G (PDB code 1pga, yellow
line; 1pgb, blue line) crystalized under different solvent conditions (top). Differences
for reside-level lipophilicity under cristalization conditions (pH 4.2) are also depicted
(bottom).
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Although more extensive analysis are required, these preliminary results suggest
that, unlike previous applications of hydrophobic scales, our methodology can be
used to explore the effect of subtle differences due to the usage of different

experimental conditions.

Finally, one might expect an improved performance of the ProtL scale in the analysis
of the lipophilic complementarity in peptide-protein and protein-protein complexes
with regard to the SolvL approach. To this end, we have examined the relationship
between the ProtL cumulative lipophilicity and the experimental binding free
energies of 19 peptides to MHC (HLA-A*02:01 allele) proteins (see Table 16). These
peptides were chosen subject to the availability of (i) a precise structural information
of the peptide-protein complex in the Protein Data Bank,??? and (ii) an estimate of the
binding affinity in the Immune Epitope Database and Analysis Resource?? (see Table

16).

118 Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules



CHAPTER 3. RESULTS AND DISCUSSION

Table 16. Length (L), Net Charge (Q) and Cumulative Lipophilicity Determined Using Protl, SolvL and Experimental Lipophilicity
Scales of Peptides and Experimental Binding Affinities (BA; kcal/mol) Toward MHC (HLA-A*02:01 allele) from the Immune Epitope
Database and Analysis Resource (Ref. 223).

Lipophilicity Scale
PDB Sequence L Q BA @ Solvl, Protl Fauchere- Eisenberg- Hopp- Wimley Moon- Hessa Koehler Janin  Kyle-
Pliska = McLachlan Woods etal. Fleming etal etal. etal. Doolittle

2BST  SRYWAIRTR 9 3 -6.4 -9.29  -22.50 251 0.75 -0.67 7.75 -8.55 -6.99 -0.72  -3.60 -7.95
3BO8  EADPTGHSY 9 -1 -71+03 -312 -17.72 0.93 1.97 -1.91 -4.12 -8.81 -9.75 -1.35  -1.80 -9.63
1QVO QVPLRPMTYK 10 2 -71+03 -458 -15.13 4.59 5.43 0.79 5.18 -4.68 -9.02 -1.47  -3.60 -5.25
2X4S ~ AMDSNTLEL 9 -2 -5.8 -1.85 -15.83 3.15 3.54 -0.53 -2.59 -5.33 -6.21 -0.72  -0.40 -0.50
2X4U  ILKEPVHGV 9 0 -67+x06 -398 -13.24 5.16 5.34 0.78 1.92 -5.15 -6.31 -0.80  -0.20 2.99
2GT9  EAAGIGILTV 10 -1 -6.6 -1.34  -11.34 6.76 6.07 3.84 1.24 -0.85 -2.07 1.00 280  11.38
1T22 SLYNTVATL 9 0 -72#01 192 -10.44 5.77 5.86 5.96 2.89 -2.46 -2.42 0.45 0.50 4.82
5W1W VMAPRTLVL 9 1 -6.8 0.87 -10.44 7.35 6.93 4.21 5.40 1.43 -2.64 0.32 1.00 9.42
2X40  KLTPLCVTL 9 1 -6.5 420 -9.56 8.11 6.76 414 5.24 -1.25 -2.85 -0.17 0.50 8.16
5EU3  YLEPGPVTA 9 -1 -7.0 -0.22 919 5.25 5.73 2.54 -0.12 1.15 -6.09 -0.46  -0.20 0.51
3MRM KLVALGINAV 10 1 -7.3 -1.04  -8.66 6.67 6.47 4.49 4.96 -2.80 -2.48 0.45 150  11.89
3UTQ ALWGPDPAAA 10 -1 -7.9 242 844 5.86 6.13 3.04 0.28 0.41 -6.49 -0.38 1.10 2.17
3GSN NLVPMVATV 9 0 -66x01 169 -7.45 7.28 7.72 6.03 2.93 0.86 -2.43 0.32 200 1045
3QEQ AAGIGILTV 9 0 -701 1.60 -6.59 7.40 6.62 6.03 3.72 0.35 -0.11 151 350  13.93
3MRG CINGVCWTV 9 0 -59+01 296 -5.68 9.23 5.97 7.57 3.81 -3.25 -1.56 0.44 3.60 9.05
2PYE  SLLMWITQC 9 0 -6.4 819 -2.24 10.22 8.33 8.01 5.05 -0.59 -1.53 0.51 2.30 7.73
1HHK LLFGYPVYV 9 0 -8.4 724 -0.04 10.27 9.86 9.98 5.76 6.84 -1.68 111 1.90  10.36
2VLL  GILGFVFTL 9 0 -86+x01 676 121 10.26 9.00 8.95 6.46 3.75 0.47 1.89 3.70 14.88
30X8  FLPSDFFPSV 10 -1 -87#01 475 130 8.88 8.42 5.23 3.13 411 -5.71 0.09 1.20 5.91

a Estimated generally using cellular MHC/ competitive/fluorescence half maximal inhibitory concentration (ICsp), and exceptionally from radiactive assays.
When several data were available, the binding affinity is given as the mean value together with the standard deviation.
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The results show that the ProtL scale works better than the SolvL scale (correlation
coefficients of 0.58 and 0.42, respectively; Figure 36) when the whole set of 19
peptides is considered, yielding correlation coefficients that compare with Moon-
Fleming and Eisenberg-McLachlan scales (r = 0.61 and 0.51, respectively; see Table
17). This correlation is remarkable keeping in mind the heterogeneity of the peptides,
and the uncertainty arising from the combination of data taken from different studies
and determined using distinct experimental approaches. Further, a significant
improvement is observed upon exclusion of the two Cys-containing peptides (PDB
codes 3MRG, and 2PYE), perhaps reflecting a quenching effect of cysteine in
fluorescence assays.??#2%5 Thus, upon exclusion the correlation coefficient of ProtL
and SolvL scales increases up to 0.80 and 0.73, respectively, outperforming the results

obtained with the experimental scales (r < 0.67; see Table 17).

Figure 36. Relationship between the cumulative lipophilicities determined from (left)
SolvL and (right) ProtL scales versus experimental binding affinities of MHC-bound
peptides. Cys-containing peptides are indicated as red dots.
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Table 17. Correlation Coefficient of Cumulative Lipophilicity Determined Using
Different Lipophilicity Scales of MHC (HLA-A*02:01 allele)-Bound Peptides with
Experimental Estimates of Binding Affinities.

Seale Entire Set No Cys Set
(n=19) (n=16)

Fauchere-Pliska 0.34 0.67
Eisenberg-McLachlan 0.51 0.66
Hopp-Woods 0.36 0.62
Wimley et al. 0.18 0.31
Moon-Fleming 0.61 0.65
Hessa et al. 0.07 0.25
Koehler et al. 0.32 0.41
Janin et al. 0.18 0.39
Kyte-Doolittle 0.21 0.34
ProtL 0.58 0.80
SolvL 0.42 0.73

3.12 Relationship between Toxicity and Lipophilicity of ABs> Peptides Involved in

the Alzheimer's Disease.

Formation of molecular agragates in the brain, is one of the main hallmark in the
Alzheimer's disease. These aggregates are form of repeated units of amyloid
peptides. The amyloid peptides come from the transmembrane amyloid precursor
protein (APP e.g presenilin 1 and presenilin 2) upon proteolysis by the combination
of B- and y-secretases??6??” being the APs> peptides the more toxic ones.?2822
Hydrophobicity has been recognized to take part actively in the Alzheirmer's
disease. For instance, mutants that compromise the stability of APP (presenilin 1) in
the membrane, via a reduction of the global hydrophobicity of the protein, are
correlated with a increase of toxic species (APs peptides relative to APso peptides)
that could cause the disease.?30 Also, toxic species from amyloid peptides (i.e dimers
and aggregates) have been reported to be highly dependent of its hydrophicity,
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especially of the hydrophobic residues.?31.232 Lately, attention have been put in the
wild type and mutants of monomeric species of APy peptides where computed
properties as secondary structure, solvent accessible surface areas and radius of
gyration have improved the understanding of experimental toxicity reported in these
biomolecules. ABs2 monomers with reduced helix propensity of the ensembles have

produced the more toxic mutants.?33

Thus, the understanding of changes of the conformational ensemble of A
monomers upon residue mutations could provide crucial information about the
propensity to aggregation and also to the toxicity of specific proteins. These
conformational ensembles of the monomers will determine ultimately the main

features of the monomer like global and local lipophilicity.

The available experimental toxicity data?® for wild type and mutated A is
presented in Table 18. The toxicity of the AP peptides in Alzheimer's disease is
attributed to the oligomerization propensity. Somehow such propensity is encoded
into the properties of the corresponding monomers, the basic building blocks of

oligomers.

Table 18. Net Charge (Q), Toxicity (relative ECso to WT peptide), and Average
Cumulative Lipophilicity (<10g D,, >) in AP42 Peptides.

. Toxicity
Peptide Q (ECs0) <log D7_4>
E22Q -2 0.07 -6.9
E22G -2 0.14 -8.6
E22K -1 0.14 -11.2
D23N -2 0.38 -5.1
D7N -2 0.70 -6.1
A2V -3 0.80 -4.2
H6R 2 0.80 -7.2
D7H 2 0.80 -4.9
WT -3 1.0 -5.6
K16N -4 1.0 -6.2
A21G -3 1.7 -7.0
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There is a general consensus that hydrophobic interactions take part actively to the
oligomer formation and mutations that increase the lipophilicity promote
aggregation. Our ProtL scale, however, despite of having some degree of correlation,
did not show significant tendency between global lipophilicity and toxicity. Recently,
it has been demonstrated that hydrophobic fragments in the APs sequence are
responsible to promote aggregation instead of the specific side chains of those
residues or well the entire peptide.?3! Thus, segment rather than global features of the
monomer Afg mutants could shed some light in the understanding of the toxicity
and give a better explanation of this phenomenon. Here, we studied the classical
segments reported in the literature for A4 peptides (Figure 37): N-terminal (NT;
residues 1-16), Central hydrophobic core (CHC, residues 17-21), Loop (Loop,
residues 22-30), C-terminal (CT, residues 31-42) and Body (residues 17-42).

The classical segments (see Figure 37) gave a significant correlation (r = 0.76) with the
NT fragment, and some correlation (r = 0.52) with the CHC fragment and Loop
(r=-0.44).
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ProtL

Figure 37. Correlation between experimental toxicity data and lipophilicity

(<log D,, >) of classical fragments in AP peptides.
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A systematic analysis for searching the non-classical fragments that better correlate
with the experimental toxicity (see Table 19) showed, in agreement with the classical
segments, two different trends. In one hand, the best positive correlation (r=0.91) for
a non-classical segment is composed for a merge segment that includes residues of
the NT and CHC stretches. On the other hand, the best negative correlation (r=-0.81)
with another mixed segment form the Loop and CHC fragments. The first fragment
suggest that toxic peptides tends to be more hydrophilic in this region and contrary,
the second one suggests that the toxicity of the peptide increases with the

hydrophobicity of this segment.

Table 19. Systematic search for the top 10 best positive and negative correlations (7)
between non-classical fragment lipophilicity and experimental toxicity for 11 A4
peptides. The length (L) and residues involved with its classification based on the
classical segments are also given for each fragment.

Top 10 best positive non-classical

fragments correlation

Top 10 best negative non-classical

fragments correlation

Classical Classical
Fragment Fragment
(residues) s.egments L (residues) spgments L !
involved involved
2-20 NT-CHC 19 091 21-24 CHC-Loop 4 -0.81
2-18 NT-CHC 17 0.90 21-23 CHC-Loop 3 -0.77
2-19 NT-CHC 18 0.90 21-25 CHC-Loop 5 -0.77
3-20 NT-CHC 18 0.90 20-22 CHC-Loop 3 -0.76
3-18 NT-CHC 16 0.89 21-26 CHC-Loop 6 -0.76
3-19 NT-CHC 17 0.88 22-23 Loop-Loop 2 -0.75
1-18 NT-CHC 18 0.88 22-24 Loop-Loop 3 -0.74
1-19 NT-CHC 19 0.87 21-22 CHC-Loop 2 -0.73
3-21 NT-CHC 19 0.87 20-24 CHC-Loop 5 -0.73
2-21 NT-CHC 20 0.87 20-25 CHC-Loop 6 -0.71
mean 18 0.89 mean 4 -0.75
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These results pointed out two divergent tendencies between classical and non-
classical (i.e functional fragments) that led us to the hypothesis that the
amphipathicity, expressed as the difference in lipophilicity between the two
segments, could explain better the toxicity of AP peptides. In fact, it is well known
that amphipathic peptides (e.g antimicrobial peptides) are more active but also more
toxic when their amphipathicity increase.?** However, despite of the A peptides
having an amphipathic sequence (polar amino acids are found in the first 28 residues
while the apolar ones in the last 14 residues)?® there is no a reported relationship
between toxicity and amphipathicity for these peptides. To this end, we have
examined systematically all possible combinations between different segments with
diverse lengths (1 > 2) with an opposite correlation with toxicity in order to compute
its amphipathicity and correlate it with the experimental toxicity (see Table 20 and

Figure 38).

Table 20. Systematic search for the top 10 best correlations (1) between non-classical
fragment amphipathicity and experimental toxicity for 11 AB4 peptides. The residues
involved with its classification based on the classical segments are also given for each

fragment.

Residues Classical segments involved r
(35-39) vs (2-18) CT vs NT-CHC -0.97
(36-39) vs (2-18) CT vs NT-CHC -0.96
(36-39) vs (2-19) CT vs NT-CHC -0.96
(35-39) vs (2-19) CT vs NT-CHC -0.96
(34-39) vs (2-19) CT vs NT-CHC -0.96
(33-39) vs (2-19) CT vs NT-CHC -0.96
(33-41) vs (2-19) CT vs NT-CHC -0.96
(36-39) vs (2-20) CT vs NT-CHC -0.96
(21-22) vs (2-18) CHC-Loop vs NT-CHC -0.95
(21-23) vs (2-18) CHC-Loop vs NT-CHC -0.95
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2-18)

Ampt

Figure 38. Correlation between experimental toxicity data and amphipathicity of
functional hydrophilic fragment F(2-18) versus functional hydrophobic fragment
F(21-22) (left) and F(35-39) (right).

Figure 38 shows that the correlation coefficients obtained are very significant (r =
|0.95]) and presents another relevant hydrophobic fragment, F(35-39), which was
not identified as relevant in terms of its correlation between lipophilicity and toxicity

(see Table 19).

The results suggest the regulatory function of the NT and CHC segment on the
aggregation propensity of the rest of the peptide. The aggregation of the peptide
would be facilitated by a non-interfering NT and CHC, but the non-aggregation
character would be achieved by a NT segment adopting helix conformations while
interacting with the main body of the peptide thus interfering with its aggregation.
Accordingly, the Loop and CT, especially dominated by the increase in the
lipophilicity of residues 21-22 and 38 upon mutations, respectively could stabilize the
formation of a hydrophobic body of the peptide that would favour the formation of

aggregates.
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Overall, the results are in line with the role of beta-hairpins in the aggregation!! and
the prominent role of the NT region in the toxicity profile.1213 Even more, overall, the
present results point out to beta barrels as possible toxic oligomer structure, where
the CHC-CT fragments would form the main body of the barrel and the NT segment

would be exposed into solvent.13

Finally, our findings suggest that the amphipathicity of monomeric A4, peptides
could drive its toxicity, similarly as has been widely reported in antimicrobial
peptides and from there, the modulation of this physicochemical descriptor could be

evaluated to control the toxic amyloid species.
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4. METHODS

4.1 Refinement of the MST Model for Solvation of Neutral and Ionic Compounds

in n-Octanol.

For the purpose of this study, several sets of molecules were used to refine the MST
model. First, a set of 19 small nitrogen-containing aromatic compounds was used to
calibrate the parametrization of pyridine-type and pirrole-type nitrogen atoms. This
data set includes 6-methyluracil, 9-methyladenine, adenine, albendazole, caffeine,
clonidine, cytosine, diphenylamine, fluconazole, fluorouracil, guanine, imidazole,
metronidazole, phenytoin, pyridine, pyridimidine, pyrrole, thymine, and uracil (see

Figure 7).

Next, a set of 27 compounds was used to calibrate the suitability of the MST model to
compute log P; values, This set included 18 cations (2-(2-pyridyl)-ethylammonium, 2-
phenylethylammonium, 3-carboxyanilinium, 4-carboxyanilinium, 4-methyl-N-
ethylbenzylammonium, 4-methyl-N-heptylbenzylammonium, 4-methyl-N-
pentylbenzylammonium, 4-phenylbutylamine, AceHisNHo, AceLysNHo,
amitriptyline,  desipramine, imipramine, lidocaine, tetrabutylammonium,
tetraethylammonium, tetramethylammonium, tetrapentylammonium) and 9 anions
(2-4-dichlorophenoxyacetate, 5-phenylvalerate, AceAspNH>, AceGluNHo, diclofenac,

ibuprofen, indomethacin, naproxen, pentachlorophenolate; see Figure 10).

Finally, a set of 35 compounds was used to calibrate the behavior of the refined MST
model for predicting the partition coefficient of the neutral compound (Pn), and the
distribution coefficient at pH 7.4 (D74), taking advantage of the available
experimental data for pK,, log Pn and log D74. This data set includes 31 drugs
(albendazole, amitriptyline, antipyrine, bumetanide, caffeine, clormipramine,
clonidine, clozapine, cyclobenzaprine, desipramine, diazepam, diclofenac,
diphenylamine, estradiol, fluconazole, flurbiprofen, ibuprofen, imipramine,

indomethacin, lidocaine, loratadine, maleic acid, metoclopromaide, metronidazole,
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mezoridazine, naproxen, paracetamol, pentachlorophenol, pentoxifylline,
phenytoin, and triflupromazine; see Figure 13) and 4 amino acids (aspartic acid,
glutamic acid, histidine and lysine, capped with acetyl and amide groups at the N-

and C-terminus).

On the other hand, the refined model was checked by computing the pH-dependent
distribution profiles in the framework of the different partitioning schemes discussed
above. To this end, several drugs (ibuprofen, imipramine, desipramine,
pentachlorophenol, lidocaine, amitryptiline, and warfarin), and four amino acid
analogues (N-acetyl-L-aspartic acid amide, N-acetyl-L-lysine amide, N-acetyl-L-
glutamic acid amide, and N-acetyl-L-histidine amide) were considered taking

advantage of the available experimental data for these compounds.

The molecular geometries of the compounds were fully optimized at the B3LYP/6-
31G(d) level of theory in the corresponding solvent phase, water or n-octanol, using
the IEFPCM version of MST model. Then, single point calculations in gas phase and
in solution were performed in order to estimate the free energy of solvation in water

and n-octanol. All calculations were performed in Gaussian 09.2%°

For the set of ionizable compounds, computations were performed for the minimum
structure obtained after geometry optimization of an extended conformation of the
molecule. This strategy was motivated by the generally low number of rotatable
bonds present in these compounds (see Figure 14), as well as by the similar n-
octanol/water transfer free energies obtained from a single-conformation approach
and from conformational ensembles for drug-like compounds in a previous study.5”
Nevertheless, for the subset of N-acetyl-L-amino acid amides, calculations were
performed taking into account all possible rotamers with a probability contribution
higher than 5% to the total conformational space as given by the backbone-
dependent conformational library reported by Dunbrack and Karplus.5

Calculation of the log D was accomplished using eqs 5, 6, and 30. Data for the
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partition of inorganic ions required for eq 30 were taken from the literature (

o o o

logP __=-4.5, logP . =-2.5 and logP

— 191,240,241
1,¢I~ I,Na* 1,K* 26)

4.2 Experimental Determination of Partition of Neutral and Ionic Species for

Indomethacin and Chlorpromazine.

Partition of neutral and ionic species for indomethacin and chlorpromazine were
performed using the potentiometric method. For this task was designed a multiset of
the potentiometric pKa determinations using different ratios of volumes of water and

n-octanol how is shown in the Tables 21 and 22.

Table 21. Experimental Design for the Potentiometric Determination of log Pn and
log P for Indomethacin.

Initial KCl
. Mass in aqueous Volume Volume Ratio .
id ) solution water n-octanol (Vs Vo) File
(mol/L) (Vw, mL) (Vo, mL)

1 3.15 15 3 5 0502
2 3.95 10 1 10 0503
3 3.16 - 19 1 19 0702
4 3.44 20 0.5 40 1002
5 2.74 21 0.3 70 1003
1 412 15 1 5 0803
2 3.32 10 2 10 0804
3 3.93 1x10°5 19 3 19 1202
4 3.26 20 4 40 1203
5 345 21 5 70 1204
1 3.10 19 1 19 2904
2 3.14 16 3 5 2905
3 3.01 1x10-3 20 0.5 40 3002
4 3.33 10 1 10 3003
5 3.04 17 0.2 85 3102
1 3.13 15 3 5 3103
2 2.93 10 1 10 3104
3 3.59 0.15 19 1 19 0603
4 3.24 20 0.5 40 0604
5 3.15 21 0.3 70 0605
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Table 22. Experimental Design for the Potentiometric Determination of log Pn and

log P for Chlorpromazine.
Initial KCI

. Mass in aqueous Volume Volume Ratio .
id i) solution water n-octanol (Vs Vo) File
& (mol/1) (VwymL) (Vo mL) w/ Vo

1 3.81 15 1 5 1103
2 3.98 10 2 10 1104
3 3.93 - 19 3 19 1105
4 3.07 20 4 40 1106
5 3.00 21 5 70 1107
1 3.13 15 1 5 1204
2 3.18 10 2 10 1205
3 3.59 1x105 19 3 19 1206
4 3.32 20 4 40 1207
5 3.30 21 5 70 1702
1 3.56 19 1 19 1703
2 3.86 16 3 5 1704
3 3.64 1x10-3 20 0.5 40 1705
4 3.50 10 1 10 1802
5 3.33 17 0.2 85 1803
1 3.20 15 3 5 1804
2 3.27 10 1 10 1805
3 3.74 0.15 19 1 19 1806
4 3.40 20 0.5 40 1807
5 3.10 21 0.3 70 -

4.3 Development of the Lipophilicity Scale for Amino Acid Residues.

Following a previous study on the hydration free energy of the natural amino
acids,’® the N-acetyl-L-amino acid amides (CH;-CO-NH-CHR-CONH:?) were chosen
as molecular models. Using the backbone-dependent conformational library reported
by Dunbrack and coworkers,190242243 3 total of 572 rotamers (i.e., conformers with a
probability contribution higher than 5% to the total conformational space of each
residue) were compiled. These structures were then used to compute the n-
octanol/water transfer free energies, which were performed with the B3LYP/6-
31G(d) MST™3 version of the IEF-PCM14324 model. Computation of the distribution
coefficients at a given pH (log D) was performed by combining the partition

coefficient of neutral and ionic species (for ionizable residues) using eq 6.
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The contribution of the conformational species in water and n-octanol was accounted
for considering two weighting schemes, giving rise to the Solvent-like (SolvL) and

Protein-like (ProtL) lipophilicities scales, respectively.

(i) In the SolvL scale, the contribution of each conformational state to the partition
coefficient of the neutral/ionized species was determined using a Boltzmann
weighting scheme, where the effective free energy was estimated by combining the
internal energy of the conformer and its solvation free energy in water and n-octanol.
To this end, the geometry of all rotamers was optimized at the B3LYP/6-31G(d) level
of theory while keeping the backbone dihedrals fixed to the torsional values of the
Dunbrack’s library, and subsequently single-point calculations in the gas phase and
in solution. The log D was then computed using eq 6, adopting the pKa values
reported for ionizable residues from experimental peptide models in aqueous

solutions.192.193

(ii) In the ProtL scale, the contribution of each conformation to the partition between
the two solvents was determined by using the weights reported in the Dunbrack’s
library, which reflect the rotameric distribution in a protein environment. The pKas of

ionizable residues were taken from values in folded proteins.1941%
For the sake of comparison, we also computed both approaches with the SMD model

using the B3LYP/6-31G(d) level of theory.13”All calculations were performed using a

locally modified version of Gaussian (09.23°
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44 Comparison of the Lipophilicity Scale for Amino Acid Residues with
Experimental Scales.

Due to the diversity of experimental lipophilicity scales of amino acids, generally
expressed in terms of transfer free energies, comparison was made by converting
them to partition/distribution coefficients, which were subsequently normalized to

Gly following eq 37.

(-AA Gt an ~AA Gt fcly)/
— ransf, ransf;, 37
log £ /Dy RTIn10 (57)

where AAG,__ . is the transfer free energy of a given amino acid from the aqueous

sf,

phase to the organic/biological environment, and AAGtransf,Gly is the free energy of

transfer of Gly.

4.5 Determination of the Cumulative Lipophilicity in Peptides.

Most of the experimental scales present in the literature compute the lipophilicity of
a given peptide as the sum of individual lipophilicity of the constituent amino acids
relative to a reference residue, usually Gly or Ala. Since the MST solvation model
gives atomic contributions to the transfer free energy,?*5-2#” we can separate the
global lipophilicity in contributions corresponding to the backbone (bb), side-chain
(sc), and the capping groups (cg). Combination of the bb and sc contributions yields
the amino acid lipophilicity (reported in Table 1 in the manuscript), whereas the
contribution of the capping groups has been estimated to be (N-terminus) CH3;CO-
(logPn = 0.20), NHs*- (logD7.4= -2.99), and (C-terminus) NH>- (log Px = -1.08), NMe-
(logPx = 0.35), COO—- (logD7.4 = -4.89).

The cumulative lipophilicity of a peptide with Ny residues may be estimated by

using eq 38.

Nres Ncg

log(R, / D,,,)""*= > log(P, /D))" +> log(P, / D.)® (38)

i=1 =1
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where P','V / D:)H stands for the fragment (bb+sc or cg) partition/distribution

coefficient, Nys and N being the total number of residues and capping groups in the

peptide.

For practical applications, this simple expression is convenient when there is no
explicit knowledge about the 3D structure of peptides, as may occur in structureless
peptides. For our purposes here, this is the expression adopted to evaluate the

lipophilicity of small, flexible peptides in solution.

On the other hand, if the 3D structure of the peptide is known from experimental (X-
ray, NMR) or computational (Molecular Dynamics) approaches, then the cumulative
lipohilicity may be estimated taking into account the specific structural features of

peptides/proteins, as noted in eq 39.

Nres
log(P, / D, )™= 3 (4" -log(P,, / D, )" + ' -log(P,, / D\, )+’ + ') (39)

i=l

In eq 39, A stands for the fraction of solvent-exposed surface area (SASA) of the
amino acid (bb+sc) or capping group (cg) according to the local structural
environment of in a peptide/protein. For our purposes, the SASA was determined

using NACCESS.202

In addition, two correction factors were also introduced. The parameter o
introduces a correction to the hydrophobic contribution when the backbone
participates in a hydrogen bond (HB). This contribution can be estimated to amount,

on average, to 0.73 (log P units) per HB.24® The occurrence of this kind of HBs in a
given 3D structural model was determined with the DSSP program.2!3 Finally, the /'

factor accounts for a correction due to the burial of the side chain of hydrophobic
residues (Ala, Leu, Ile, Val, Pro, Phe, Trp, Met and Tyr) from water to a lipophilic
environment. This contribution has been estimated to be 0.023 kcal mol ! A2

according to the studies reported by Moon-Fleming for the transfer of nonpolar side
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chains from water into a lipid bilayer.16” Therefore, the /' term has been estimated
from the fraction of the buried side chain with respect to the fully buried side chain,

as noted in eq 40.

B = H;%-(l—/l")sC (40)

where H:ﬁ stands for the hydrophobic contribution (in log P units) of a specific

apolar residue, which was estimated as noted in eq 41

. 0.023-SASA®.

(41)
"= 2303RT

where SASAY is the average SASA of a given residue type, R is the gas constant,

and T is the temperature in the Kelvin scale.

The H!_ values for nonpolar residues are given in Table 23.

Table 23. Average Solvent Accessible Surface Area (SASA) for the Side Chain of the
Hydrophobic Residues and the Hydrophobic Effect Contribution Value when the
Side Chain is Fully Buried.

Residue Averaoge SASA H ;&s
(A?) (log P units)

Ala 69 1.2
Val 130 2.2
Leu 158 2.7

Ile 157 2.6
Met 166 2.8
Pro 115 1.9
Phe 188 3.2
Trp 232 3.9
Tyr 201 3.4
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4.6 Analysis of APs Peptides Involved in the Alzheimer's Disease.

Understanding the effect of mutations on the segment hydrophobicity and
amphipacity of a series of Afs mutant monomers, whose toxicity are known, could
shed some light on the geometrical and property factors that confers toxicity to the
peptides. To this end, the global and segment lipophilicity of the Afsz mutant
monomers (E22Q, E22G, E22K, D23N, D7N, A2V, D7H, H6R, WT, K16N, A21G) was
computed from the corresponding conformational ensembles (8000 conformers for
each mutant) generated from multi-seeded molecular dynamics simulations?® and
confronted with the corresponding experimental toxicity in search of the highest and
significant correlation coefficients. Global and fragment lipophilicity was measured
as an averague of log D74 according eq 39. The functional segments employed here
(NT 1-16, CHC 17-21, Loop 22-30, CT 31-42, body of the peptide 17-42) are those

already identified in literature according to the secondary structure. Averague

amphipathicity, <A mp;‘fﬁde>, for the ABs mutant monomers was computed from the

difference between the averague lipophilicity of a hydrophobic fragment,

<10g Dl h°>, versus the averague lipophilicity of a hydrophilic fragment, <log D’ hi>

74 7.4

according to eq 42.
(Ampr3=) {1050 log 05 @

where Amp refers to amphipathicity descriptor.
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5. CONCLUSIONS

a. The refinements made in the [IEFPCM/MST method for the treatment of solutes in
n-octanol improve the ability of the model for predicting both partitioning of neutral
and ionic compounds. Although the balance between accuracy and computational
cost is more favourable for empirical methods, the availability of refined versions of
QM-based continuum solvation methods opens the way to the analysis of factors

implicated in the partition of (bio)organic molecules in complex chemical systems.

b. For the set of 35 compounds used in the determination of log D74, there are little
differences between the calculated values determined at physiological pH with the
three formalisms examined here. However, eq 6 is the minimal scheme required to
rationalize the pH-dependent distribution profiles of ionizable compounds. The role
of the Galvani potential difference (eq 30) between the two phases, however, may be

relevant at higher concentrations of the background salt.

c. The refined lipophilicity models (Schemes 6 and 7), in conjunction with the general
model of lipophilicity developed (Scheme 8) in this thesis, can be useful to explain
the effect of the background salt used in experiments. However, these must be tested

experimentally (work underway).

d. Accounting for pH conditions and structural preferences are necessary for
improving the quantitative description of the lipophilicity of amino acids. The
computation of log Dpn using the Boltzmann's weighting scheme (Solvent-like) led to
a close agreement not only with Fauchére-Pliska scale, but also to high correlation
with bulk-solvent scales. Furthermore, it also lead to significant correlations with the

retention time of a wide variety of short peptides.
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e. ProtL scale works in an efficient way to describe the local-context dependet
lipophilicity, which was supported through of the differentiation of lipophilic
profiles between the same peptides whose structure was reported using different
structural methods in variate chemical environments. Also, this approach was able to
describe the lipophilic complementarity in protein-protein complexes represented by

MHC complex.

f. The amphipathicity, derived from the lipohilic descriptors developed in this work,
between the NT and CHC region and the Loop of the peptide in A4 peptides
emerges as a key factor for the aggregation propensity and its associated toxicity.
Mutations that reinforce the hydrophilic character of the NT and CHC regions and
the hydrophobic character of the main body of the peptide will cause an increment of

aggregation propensity and toxicity.

g. Present results pave the way to explore the application of this methodology to the
calculation of hydrophobic parameters for other species of native residues (proline
cis) or non-proteogenic amino acids, as well as to other fragments relevant to
proteins. On the other hand, the applicability possibilities of the present versatile
scale are vast, such as the development of scoring functions for peptide-protein or

protein-protein docking protocols, among others.
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ABSTRACT: Hydrophobicity is a key physicochemical
descriptor used to understand the biological profile of (bio)-
organic compounds as well as a broad variety of biochemical,
pharmacological, and toxicological processes. This property is
estimated from the partition coefficient between aqueous and
nonaqueous environments for neutral compounds (Py) and
corrected for the pH-dependence of ionizable compounds as
the distribution coefficient (D). Here, we have extended the
parametrization of the Miertus—Scrocco—Tomasi continuum
solvation model in n-octanol to nitrogen-containing hetero-
cyclic compounds, as they are present in many biologically

relevant molecules (e.g, purines and pyrimidines bases, amino acids, and drugs), to obtain accurate log Py values for these
molecules. This refinement also includes solvation calculations for ionic species in n-octanol with the aim of reproducing the
experimental partition of ionic compounds (P;). Finally, the suitability of different formalisms to estimate the distribution
coeflicient for a wide range of pH values has been examined for a set of small acidic and basic compounds. The results indicate
that in general the simple pH-dependence model of the ionizable compound in water suffices to predict the partitioning at or
around physiological pH. However, at extreme pH values, where ionic species are predominant, more elaborate models provide a
better prediction of the n-octanol/water distribution coefficient, especially for amino acid analogues. Finally, the results also show
that these formalisms are better suited to reproduce the experimental pH-dependent distribution curves of log D for both acidic

and basic compounds as well as for amino acid analogues.

B INTRODUCTION

The differential solubility of solutes in aqueous and nonaqueous
(organic) environments is a fundamental physicochemical property
for understanding a wide range of biochemical, pharmacological,

Scheme 1. Thermodynamic Cycle Used to Determine the
Transfer Free Energy of a Compound (X) between Two
Immiscible Solvents

ACS Publications  ©2017 American Chemical Society 9868
)~ 4

Scheme 2. Mechanism of n-Octanol/Water Partition for an
Ionizable Neutral Compound (HX)

and toxicological processes of bioactive compounds.'™® These
studies have primarily relied on molecular hydrophobicity, a
property that can be quantified by the partition coefficient (Py)
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of a neutral molecule (X) between water and an organic phase,
typically n-octanol (eq 1).

_ ¥,
N X, )

The transfer free energy of the solute between water and
n-octanol (AG®™) can be related to the difference in the solvation
free energy upon transfer from the gas phase to the two solvents
(AGY) and AGY; Scheme 1). From a computational point of
view, quantum mechanical (QM) self-consistent continuum
solvation methods have proved to be a cost-effective approach
for the calculation of solvation free energies.g_13 Indeed, these
methods have been carefully parametrized to predict the sol-
vation free energies of neutral compounds in a wide variety of
solvents, typically with an uncertainty less than 1 kcal/mol."*"

For an ionizable compound (HX), it is generally assumed that
only the neutral species can partition between water and
n-octanol, whereas both neutral and ionized species may exist at a
given pH in aqueous solution (Scheme 2). Under these cir-
cumstances, the total partitioning of the compound between
aqueous and organic phases is better described by the dis-
tribution coefficient (D), which depends on the pH of the
aqueous solution (eq 2)./1¢

log D = log Py — log(1 + 10°) Q)

where 6 = pH — pK, for acids and 6 = pK, — pH for bases.

Most druglike compounds included in chemical libraries
contain ionizable groups;lé_20 therefore, distinct neutral and
ionized species may exist at a given pH. For an acidic compound,
the distribution coefficient will be close to the partition coeffi-
cient at low pH, but the hydrophobicity profile will be affected by
the partitioning of the ionized compound at high pH.>' At this
point, it is well-known that the absorption of bioactive com-
pounds is influenced by the pH changes along the human
gastrointestinal tract, with a maximal absorption of weak acids
in the jejunum (pH = 4.5) and weak bases in the ileum
(pH =~ 8.0).>> Furthermore, it has been noticed that the
pH-dependent hydrophobicity profile may be influenced not
only by the partition of distinct neutral and ionic species but also
by the potential contribution due to the formation of ion pairs
formed with counterions.”*>*

Predicting the hydrophobicity profile of ionizable compounds
challenges the suitability of continuum solvation models for
estimating the differential solvation of ionic species with chemical
accuracy. This can be justified by the larger experimental uncer-
tainties associated with experimental values of the solvation free
energies of charged species compared to neutral ones.” ™% Thus,
the solvation free energy of neutral solutes is generally deter-
mined from partition coefficients between the gas phase and
aqueous solutions, and the experimental uncertainty increases
with the solvation free energy, limiting the applicability of this
technique to solutes with solvation free energy (in absolute
terms) less than ~12 kcal/ mol.?’ Accordingly, ionic compounds
require the use of indirect approaches based on the use of suitable
thermodynamic cycles.”*>***! On the other hand, the strong
solute—solvent interactions existing between ionic species and
polar solvent molecules in the first solvation shells may hardly be
captured from the crude representation of a polarizable con-
tinuum, which is better suited to account for bulk solvent elec-
trostatic effects, making it necessary to carry out a careful adjust-
ment of electrostatic and nonelectrostatic contributions to the
solvation free energy.

9869

The aim of this study is twofold. First, we report the refine-
ment of the Miertus—Scrocco—Tomasi (MST) continuum sol-
vation model,'>** which relies on the integral equation for-
malism of the polarizable continuum model (IEFPCM),* to
account for the solvation free energy of nitrogen-containing
heterocyclic molecules, as well as ionic compounds, in n-octanol.
This is accomplished within the framework of the B3LYP/
6-31G(d) version of the integral IEFPCM/MST model,34 taking
advantage of the experimental data compiled for a variety of
neutral and ionic species in this solvent. Second, the MST model
is used to determine the pH-dependent hydrophobicity pro-
file taking into account different physicochemical models for the
partition of ionizable compounds. In particular, attention will be
paid to the experimental distribution curves of log D of acidic
compounds that have already been reported in previous
studies,"*>>>® but also for basic compounds and for amino acid
analogues, which have been scarcely examined in the Iit-

37,38
erature.

H THEORY AND COMPUTATIONAL DETAILS
Physicochemical Models of Hydrophobicity Profile.

Scheme 2 shows the simplest and most widely used model to
account for the pH dependence on the partition of ionizable
compounds. Nevertheless, more elaborate models have been
proposed to refine the distribution model of these compounds.
The most straightforward correction comes from the assumption
that a certain amount of the ionic species may also partition
between water and n-octanol (Scheme 3). In this context, for a

Scheme 3. Mechanism of n-Octanol/Water Partition for Both
Neutral (HX) and Ionic (X) Species

monoprotic acid (HX) the total partition of the solute can be

expressed in terms of the partition constant of the neutral com-

pound (Py; eq 1) and of the ionic species (P; eq 3), as noted in
39

eq 4.

b DX
(x7], ®)
log D = log(Py + PI~105) — log(1 + 105) (4)

More elaborate models take into account the fact that the
distribution of an ionizable compound may be also influenced by
the electric potential created at the water—organic interphase
(A¥¢), which would affect the partition of the ionic species (X~)
and other counterions (C;*) present in solution (Scheme 4).
At equilibrium, the ion distribution is determined by the equality of
the electrochemical potential between two immiscible electrolyte
solutions, and the apparent partition coefficient of X~ (log P;x-)
can be determined from eq 5.*%*'

F
T

log PI,X7 = log PIC"X, + m

()

where log Py~ represents the partition coefficient for a non-
polarized interface and depends only on the chemical structure

DOI: 10.1021/acs.jpch.7b08311
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Scheme 4. Mechanism of n-Octanol/Water Partition for
Neutral (HX) and Ionic Species (X~ and C;*) Influenced by
the Electric Potential at the Interphase (A%¢)

of X7; AY¢ is the Galvani potential difference between the two
phases, R the gas constant, T the absolute temperature, and F the
Faraday constant; zx stands for the formal charge of X".
Assuming that the two immiscible electrolyte solutions are
dilute, and that all ionic species are fully dissociated in both
phases (i.e., no ion pair formation), it has been shown that for a
generic electrolyte (C*A™) the Galvani potential difference can
be rewritten as*>*
AV = (A;“qsc‘l + AP ;]
’ 2 ©)
Because the standard partition coefficient of a given ionic
species i is given by™
zF
T AZV¢IO

log P = ———
LAl RT1In 10

™)
it can be deduced that the apparent partition of X~ can be
expressed as

app __ 0 pno
PP = [PyPS: ®)

where C{ denotes the corresponding counterion of species X™.
The distribution coefficient is given by

log D = log(Py + /Pfcrpfx‘ -10%) — log(1 + 10%) ©)

which explains why the distribution coefficient increases in the
presence of a more hydrophobic counterion.*!

As a final remark, let us note that partitioning of a cationic
species, X*, would give rise to distribution coefficients formally
analogous to eqs 4 and 9, which are omitted here for the sake of
brevity. It is also worth noting that the preceding formalisms
limit the distribution coefficient to the partition of both neutral
and ionic species of an ionizable compound. However, it is con-
ceivable that partitioning may also involve other chemical
entities, especially for nondilute solutions, such as ionic pairs with
counterions present in solution®>***> and formation of molec-
ular aggregates.”®*” This represents an additional level of com-
plexity to the partitioning scheme, making it necessary to account
for thermodynamic data regarding association equilibria and
partitioning of the ion pair and other aggregated species, which is
beyond the scope of this study.

MST Model. In the Miertus—Scrocco—Tomasi model, the
solvation free energy (AG,,) is calculated by adding nonelec-
trostatic (AG,_.) and electrostatic (AG,;,) contributions, which
are calculated using a double molecule-shaped cavity for the
solute embedded in the polarizable continuum medium.'® The
nonelectrostatic component is determined by combining cavita-
tion (AG,,) and van der Waals (AG,y) contributions; AG
is determined by following Pierotti’s scaled particle theory™
adapted to molecule-shaped cavities using the procedure

cav
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proposed by Claverie (eq 10).* In turn, AGyy is computed
using a linear relationship to the solvent-exposed surface of each
atom (eq 11). Both cavitation and van der Waals terms are
estimated by using the van der Waals surface of the solute.

N

S.
D S—‘AGP,,.

N
AGcav = 2 AGcav,i =
i=1 i=1 °T (10)

where AGy; is the cavitation free energy of atom i determined
using Pierotti’s formalism, whose contribution is weighted by the
contribution of the solvent-exposed surface (S;) of atom i to the
total surface (Sy).

N N

AGVW = 2 AGvW,i = Z ézs

i=1 i=1 (11)

where &; denotes the atomic surface tension of atom i, which is
determined by fitting the experimental free energy of solvation.

The electrostatic term (AG,,) measures the work needed to
build up the solute charge distribution in the solvent. To this end,
a solvent-excluded surface is obtained by scaling the atomic radii
by a factor (4) of 1.25 for solvation in water and 1.50 for solvation
in n-octanol.>>** These scaling factors were derived from a
systematic analysis that included the comparison between the
electrostatic component obtained from MST calculations and
the work required to annihilate the solute charge in solution as
determined from classical free-energy calculations. However,
while this strategy is valuable for describing the solvation of
neutral solutes, accounting for the strong electrostatic response
of the solvent induced by ionic species, and the structural
perturbation of the solvent molecules in the first hydration shell
relative to the bulk solvent,**™>* was treated by reducing the
solvent-excluded surface in the IEFPCM/MST model.>* Thus,
the optimum cavity for the hydration of charged compounds was
defined by scaling the atomic radii of the groups bearing the
formal charge by a factor of ~1.13, which implies a reduction of
ca. 10% relative to neutral solutes.

Besides retaining the simplicity of the original MST formalism,
this strategy introduces a minimum number of parameters to
describe the hydration of ionic species. However, it is unclear to
what extent the reduction in the solvent-excluded surface is well-
suited to the calculation of the electrostatic component of the
solvation free energy in nonaqueous solvents. In particular, one
of our aims here is to check the suitability of this strategy for
describing the partition of ionic species between water and
n-octanol, taking advantage of the availability of P; values for a
representative number of druglike compounds.

Computational Details. For the purpose of this study,
several sets of molecules were used to refine the MST model.
First, a set of 19 small nitrogen-containing aromatic compounds
was used to calibrate the parametrization of pyridine-type and
pirrole-type nitrogen atoms. This data set includes 6-methyl-
uracil, 9-methyladenine, adenine, albendazole, caffeine, cloni-
dine, cytosine, diphenylamine, fluconazole, fluorouracil, guanine,
imidazole, metronidazole, phenytoin, pyridine, pyridimidine,
pyrrole, thymine, and uracil (Figure S1).

Next, a set of 27 compounds was used to calibrate the suitability
of the MST model to compute log P; values. This set included 18
cations [2-(2-pyridyl)-ethylammonium, 2-phenylethylammonium,
3-carboxyanilinium, 4-carboxyanilinium, 4-methyl-N-ethylbenzy-
lammonium, 4-methyl-N-heptylbenzylammonium, 4-methyl-N-
pentylbenzylammonium, 4-phenylbutylammonium, N-acetyl-L-
histidine amide, N-acetyl-L-lysine amide, amitriptyline, desipramine,
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Table 1. Calculated and Experimental n-Octanol/Water
Partition Coefficient (log Py) for the Series of Neutral
Nitrogen-Containing Aromatic Compounds Used in the
Refinement of &y and &yy; Atomic Surface Tensions for
n-Octanol

computed log Py computed log Py

compound” original)) refined) exptl”
6-methyluracil (1) -1.7 -0.5 -12
9-methyladenine (2) -29 -0.3 0.0
adenine (3) —4.1 -1.1 —-0.1
albendazole (4) 2.0 3.7 2.7
caffeine (5) -0.2 0.9 —-0.1
clonidine (6) 1.1 2.8 1.6
cytosine (7) —43 -22 -1.7
diphenylamine (8) 3.1 3.7 3.5
fluconazole (9) -12 1.1 04
fluorouracil (10) 22 -0.9 -0.9
guanine (11) =59 -2.7 -0.9
imidazole (12) -22 -1.1 —0.1
metronidazole (13) -0.9 0.0 0.0
phenytoin (14) 2.0 32 2.5
pyridine (15) 0.4 0.9 0.7
pyrimidine (16) —0.8 0.1 —04
pyrrole (17) -0.2 0.5 0.8
thymine (18) -1.8 -0.5 —0.6
uracil (19) -23 -1.1 -1.1

mse” 1.4 —0.1

mue® 14 0.6

rmsd® 1.9 0.8

“See Figure S1. bRef 62. “Mean signed error (mse), mean unsigned
error (mue), and root-mean square deviation (rmsd) calculated
relative to the experimental values are given in log P units.

Figure 1. Comparison between experimental and calculated n-octanol/
water log Py for the series of neutral nitrogen-containing aromatic
compounds. Calculated values determined from IEFPCM/MST
calculations using the original parametrization of the IEF-MST method
(green) and the refined atomic surface tension for N- and NH atom

types (blue).

imipramine, lidocaine, tetrabutylammonium, tetraethylammonium,
tetramethylammonium, tetrapentylammonium] and 9 anions (2-4-
dichlorophenoxyacetate, S-phenylvalerate, N-acetyl-L-aspartic acid
amide, N-acetyl-L-glutamic acid amide, diclofenac, ibuprofen, indo-
methacin, naproxen, and pentachlorophenolate; see Figure S2).
Finally, a set of 35 compounds was used to calibrate the
behavior of the refined MST model for predicting the partition
coefficient of the neutral compound (Py), and the distribution
coefficient at pH 7.4 (D;,), taking advantage of the available
experimental data for pK,, log Py, and log D,,. This data set
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Table 2. Experimental and Computed log P; Values for the Set
of 27 Ionic Compounds Used in the Refinement of the MST
Method

computed log P;  computed log P;

compound” original) refined) exptl
2-2-pyridyl -17 0.4 23"
-ethylammonium
2-phenethylammonium =7.1 0.4 —-1.6"
2-4 =5.5 -0.7 —0.9°
-dichlorophenoxyacetate
3-carboxyanilinium -9.2 -1.6 —0.9°
4-carboxyanilinium -9.4 -1.6 —04°
4-methyl-N —64 -19 —0.87
-ethylbenzylammonium
4-methyl-N -3.6 0.1 2.1¢
-heptylbenzylammonium
4-methyl-N -47 -09 0.87
-pentylbenzylammonium
4-phenylbutylammonium —6.1 LS 0.7¢
S-phenylvalerate —-6.1 -0.4 -1.0°
N-acetyl-L-aspartic amide’ —6.8 -2.8 —2.6°
N-acetyl-L-glutamic —62 -34 -2.5¢
amide
N-acetyl-L-histidine amide” -79 -17 —34°
N-acetyl-L-lysine amide’ =77 -1.8 —2.8%
amitriptyline -11 13 0.2°
desipramine =27 0.0 0.3°
diclofenac —4.3 0.7 0.7°
ibuprofen =59 -0.7 —0.2°
imipramine -0.6 1.8 0.5¢
indomethacin =27 2.1 0.6
lidocaine -2.6 —-0.7 —0.5°
naproxen =55 -0.6 —0.2°
pentachlorophenol -19 1.8 1.3
tetrabutylammonium 12 33 2.3
tetraethylammonium -2.8 -0.8 -09
tetramethylammonium =56 -2.7 -2.0
tetrapentylammonium 3.0 S.1 3.8
mse”® 41 -02
mue” 4.1 0.9
rmsd* 47 L1

“See Figure S2. bRef 63. “Ref 39. “Ref 25. “Ref 64. *Values derived
from log D, data reported in ref66, assuming full ionization of the
compounds at physiological pH. *Refs 65. and66. hEstimatgd from
additive scheme (see Supporting Information). ‘Ref 24. /Ref 67.
k . .

Mean signed error (mse), mean unsigned error (mue), and root-
mean square deviation (rmsd) calculated relative to the experimental
values are given in log P units.

includes 31 drugs (albendazole, amitriptyline, antipyrine, bume-
tanide, caffeine, clormipramine, clonidine, clozapine, cyclo-
benzaprine, desipramine, diazepam, diclofenac, diphenylamine,
estradiol, fluconazole, flurbiprofen, ibuprofen, imipramine,
indomethacin, lidocaine, loratadine, maleic acid, metoclopro-
maide, metronidazole, mezoridazine, naproxen, paracetamol,
pentachlorophenol, pentoxifylline, phenytoin, and trifluproma-
zine; see Figure S3) and 4 amino acids (aspartic acid, glutamic
acid, histidine, and lysine, capped with acetyl and amide groups at
the N- and C-terminus). Table SI reports the experimental
values for pK,, log Py, and log D, for all these molecules.*”*

Finally, the refined model was checked by computing the
pH-dependent distribution profiles in the framework of the dif-
ferent partitioning schemes discussed above. To this end, several
drugs (ibuprofen, imipramine, desipramine, pentachlorophenol,
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Figure 2. Comparison between experimental and calculated log P; values for the series of 27 ionic compounds. Acidic and basic compounds are shown in
blue and green, respectively. Calculated values were determined from IEFPCM/MST computations using the original (top left) and refined (top right)
parameters, as well as ACD/I-Lab (bottom left) and ChemAxon (bottom right).

lidocaine, amitriptyline, and warfarin) and four amino acid ana-
logues (N-acetyl-L-aspartic acid amide, N-acetyl-L-lysine amide,
N-acetyl-L-glutamic acid amide, and N-acetyl-L-histidine amide)
were considered taking advantage of the available experimental
data for these compounds.

The molecular geometries of the compounds were fully
optimized at the B3LYP/6-31G(d) level of theory in the cor-
responding solvent phase, water or n-octanol, using the IEFPCM
version of the MST model. Then, single-point calculations in the
gas phase and in solution were performed in order to estimate the
free energy of solvation in water and n-octanol. All calculations
were performed in Gaussian 09.>° For the set of ionizable com-
pounds, computations were performed for the minimum struc-
ture obtained after geometry optimization of an extended con-
formation of the molecule. This strategy was motivated by the
generally low number of rotatable bonds present in these
compounds (see Figures S2 and S3), as well as by the similar
n-octanol/water transfer free energies obtained from a single-
conformation approach and from conformational ensembles for
druglike compounds in a previous study.”” Nevertheless, for the
subset of N-acetyl-L-amino acid amides, calculations were per-
formed taking into account all possible rotamers with a prob-
ability contribution higher than 5% to the total conformational
space as given by the backbone-dependent conformational
library reported by Dunbrack and Karplus.***’

Calculation of log D was accomplished using egs 2, 4, and 9
using experimental pK, values (Table S1). Application of eq 9
was performed paying particular attention to the counterion used
for computation of the distribution coefficient, maintaining con-
sistency with the experimental procedure reported in the original
works (see below). Specifically, data for the partition of inorganic
ions (log Plo = =45, log P = —2.5 and log P}y, = -2.6)
required for the application of eq 9 to acidic and basic com-
pounds were taken from the literature,>>°""
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B RESULTS

Refinement of the MST Model for Solvation in
n-Octanol. One of the initial aims of this study was to refine
the parametrization of the MST model for nitrogen-containing
aromatic compounds (Figure S1), as they are key structural
elements in many biologically relevant molecules and drugs but
were poorly represented in the data set of compounds considered
in the original B3LYP/ 6-31G(d) parametrization of the IEFPCM/
MST model. Indeed, preliminary calculations performed for a
subset of 12 heterocyclic organic compounds (2—7, 9, 11-13,
15, and 16; see Table 1 and Figure S1) revealed the need to
adjust the surface tension of the pyridine-like nitrogen atom for
solvation in n-octanol. Thus, the original atomic surface tension
assigned to the N-type atom (&g = —0.115 keal mol™" A™2) was
found to underestimate the solvation free energy in n-octanol,
and a better agreement with experimental data was achieved
upon adjustment to a surface tension of —0.161 kcal mol™" A~2,
which was therefore adopted in the refined version. Additional
analyses were performed to check the surface tension for the pyrrole-
like nitrogen atom (NH-type), even though in this case adjustment
of the original surface tension (Eyy = —0.234 keal mol™ A™2) to
—0.295 keal mol™ A~ was found to have a lower effect on the
solvation free energy in n-octanol.

The effect of these refinements is shown in Table 1, which
reports the solvation free energies determined with the original
and refined parameters, as well as the experimental data® for the
set of compounds. The adjustment of the surface tension of these
two atoms types sufficed to improve significantly the ability of
the IEFPCM/MST model for predicting the log Py values of these
compounds. This is noted in the reduction of the root-mean
square deviation (rmsd) from 1.9 (log P units) in the original
parametrization to 0.8 for the refined version (Table 1), as well as
in the comparison between experimental and calculated log Py
values, as the refined surface tensions (£y and &yyy) improve the
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Table 3. Calculated and Experimental n-Octanol/Water
Partition Coefficient (log Py) for the Set of 35 Small
Molecules

compound computed exptl”
albendazole 3.7 2.7
amitriptyline 6.5 4.9
antipyrine 2.0 0.4
bumetanide 2.6 2.6
caffeine 0.9 —0.1
clomipramine 6.7 52
clonidine 2.8 1.6
clozapine 5.5 32
cyclobenzaprine 6.3 5.2
desipramine 5.7 4.9
diazepam 4.5 2.8
diclofenac 5.6 4.5
diphenylamine 3.7 3.5
estradiol 42 3.7
fluconazole 1.1 0.4
fulbipronen 4.2 42
ibuprofen 32 4.0
imipramine 5.9 4.8
indomethacin 4.9 4.3
lidocaine 2.8 2.4
loratadine 7.4 52
maleic acid -1.5 -0.5
metoclopramide 22 2.6
metronidazole 0.0 0.0
mezoridazine 6.5 39
N-acetyl-L-aspartic amide” -23 -2.0
N-acetyl-L-glutamic amide” -1.5 -19
N-acetyl-L-histidine amide” —0.9 -19
N-acetyl-L-lysine amide” —0.4 -0.8
naproxen 2.7 32
paracetamol —0.1 0.5
pentachlorophenol 3.8 S.0
pentoxifylline 1.6 0.3
phenytoin 2.0 2.5
triflupromazine 6.6 S.S

mse” —0.6

mue” 0.9

rmsd® 1.1

“9See Table SI. “Estimated from additive scheme (see the Supporting
Information). “Mean signed error (mse), mean unsigned error (mue),
and root-mean square deviation (rmsd) calculated relative to the
experimental values are given in log P units.

regression correlation with the experimental values from 0.85 to
0.93 (see Figure 1).

Calibration of the MST Model for lonic Compounds in
n-Octanol. In the MST model the electrostatic contribution to
the hydration free energy of charged species is determined by
reducing the solvent-exposed cavity of the charged atoms by a
factor close to 10%.> While this strategy proved to be valuable
for calculating the solvation of univalent ionic species in water, its
suitability in other solvents has never been checked. Therefore,
for our purposes here, it is necessary to calibrate the suitability of
this strategy for the solvation of ionic compounds in #n-octanol.
To this end, calculations were performed for a set of 27 com-
pounds (see Table 2 and Figure S2), including 9 anions and
18 cations, taking advantage of the availability of partition
coefficients for these charged species.”>>**%%37¢7
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Figure 3. Comparison between experimental and calculated log Py, for a
set of 35 small molecules. Computed values were determined by using
the refined IEFPCM/MST calculations (top) and by using ACD/I-Lab
log D (middle) and ChemAxon (bottom).

Comparison of the calculated and experimental log P; values
determined for these compounds suggested that the optimal
scaling factor, 4, for solvation in n-octanol must be reduced by
around 19%, which implies that the scaling factor used for neutral
compounds (4 = 1.50) must be close to 1.20 for charged chemical
groups. This adjustment enhances the contribution of the elec-
trostatic component to the solvation free energy for charged
compouds, followin§ the trends reported for the hydration
of monovalent ions,”® an effect interpreted from the balance
between the gain in solvent—solute stabilization energy triggered
by the solute’s electron density redistribution upon solvation and
the energy cost associated with distortion of the electron density
by the solvent reaction field*°~>> Because of the formal
simplicity of this correction, the suitability of the atomic surface
tension was further checked. In the case of cations with a
localized charge on the sp® nitrogen atom, it was necessary to
enlarge the surface tension of the nitrogen atom (NH atom type)
by a factor of 17% (&xy = —0.274 keal mol™* A™2). This enlarge-
ment was also extended to the methylene/methyl groups bound to
the protonated nitrogen atom (£cpy, = —0.227 keal mol ™' A7),
which may be related to the inductive effect noted in the increased
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Table 4. Experimental and Calculated Distribution
Coefficients (log D, ,) Determined for the Set of 35 Ionizable
Compounds Used to Calibrate the IEFPCM/MST Model”

compound eq2 eq 4 eq 9 exptl”
albendazole 37 3.7 3.7 33
amitriptyline 4.5 4.5 4.5 2.8
antipyrine 2.0 2.0 2.0 0.2
bumetanide -12 -0.2 -1.0 —0.1
caffeine 0.8 0.8 0.8 0.0
clomipramine 4.7 4.7 4.7 33
clonidine 2.1 2.1 2.1 0.6
clozapine S.1 S.1 S.1 3.0
cyclobenzaprine 52 S2 52 29
desipramine 2.7 2.7 2.7 1.4
diazepam 4.5 4.5 4.5 2.7
diclofenac 2.3 2.4 23 1.1
diphenylamine 3.7 3.7 3.7 34
estradiol 42 42 42 4.0
fluconazole 1.1 11 11 0.5
fulbipronen 1.0 2.2 1.0 0.9
ibuprofen 0.7 0.7 0.7 1.3
imipramine 3.9 39 39 2.5
indomethacin 2.0 2.4 2.0 0.8
lidocaine 2.1 2.1 2.1 1.6
loratadine 74 74 74 4.4
maleic acid =71 —4.5 -3.5 =50
metoclopramide 0.3 0.3 0.3 0.5
metronidazole 0.0 0.0 0.0 —0.1
mezoridazine 5.0 5.0 5.0 1.8
N-acetyl-L-aspartic amide -5.8 -2.8 -2.6 -2.6
N-acetyl-L-glutamic amide —4.7 -34 -2.9 =25
N-acetyl-L-histidine amide -1.0 -0.9 -10 =3.5
N-acetyl-L-lysine amide —-1.8 -18 =31 -2.8
naproxen —-0.6 -0.3 —0.5 0.3
paracetamol -0.1 -0.1 —-0.1 0.3
pentachlorophenol 1.2 1.9 12 2.5
pentoxifylline 1.6 1.6 1.6 03
phenytoin 19 19 1.9 2.2
triflupromazine 4.6 4.6 4.6 34

mse” -0.6 -09 —-0.8

mue” 1.3 11 1.1

rmsd® 1.6 1.4 1.4

“Calculated values were obtained by combining log Py and log Py
values using eqs 2, 4, and 9. bSee Table S1. “Mean signed error (mse),
mean unsigned error (mue), and root-mean square deviation (rmsd)
calculated relative to the experimental values are given in log P units.

chemical shift observed in '"H NMR studies (see Table $2).°®
This effect is known to be less important for the carbon atoms
bound to the groups with delocalized charges (i.e., carboxylate
anions; see Table S2), where no further adjustment was needed.

The log P values calculated for the whole set of ionic organic
compounds using the new parameters are presented in Table 2,
which also collects the experimental data. The mean signed error
was reduced from 4.1 to —0.2 (log P; units), and the rmsd was
decreased from 4.7 to 1.1 (log P, units) after implementation of
the preceding adjustments in the MST model. The difference
between calculated and experimental values may, at least in
part, reflect the variance in the experimental data, as noted for
diclofenac, because the experimental data may vary between
0.45 and 0.8 depending on the exgerimental conditions used to
estimate the partition coefficient.”® Furthermore, Figure 2 shows
the improved correlation between the refined log P; values and
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Figure 4. Comparison between experimental (determined by the shake-
flask method) and calculated log D, for 35 ionizable small molecules.
Computed values were derived from IEFPCM/MST (blue) calculations
using eqs 2 (top), 4 (middle), and 9 (bottom).

Table S. Statistical Parameters of the Comparison between
Experimental and Calculated log D, , Values for the Series of
35 Small Molecules

method mse mue  rmsd r
ACD/I-Lab 0.0 0.5 0.8 0.95
ChemAxon 02 0.5 0.8 0.95
IEFPCM/MST, eq 2 —0.6 13 1.6 091
IEFPCM/MST, eq 2 (exptl log Py) 0.1 0.5 0.8 0.96
IEFPCM/MST, eq 4 -0.9 1.1 1.4 0.92
IEFPCM/MST, eq 4 (exptl logPy) ~ —03 04 06 096
IEFPCM/MST, eq 9 —0.8 1.1 14 091
IEFPCM/MST, eq 9 (exptl log Py) —0.2 0.4 0.5 0.97

the experimental ones, which corrected the systematic tendency
to overestimate the hydrophilicity of the charged compounds
in the original parametrization of the IEFPCM/MST method.
For the sake of comparison, it is worth noting that the refined
log P; values are in agreement with the behavior observed for
the values estimated by using empirical methods, such as ACD/
I-Lab® and ChemAxon’® methods (see Figure 2).
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J. Phys. Chem. B 2017, 121, 9868—9880

173



174

The Journal of Physical Chemistry B

Figure S. Comparison between experimental and calculated log D, , for the set of 35 small molecules. Values were obtained using (left) ACD/I-Lab and
(right) ChemAxon. N-Acetyl-L-aspartic acid amide, N-acetyl-L-glutamic acid amide, and N-acetyl-L-histidine amide are shown as red dots.

Estimation of log D;,. The log D, , values compiled for a set
of 35 ionizable small molecules (see Figure S3 and Table S1)
were used as a test set to calibrate the suitability of the adjust-
ments introduced in the refined IEFPCM/MST model. These
compounds encompass a broad range of chemical diversity in
selected physicochemical properties (see Figure S4), such as
molecular weight (up to 400 Da), number of rotatable bonds
(up to 8), number of aromatic rings (up to 3), and number of
hydrogen bond donors (up to S) and acceptors (up to 7).
In order to reproduce the experimental distribution coefficients
within the framework of the partition formalisms represented by
eqs 2,4, and 9, log Py and log P; values were estimated from MST
calculations, whereas the pK, of these compounds and the parti-
tion coefficient of the counterion were taken from experimental
data (see Theory and Computational Details and Table S1).

We first evaluated the capacity of the refined MST model for
predicting the experimental log Py of these compounds. This
comparison is shown in Table 3 and Figure 3. The rmsd between
experimental and calculated values is 1.1 (log Py units), and the
calculated values exhibit a good correlation with the experimental
ones (r = 0.94). Furthermore, these trends compare well with the
values predicted by using empirical methods (ACD/I-lab or
ChemAxon; Figure 3), although they exhibit a slightly better
correlation with the experimental data, which likely reflects the
most extensive parametrization of fragmental contributions that
lies behind these methods.”"”*

Because the distribution coefficient takes into account the
partition of both neutral and ionic species of ionizable com-
pounds, it provides an indirect approach to test the reliability of
the calculated P; values. This is more challenging, because the
measured log D may be affected by the experimental conditions,
such as the nature of the background salt and the concentration
of the solution, which would influence the potential difference
between the two phases.”* Moreover, different formalisms have
been proposed to combine log Py, log P;, and pK, to estimate
log D. Accordingly, log D, , was determined using the log Py and
log P; values determined from IEFPCM/MST computations and
was combined with experimental pK, values reported for the
set of compounds (see Table S1) following Schemes 2 (eq 2),
3 (eq4),and 4 (eq9).

Table 4 reports the log D, values obtained from IEFPCM/
MST calculations. In general, there is a slight tendency to over-
estimate the hydrophobicity of the compounds, as noted in
the mean signed error (mse) of ~—0.7 (log D units) found for
eqs 2, 4, and 9, while the rmsd amounts to ~1.5 (log D units).
The performance of the IEFPCM/MST model is similar for the
three formalisms examined in this study, with a slightly larger
rmsd when eq 2 is used. Similar regression equations between
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calculated and experimental logD,, values are also found
(r ~ 0.92), although Figure 4 shows a slightly larger deviation from
the perfect linear regression for the values obtained with eq 2. For
this latter formalism the largest errors (given in log D units in
parentheses) are found for the subset of amino acid analogues
N-acetyl-L-aspartic acid amide (+3.2), N-acetyl-L-glutamic acid
amide (+2.2), and N-acetyl-L-histidine amide (+2.5), as well as
for mesoridazine (—3.1), loratadine (—3.0), cyclobenzaprine
(—2.3), clozapine (—2.1), and maleic acid (+2.1). Nevertheless,
when the partition of the ionic species is taken into account
(eqs 4 and 9), the deviation found for aspartic and glutamic
analogues and for maleic acid is largely reduced, whereas the
value predicted for acetyl-L-histidine amide remains unaffected.

To further check the reliability of the logP; values, the
calculated log Py values were replaced by the experimental ones,
and log D,, was determined using eqs 2, 4, and 9. The dis-
tribution coefficients obtained by limiting the IEFPCM/MST
calculation to the partition coefficient of the ionized species
(log P;) reduces the rmsd between predicted and experimental
data to ~—0.8 (log D units), and the correlation coefficient is
increased to 0.96 (Table S). Note that these statistical parameters
compare well with the values estimated using empirical methods
(ACD/I-Lab, ChemAxon), as noted in Table S and Figure S.
Overall, these results give confidence to the partition values
of ionic species determined with the refined IEFPCM/MST
method, especially taking into account the limited extension of
the model refinement, and the single-conformation approach
adopted in present calculations. Nevertheless, the use of repre-
sentative conformational ensembles may be required to obtain
more accurate estimates of log D, , in flexible molecules able to
form distinct patterns of intramolecular interactions.”*~”¢

pH-Dependent Hydrophobicity Profiles. While the preceding
results support the refined IEFPCM/MST method, there is
generally little difference between the distinct formalisms
(eqs 2, 4, and 9) followed for calculation of log D, ,. This may
reflect the fact that all molecules are approved drugs with high
log Py values and that log D was calculated at physiological pH,
while the contribution of ionic species may be expected to
be more relevant at extreme pH values. Hence, we decided to
determine the lipophilicity profile of seven drugs and four amino
acid analogues between pH 2 and 12, taking advantage of the
experimental data about the pH-dependent partitioning of these
compounds. 234396566

For ibuprofen, warfarin, and pentachlorophenol, the three for-
malisms give similar log Py values at low pH, where the neutral
species predominates (Figure 6). However, the profiles diverge
at intermediate pH values (between 6 and 8), following the
increased population of the anionic species. Equation 2, which
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Figure 6. Comparison of n-octanol/water distribution coefficient profiles of selected drugs using eqs 2 (red), 4 (blue), and 9 (green). The experimental

data are shown in black.

does not take into account the partition of the ionic species,
gives rise to a profile that decreases steadily with increasing pH.
In contrast, eqs 4 and 9 show an asymptotic behavior at basic
pH. For imipramine, amitriptyline, desipramine, and lidocaine
all the methods exhibit the same log D at pH ~ 10, which arises
from the partition of the neutral species. The pH-dependence
of the profiles is similar up to acidic solutions (pH < §), where
the contribution of the cationic species is more important.
Again, eq 2 shows a continuous decrease in log D with decreasing
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pH, whereas the profiles obtained from eqs 4 and 9 show the
appearance of an asymptotic behavior at low pH. Note, how-
ever, that the appearance of this asymptotic value occurs at lower
pH values for eq 9, leading generally to a larger deviation with
regard to the experimental profile compared with the results
obtained from eq 4, which reproduces well the general trends
of the experimental sigmoidal profile. On the other hand, it
is worth noting that the IEFPC/MST profiles obtained with
eq 4 compare well with the pH-dependent profiles obtained
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Figure 7. Comparison of n-octanol/water distribution coefficient profiles of selected amino acid analogues using eqs 2 (red), 4 (blue), and 9 (green).

The experimental data are shown in black.

from empirical methods (ACD/I-Lab and ChemAxon; see
Figure SS).

The pH-dependent hydrophobicity profile determined for the
set of amino acid analogues is shown in Figure 7. As noted above,
eq 2 works worse at extreme pH, as expected because of the
neglect of the contribution arising from the partition of ionic
species. On the other hand, eqs 4 and 9 give similar profiles that
reproduce the experimental values for the whole range of pH
values. Furthermore, for the analogues of aspartic and glutamic
acids, and to less extent for lysine, the IEFPCM/MST results
derived by using eqs 4 and 9 improve the pH-dependent profiles
obtained from empirical methods, which predict a much higher
hydrophilic behavior for pH values larger than 5 and lower than
9 for aspartic/glutamic acid and lysine, respectively (compare
Figures 7 and S6).

Overall, the results support the suitability of eq 4 for estimating
the pH-dependence of the distribution profiles of ionizable
compounds. The limited success found for eq 9 is surprising,
especially when one takes into account the results obtained for
amino acid analogues, but it may reflect the marked influence of
inorganic ions on the experimental measurements of the
distribution coefficient of ionized compounds.®***>*"”” In gen-
eral, shake-flask experiments are performed in wet n-octanol/
water systems using 0.15 M KCI or NaCl, and reliable values
for the inorganic standard partition coeflicients have been
reported.”>**®! However, it is also known that the distribution
coefficient can be expected to increase substantially when a more
hydrophobic cation is added in excess to the system, as has been
reported for both ibuprofen and pentachlorophenol.”****

9877

Finally, the potential contribution due to the formation of ion
pairs may also have a significant effect on the distribution coeffi-
cient of ionized compounds, especially when the salt concentra-
tion is large enough relative to the ionized compouncl.35‘36

H CONCLUSION

Predicting the pH dependence of the partition of organic
compounds between n-octanol and water is extremely important
for gaining insight into the behavior of bioactive compounds.
A fundamental property to attain this goal is the distribution
coeflicient D, which encompasses the differential partition of
both neutral and ionic species present in the two solvents. This
makes it necessary to resort to physicochemical formalisms that
take into account species-specific lipophilicities.”* In this context,
this study has examined the refinement of the IEFPCM/MST
model, with special emphasis on the adjustment of specific
parameters required for the solvation of ionic compounds in
n-octanol, following the previous implementation reported for
aqueous solution.*>**3

The results point out that reduction of the solvent-excluded
cavity used for the electrostatic term affords the major correction
to the calculation of the solvation free energy in n-octanol.
In conjunction with adjustments in specific atomic surface tensions,
the refined IEFPCM/MST permits us to quantitate the con-
tribution of the neutral and ionic forms of ionizable compounds
and to estimate distribution coefficients that compare well with
experimental values. For the set of compounds used in this study,
the results also show that there are little differences between the
distribution coefficients at physiological pH (log D) determined

DOI: 10.1021/acs.jpcb.7b08311
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Figure S1. Data set of 19 neutral nitrogen-containing aromatic compounds used to

refine the MST model for solvation in n-octanol. Nitrogen atoms subjected to
reparametrization are shown in blue.
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Figure S2. Data set of 27 ionizable compounds used to refine the MST solvation model

for solvation in n-octanol. Atoms subjected to reparametrization are shown in blue and
red for cations and anions, respectively.
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Figure S3. Data set of 35 ionizable compounds used to calibrate the MST solvation
model for estimating the distribution coefficient.
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Figure S4. Histograms of molecular properties (molecular weight, number of rotatable
bonds, number of aromatic rings and hydrogen bond acceptors and donors) for the set of
35 small molecules.
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Figure S5. Comparison of n-octanol/water distribution coefficient profiles of selected
drugs using ACD/I-Lab (cyan), ChemAxon (purple) and experimental data (black).
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Figure S6. Comparison of n-octanol/water distribution coefficient profiles of selected
amino acid analogues using ACD/I-Lab (cyan), ChemAxon (purple) and experimental
data (black).
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Table S1. Experimental data for the set of 35 ionizable compounds used to calibrate the
MST solvation model for estimating the distribution coefficient (Data taken from refs.

1-3).
Species Experimental | Experimental | Experimental
pK, log Px log D74
albendazole 4.21 2.70 3.29
amitriptiline 9.40 4.92 2.79
antipyrine 1.40 0.38 0.24
bumetanide 3.60 2.60 -0.11
caffeine -0.92 -0.07 -0.04
clomipramine 9.40 5.19 3.28
clonidine 8.05 1.59 0.62
clozapine 7.50 3.23 2.99
cyclobenzaprine 8.47 5.20 2.90
desipramine 10.40 4.90 1.41
diazepam 3.30 2.82 2.74
diclofenac 4.15 4.51 1.14
diphenylamine 1.03 3.50 3.36
estradiol 10.71 3.67 4.01
fluconazole 2.94 0.40 0.50
fulbiprofen 4.22 4.16 0.91
ibuprofen 4.91 3.97 1.27
imipramine 9.40 4.80 2.51
indomethacin 4.50 4.27 0.76
lidocaine 8.01 2.44 1.61
loratadine 4.58 5.20 4.40
maleic acid 1.83 -0.48 -5.00
metoclopramide 9.27 2.62 0.53
metronidazole 2.60 -0.02 -0.07
mesoridazine 8.89 3.90 1.81
N-acetyl-L-aspartic amide 3.90 -2.03 -2.60
N-acetyl-L-glutamic amide 4.20 -1.86 -2.50
N-acetyl-L-histidine amide 7.00 -1.91 -3.53
N-acetyl-L-lysine amide 11.10 -0.80 -2.80
naproxen 4.15 3.18 0.32
paracetamol 9.38 0.46 0.30
pentachlorophenol 4.83 5.01 2.50
pentoxifylline 0.28 0.32 0.29
phenytoin 8.33 2.47 2.23
triflupromazine 9.40 5.54 3.39
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Table S2. The substituent a-effect in 'H-NMR for anionic and cationic organic

compounds.

Neutral species

Su (ppm) in a

Charged species
Ou (ppm) in o

diff (ppm)

6H,charged - 6H,neutral

(0] (0]
a \OQJ\ 0.2
2.18 2.38
(0] (0]
a /\(»J\ 0.2
/\)J\OH O@
2.16 2.33
\OL/NHz \a/gHs
0.4
2.65 3.06
a N e
N
\/ \/ \/@\/ 0.4
2.65 3.04

http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct frame top.cgi
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Additive scheme for acetyl-L-amino acid amide

log Py of histidine. The partition coefficient for the ionic species of histidine (log Pr)
was derived using the following additivity scheme:

Log P1 (N-acetyl-L-histidine amide) = (log D; (Ac-WLHLL) —log D; (Ac-
WLGLL))side chain T
(log Pn (V-acetyl-L-glycine amide))packbone +capping groups

where log D; (Ac-WLHLL) and log D; (Ac-WLGLL) are the n-octanol/water
distribution coefficient at pH = 1 for a pentapeptide model containing at the center of
the amino acid sequence the amino acid histidine (note that the imidazole ring will be
doubly protonated at this pH) and glycine, respectively, and log Py (NV-acetyl-L-glycine
amide) is the partition coefficient for the glycine amino acid analogue
(AcNHCOCH,CONH,) at pH = 7.

Experimental data for the ionizable side chains were taken from the scale at extreme pH
reported by Wimley and White.* The value for the neutral backbone was taken from the
scale at physiological pH reported by Fauchére.’

log P; of acetyl-L-amino acid amides. The partition coefficient for the neutral species of
ionizable amino acids was calculated by using the following expression:

Log Px Ac-X amide = (log Dy (Ac-WLXLL) —log Dyn (Ac-WLGLL)) side chain +
(log Pn (N-acetyl-L-glycine amide)) packbone +capping groups

where log Doy (Ac-WLXLL) and log Dyn (Ac-WLGLL) denote the n-octanol/water

distribution coefficient at pH = 1 (for X = D and E) or 9 (for X=H and K) according to
the scale by Wimley and White.
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Appendix II. Article II:

Development of a Structure-Based, pH-Dependent Lipophilicity Scale of Amino

Acids from Continuum Solvation Calculations.

William J. Zamora, Josep Maria Campanera, F. Javier Luque, Development of a Structure-
Based, pH-Dependent Lipophilicity Scale of Amino Acids from Continuum Solvation
Calculations, J. Phys. Chem. Lett. 2019, 10, 883—889.
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ABSTRACT: Lipophilicity is a fundamental property to characterize the structure and
function of proteins, motivating the development of lipophilicity scales. We report a
versatile strategy to derive a pH-adapted scale that relies on theoretical estimates of
distribution coefficients from conformational ensembles of amino acids. This is
accomplished by using an accurately parametrized version of the IEFPCM/MST
continuum solvation model as an effective way to describe the partitioning between -
octanol and water, in conjunction with a formalism that combines partition coefficients of
neutral and ionic species of residues and the corresponding pK, values of ionizable
groups. Two weighting schemes are considered to derive solvent-like and protein-like
scales, which have been calibrated by comparison with other experimental scales
developed in different chemical/biological environments and pH conditions as well as by
examining properties such as the retention time of small peptides and the recognition of
antigenic peptides. A straightforward extension to nonstandard residues is enabled by this

efficient methodological strategy.

ipophilicity is a cornerstone concept in chemistry and

biology, as this property is crucial to understanding a
variety of processes, such as the partitioning of molecules into
immiscible solvents, the formation of host—guest complexes,
the folding of proteins, and the stability of supramolecular
aggregates. " In proteins, lipophilicity is mainly determined by
the side chains of amino acids, and obtaining quantitative
lipophilicity profiles of peptides and proteins is key to examine
their structural and functional properties in biological environ-
ments. Accordingly, several strategies have been proposed to
quantify the lipophilicity of amino acids, leading to lipophilicity
scales that exploit the partitioning of small molecules between
bulk solvents, the application of knowledge-based techniques
to structural data, or experimental information derived from
biological assays. (For comprehensive reviews, see refs 3—5.)
Using these scales, lipophilicity profiles of peptides or proteins
can be derived from the lipophilicity of single residues,
generally assuming an additivity principle. Nevertheless, there
are differences not only in the absolute magnitude of the
residue lipophilicities but also in the relative values, giving rise
to a variable degree of correlation between scales that reflects
the differences between the material systems, methods, and
experimental conditions that underlie the definition of each
scale.

In this study, our aim is to develop a lipophilicity scale from
theoretical computations that takes into account the structural
dependence of the conformational preferences of amino acids
as well as the influence of pH to provide a consistent
description of pH-adapted lipophilicity profiles in peptides and

proteins. Here attention is focused on the set of natural amino

v ACS Pub“ca‘tions © XXXX American Chemical Society
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acids, but the methodological strategy is intended to be easily
adapted to nonstandard residues, such as nonproteinogenic
residues, or to chemical modifications, such as phosphor-
ylation, sulphonation, and nitrosation, which regulate enzyme
activity and signaling processes. To achieve this goal, each
residue has been characterized by its distribution coeflicient
(D,y) using as a model system the corresponding N-acetyl-L-
amino acid amides, taking into account the potential
contribution of ionizable species at a given pH, as noted in
eq 1, which has recently been shown to reproduce the pH-
dependent lipophilicity profiles of amino acid analogues.’

log D,y = log(Py + P-10°) — log(1 + 10°) 1)

where Py and P; denote the partition coeflicients of neutral and
ionized species of an ionizable amino acid and J is the
difference between the pK, of the ionizable group and the pH
of the environment.

Let us note that the choice of N-acetyl-L-amino acid amides
in this study enables a direct comparison with the experimental
results reported by Fauchére and Pliska’ because their
experimental lipophilicity scaled was determined using these
model systems in their study. The partition coefficients Py and
P; were determined from theoretical computations using the
B3LYP/6-31G(d) version of the quantum-mechanical
IEFPCM-MST continuum solvation method,® which relies
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Table 1. Solvent-Like (SolvL) and Protein-Like (ProtL) Lipophilicity Scales Based on the log D, Values Determined for N-

Acetyl-L-amino Acid Amides at Physiological pH”

exp. pK, log Py log Py log D7'4b

residue SolvL ProtL SolvL ProtL SolvL ProtL SolvL ProtL
Ala -1.16 —2.47 —1.16 (0.85) —2.47 (0.66)
Arg 12.5¢ 12.5° —2.86 —3.66 -2.99 —-7.38 —2.99 (—0.98) —7.04 (—3.91)
Asn —2.98 -3.97 —2.98 (-0.97) —3.97 (—0.84)
Asp 3.907 3.50° —2.26 -3.18 —2.80 —8.54 —2.80 (—0.79) —5.87 (—2.74)
Cys 9.83 6.80° —0.16 —1.47 —4.19 —5.78 —0.16 (1.85) —2.17 (0.96)
Gln -2.22 —4.00 —2.22 (-0.21) —4.00 (—0.87)
Glu 4207 4.20¢ —1.49 -3.79 -3.38 —6.20 —3.36 (—1.35) —5.96 (—2.83)
Gly —2.01 -3.13 —2.01 (0.00) —3.13 (0.00)
His (6) 7.007 6.60° —1.20 —4.67 —4.06 -5.97 —1.35 (0.66) —4.56 (—1.43)
His () 7.00¢ 6.60° —0.72 —4.98 —4.06 -5.97 —0.87 (1.14) —4.97 (—1.84)
Tle —-0.50 —0.38 —0.50 (1.51) —0.38 (2.75)
Leu 0.05 -1.36 0.05 (2.06) —1.36 (1.77)
Lys 114 10.5° —0.40 -2.19 -3.24 —6.81 —-3.18 (-1.17) —5.08 (—1.95)
Met —0.51 -1.83 —0.51 (1.50) —1.83 (1.30)
Phe 0.61 0.86 0.61 (2.62) 0.86 (3.99)
Pro —-0.77 —1.44 —0.77 (1.24) —1.44 (1.69)
Ser —2.04 —4.12 —2.04 (-0.03) —4.12 (—0.99)
Thr -1.22 —-3.01 —1.22 (0.79) —3.01 (0.12)
Trp 0.33 0.16 0.33 (2.34) 0.16 (3.29)
Tyr 10.37 10.3° —0.49 -1.80 —4.21 -9.59 —0.49 (1.52) —1.80 (1.33)
Val —-0.93 —-1.68 —0.93 (1.08) —1.68 (1.45)

“Experimental pK, of side-chain ionizable groups and calculated partition coefficients of neutral (log Py) and ionized (log P;) residues are also
given. “Values for ionizable residues are shown in bold. Log D, values relative to glycine are given in parentheses. “Ref 14. “Ref 15. “Ref 16.”Ref

17.

Figure 1. Representation of the pH dependence of the SolvL (left) and ProtL (right) lipophilicity scales for ionizable amino acids (values relative
to Gly). Values determined at pH of 2.1, 7.4, and 9.0 are shown in orange, green, and blue, respectively, and the values of the neutral species (log

Py) are shown in black.

on the integral equation formalism (IEF) of the polarizable
continuum model (PCM).”"° Following our previous study of
the hydration free energy of the natural amino acids,'’ the
backbone-dependent conformational library compiled by
Drunback and coworkers'>™'* (http://dunbrack.fccc.edu)
was used to extract the conformational preferences of residues,
which defined the ensemble of structures used to estimate the
log D,y values from IEFPCM-MST calculations in n-octanol
and water. (See the SI for a detailed description of the
computational methods.)

Two schemes were explored for weighting the contribution
of each conformational state to the differential solvation in the
two solvents. In one case, Py and P; were determined using a
Boltzmann’s weighting scheme to the relative stabilities of the
conformational species of a given residue in the two solvents,
leading to the solvent-like scale (SolvL). In the second scheme,
named protein-like scale (ProtL), the contribution of each

884

conformation was directly taken from the population
distribution reported in the backbone-dependent conforma-
tional library. Therefore, these weighting schemes are expected
to yield scales better suited for reflecting the lipophilic balance
of amino acids well exposed to bulk solvent or in a protein-like
environment, respectively. Finally, the effect of pH on the log
D,y values was introduced from the experimental pK,, values of
ionizable residues in peptide models in aqueous solution' "¢
and in folded proteins”’18 for the SolvL and ProtL scales,
respectively.

The values of these lipophilicity scales for the amino acids at
physiological pH are shown in Table 1. (ProtL data are
averages of the log D, , values determined separately for a-helix
and f-sheet structures, which are reported in Table S1.)
Taking Gly as reference, the ProtL scale comprises log D,
values ranging from —3.91 (Arg) to 3.99 (Phe), reflecting the
extreme values of hydrophilic residues (Arg, Asp, Glu, and

DOI: 10.1021/acs.jpclett.9b00028
J. Phys. Chem. Lett. 2019, 10, 883—889
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Figure 2. Comparison between (left) SolvL and (right) ProtL lipophilicity scales derived from the IEF/MST solvation model (expressed as log
D) and Fauchere—Pliska experimental values for the 20 N-acetyl-L-amino acid amides (r, Pearson correlation coefficient; mse, mean signed error;
mue, mean unsigned error; rmsd, root-mean-square deviation). Regression equations are shown in Table S8.

Table 2. Statistical Parameters of the Comparison of the SolvL and ProtL Scales with Other Lipophilicity Scales”

SolvL ProtL
scale” mse” mue rsmd r/p value mse mue rsmd r/p value
Bulk-Solvent-Adapted Scale
Fauchére—Pliska —-0.20 0.36 0.46 0.94 0.36 0.98 1.28 0.92
2x 107 6 X 107°
Eisenberg—McLachlan -0.20 0.44 0.57 0.90 0.36 1.08 1.35 091
3x107® 2x107®
Hopp—Woods —-0.49 0.60 0.74 091 0.07 0.84 1.08 0.89
2x107® 9x 1078
Wimley et al. —0.60 1.02 1.16 0.59 0.04 1.24 1.64 0.61
0.006 0.004
—0.87¢ 0.92 1.03 0.87 —0.30 1.03 1.25 0.87
2% 107¢ 2% 107°
Biological-Based Scale
Moon—Fleming —-0.12 0.57 0.67 0.94 0.24 0.72 0.93 091
4x 107" 7 X 107°
Hessa et al. —-0.92 0.93 1.18 0.79 —0.36 1.08 1.46 0.82
3%x107° 6% 107°
Knowledge-Based Scale
Koehler et al. —-0.91 1.10 1.33 0.78 —0.35 1.55 1.87 0.80
4%x107° 2x107°
Janin et al. —1.06 1.11 1.32 0.78 —0.51 1.36 1.71 0.74
3%x107° 2x 107
Consensus Scale
Kyte—Doolittle —-0.81 1.43 1.71 0.72 —-0.25 1.13 1.41 0.78
3x 107 3x107°

“Comparison was made using the values adapted to the specific pH of each scale and relative to Gly. bPhysiological pH was considered in all cases
except for Wimley at al. and Moon—Fleming because the corresponding pH was fixed at 9.0 and 3.8 following the specific experimental conditions.
“mse, mean signed error; mue, mean unsigned error; rmsd, root-mean-square deviation; r, Pearson correlation coeflicient; p, statistical p value. mse,
mue, and rmsd are given in log Py/D units. “Values in this row were obtained upon the exclusion of Arg and Lys. Because this scale was built up
using model pentapeptides (AcWL-X-LL) at pH 9.0, Arg and Lys formed a salt bridge with the terminal carboxyl group in n-octanol, as noted by

3C NMR studies.”*

Lys) and hydrophobic ones (Trp, Phe). (See also Figure S1.)
These trends are also found in the SolvL scale, although the
distribution of log D, values varies from —1.35 (Glu) to 2.62
(Phe). This trait is also found in other scales, as knowledge-
based methods generally give rise to a narrower range of
lipophilicites compared with other experimental scales.'” In
our case, this arises from the distinct weighting factors used in
ProtL and SolvL scales, leading to larger differences in the log
D, , values of polar and ionizable amino acids, which show a
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preference for extended conformations (Figure S2), likely
reflecting the formation of stabilizing interactions (e.g., salt
bridges) or the solvent exposure to bulk water in proteins.”*'

The sensitivity of the lipophilicity of ionizable residues to
pH changes is shown in Figure 1, which compares the log D,y
values at pH 2.1, 7.4, and 9.0, chosen as representative values
of the pH changes along the gastrointestinal tract. The
hydrophilicity of acid/basic amino acids is enhanced at basic/
acidic pH values, as expected from the predominance of the

DOI: 10.1021/acs.jpclett.9b00028
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ionic species. On the SolvL scale, it is worth noting the
hydrophilic nature of protonated His at acidic pH and the
slight hydrophobicity of protonated Glu. In contrast, the ProtL
scale exhibits a higher sensitivity to pH, as noted in the large
changes in the log D,y values of Asp and Glu, which are
decreased 2 to 3 log D,y units upon deprotonation, the
reduced hydrophilicity of Lys at basic pH, and the change from
hydrophobic (at acid and physiological pH) to hydrophilic (at
basic pH) Cys. This reflects the ability of these scales to
present the pH influence on the lipophilicity of ionizable
residues, which may be affected by the local environment in
proteins.22’23

To calibrate the suitability of these scales, a comparison was
made with the log D,, values reported by Fauchére and
Pliska,/ which were experimentally determined from the
partitioning of N-acetyl-L-amino acid amides between n-
octanol and water at physiological pH (Figure 2). A
comparison with the SolvL values gives satisfactory results, as
noted in a correlation coefficient (r) of 0.96 and a mean
unsigned error (mue) of 0.33 log D,, units for a set of
experimental values ranging from —3.36 to 0.61. The
correlation coefficient is slightly worse (r = 0.92), and the
mue increases to 1.68 for the ProtL scale. For the sake of
comparison, the same analysis was performed by using log D, 4
values obtained from computations with the SMD solvation
model,** in conjunction with the two weighting schemes, and
the results also revealed a better performance for the solvent-
adapted scheme (r = 0.85, mue = 0.83; Figure S3). On the
contrary, the SolvL scale also performed better than the
empirical estimates of log D, , obtained from ACD/ ILab™> (r =
0.88, mue = 0.60) and ChemAxon®® (r = 0.92, mue = 0.65)
when compared with the experimental values reported by
Fauchere and Pliska (Figure S4).

Table 2 shows the comparison of the SolvL and ProtL
lipophilicities with experimental scales, including four bulk
-solvent-based scales (Fauchére—Pliska,’” Eisenberg—McLa-
chlan,*’ Hopp—Woods,28 and Wimley et a1.29), two bio-
logical-derived (Moon—Fleming®® and Hessa et al.>') and two
knowledge-based (Koehler et al.'” and Janin et al.’*) scales,
and a consensus (Kyte—Doolittle®®) scale. The bulk-solvent-
based scales rely on experimental measurements of the transfer
between n-octanol and water (Fauchére—Pliska, Eisenberg—
McLachlan) at physiological pH or under basic conditions (pH
9.0; Wimley et al.) and between ethanol and the vapor phase
(Hopp—Woods). Excellent correlations are found with
Fauchére—Pliska, Eisenberg—McLachlan, and Hopp—Woods
scales (0.89 < r < 0.92). A worse correlation (r ~ 0.60) is
found in the comparison with Wimley et al. scale, but to large
extent this can be attributed to the formation of salt bridges
between Arg/Lys residues with the terminal carboxyl group in
n-octanol for the AcWL-X-LL pentapeptides used as model
systems, as noted by 1*C NMR studies.”* The exclusion of Arg
and Lys enhances the correlation coeflicient to 0.87. On the
contrary, the bulk-solvent-based lipophilicities are consistently
closer to the values collected in the SolvL scale (mue of 0.36 to
0.92 log P/D units) than to the ProtL ones (mue of 0.84 to
1.24 log P/D units).

The correlation coeflicients obtained with biological-,
knowledge-based, and consensus scales are satisfactory (0.74
< r < 0.94; Table 2) but tend to be lower than the values
obtained with the bulk-solvent-based transfer scales. This is not
unexpected keeping in mind that the lipophilicites are derived
from the statistical analysis of topological distributions of
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residues in proteins (Koehler et al, Janin et al) or from
complex biochemically adapted assays, such as the transfer of
amino acids from water to a phospholipid bilayer (Moon—
Fleming), the recognition of artificial helices by the Sec61
translocon (Hessa et al.), or the combination of water-vapor
transfer free energies with the interior—exterior distribution of
amino acids in the consensus (Kyle—Doolittle) scale. Keeping
in mind the notable differences in the material systems and
protocols used to derive these experimental scales, the
correlation coeflicients obtained from the comparison with
the SolvL scale are still remarkable.

The sensitivity of the results to the pH was examined by
extending the comparison to the lipophilicities determined for
the SolvL and ProtL scales at pH values of 3.8, 7.4, and 9.0.
(Note that the acidic and basic pH values were chosen in the
studies reported by Moon and Fleming and Wimley et al,
respectively.) In general, there is little difference between the
correlation coefficients obtained at pH 7.4 and 9.0 (Figure 3).

Figure 3. Representation of the Pearson correlation coefficient in the
comparison of the SolvL scale with bulk-solvent-based scales and
ProtL scale with biological-based, knowledge-based, and consensus
lipophilicity scales at pH 3.8, 7.4, and 9.0 (shown as green, red, and
blue lines, respectively).

However, a larger effect is found in the comparison of the log
Dy, as there is a general decrease in the correlation coefficient,
which is remarkable for the bulk-solvent-based transfer scales,
especially in the case of Hoop—Woods and Wimley et al. The
only exception is found in the comparison with the Moon—
Fleming scale, as the highest correlation coefficient is found for
the ProtL values corrected at pH 3.8. These findings support
the suitability of the SolvL/ProtL scales to account for the pH
influence on the lipophilicity of amino acids.

The reliability of the SolvL/ProtL scales has been calibrated
by comparing the cumulative lipophilicity with the (RP-
HPLC) retention time determined for different sets of
peptides.”>*® Given the small size of the peptides (<13
residues) and the lack of well-defined secondary structures,
nonadditivity effects can be expected to play a minor role.*”
Accordingly, the cumulative lipophilicity was determined
assuming an additive scheme (eq S3 in the SI Computational
Methods).

The first test comprises eight 10-mer peptides with equal
charge that differ in the content of hydrophobic residues
(Table $2).>® The SolvL cumulative lipophilicity yields a
correlation coefficient of 0.96 (Figure 4A), which compares

DOI: 10.1021/acs.jpclett.9b00028
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Figure 4. Relationship between the cumulative lipophilicities determined from the SolvL scale versus (A) the retention time for eight 10-mer
peptides (pH 7.4; ref 38), (B) 248 unique 13-mer peptides (pH 2.1; refs 39 and 40), (C) log Py, for 118 random peptides (ref 42), and (D) log D, ,
for 116 random peptides (ref 42). Regression equations are shown in Table S8.

Figure S. Relationship between the cumulative lipophilicities determined from (left) SolvL and (right) ProtL scales versus experimental binding
affinities of MHC-bound peptides. Cys-containing peptides are indicated as red dots. Regression equations shown in Table S8.

with the value estimated from the hydrophobic surfaces of
peptides derived from molecular dynamics simulations (r =
0.97),** whereas a slightly lower correlation was found for the
ProtL scale (r = 0.91; Table S3). For this simple set of
homogeneous peptides, most of the experimental lipophilicity
scales generally yielded correlations >0.9 (Table S3).

A more challenging test is the set of 248 peptides with equal
length but different net charge under the experimental acidic
conditions (pH 2.1),”*" comprising 36 peptides with two
charged amino acids (Arg combined with His or Lys), 105
peptides with a single charged residue (Arg, Lys, or His), and
finally 17 neutral peptides. The SolvL cumulative lipophilicity
correlates satisfactorily with the retention time determined for
the whole set of peptides (r = 0.85; Figure 4B). Among bulk-
solvent-based scales, Fauchére—Pliska, Eisenberg—McLachlan,
and Hopp—Woods also provided reasonable correlations
coeflicients (0.74 < r < 0.85; Table S2 and Figure S6), but a
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worse correlation was found for Wimley et al, although this
may be attributed to the different pH used in this latter scale
(pH 9.0) and the experimental assay conditions (pH 2.1). The
performance of biological-based, knowledge-based, and con-
sensus scales was also worse (0.55 < r < 0.64; Table S3 and
Figure SS), but for Moon—Fleming (r = 0.78), it likely
reflected the acidic pH conditions considered in the derivation
of this lipophilicity scale.

Finally, given the relevance of partition (log Py)/distribution
(log D,,) coefficients for ADME properties of peptides,*' the
suitability of the SolvL scale was further checked for
reproducing the differences in log Py/log D,, of a set of
random peptides.*” The SolvL-based additive scheme yielded
promising results, as noted in the r values of 0.93 and 0.83 in
reflecting the experimental range of log Py and log D, , for sets
of 118 and 116 peptides, respectively (Figure 4C,D).
Compared with experimental scales, a similar predictive
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power was attained for Faucheére—Pliska and Eisenberg—
McLachlan scales (r ~ 0.90) for the set of 118 log Py data and
for Hopp—Woods (r ~ 0.88) for the set of 116 log D, values
but with a larger mue (~2.3 versus 0.7 for the SolvL scale;
Tables S4 and SS).

In these test cases, the ProtL scale performed worse (0.60 <
r < 0.91; Figure S6) than the SolvL one, suggesting that the
Boltzmann-weighting scheme is better suited for describing the
lipophilicity of residues in structureless peptides. However, one
might expect an improved performance of the ProtL scale in
the analysis of the lipophilic complementarity in peptide—
protein and protein—protein complexes. To this end, we have
examined the relationship between the ProtL cumulative
lipophilicity and the experimental binding free energies of 19
peptides to MHC (HLA-A*02:01 allele) proteins (Table S6).
These peptides were chosen subject to the availability of (i)
precise structural information on the peptide—protein complex
in the Protein Data Bank™ and (ii) an estimate of the binding
affinity in the Immune Epitope Database and Analysis
Resource** (Table S6). The cumulative lipophilicity was
determined taking into account the fraction of solvent-exposed
area of the peptide residues in the MHC complex,
supplemented with two correction parameters that account
for the contribution due to the involvement of the backbone in
hydrogen bonds™ and to the burial of apolar residues from
water to hydrophobic environments® (eq S4 in the SI
Computational Methods).

The results show that the ProtL scale works better than the
SolvL scale (correlation coefficients of 0.58 and 0.42,
respectively; Figure 5) when the whole set of 19 peptides is
considered, yielding correlation coeflicients that are compara-
ble to Moon—Fleming and Eisenberg—McLachlan scales (r of
0.61 and 0.51, respectively; Table S7). This correlation is
remarkable keeping in mind the heterogeneity of the peptides
and the uncertainty arising from the combination of data taken
from different studies and determined using distinct exper-
imental approaches. Furthermore, a significant improvement is
observed upon the exclusion of the two Cys-containing
peptides (PDB codes 3MRG and 2PYE), perhaps reflecting a
quenching effect of cysteine in fluorescence assays.*”*” Thus
upon exclusion, the correlation coeflicient of ProtL and SolvL
scales increases up to 0.80 and 0.73, respectively, leading to
regression equations with increased statistical significance (p
values of 2 X 107* and 2 X 1073, respectively). Finally, let us
note that this improvement outperforms the results obtained
with the experimental scales (r < 0.67; Table S7).

Opverall, the results point out the versatility of the SolvL/
ProtL scales to examine the relationships between the
lipophilicity and physicochemical properties of peptides
under different pH conditions. From a methodological point
of view, the strategy relies on the combination of an accurately
parametrized version of continuum solvation models with an
elaborate formalism to derive distribution coeflicients from the
partition of neutral and ionic species, in conjunction with the
pK, of ionizable groups. The simplicity of the computational
strategy and the low cost of the required calculations permit a
straightforward extension to nonstandard residues, such as the
effect of chemical modifications on the lipophilicity maps of
proteins, thus providing valuable information to explore
biomolecular recognition and to modulate the properties of
engineered polymeric materials.
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COMPUTATIONAL METHODS

SolvL and ProtL lipophilicity scales.

Following a previous study on the hydration free energy of the natural amino acids,** the
N-acetyl-L-amino acid amides (CH3-CO-NH-CHR-CONH,) were chosen as molecular
models. Using the backbone-dependent conformational library reported by Dunbrack and

coworkers, 5>

a total of 572 rotamers (i.e., conformers with a probability contribution
higher than 5% to the total conformational space of each residue) were compiled. These
structures were then used to compute the n-octanol/water transfer free energies, which
were performed with the B3LYP/6-31G(d) MST>® version of the IEF-PCM>® model.
Computation of the distribution coefficients at a given pH (log Dyy ) was performed by

combining the partition coefficient of neutral and ionic species (for ionizable residues)

using Eq. S1.

log D =log P, +P,10°) - log(1+10°) (S1)

where P and P, denote the partition coefficient of the neutral and ionized species of the

amino acid, and 9 is the difference between the pK, of the ionizable group and the pH of
the environment.
Let us note that Eq. S1 represents one of the formalisms considered to estimate the pH-

57 and was found to

dependent lipophilicity profile of small (bio)organic compounds,
reproduce satisfactorily the change in pH-dependent distribution coefficients for amino
acid analogues.

The contribution of the conformational species in water and n-octanol was accounted for

S2
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considering two weighting schemes, giving rise to the Solvent-like (SolvL) and Protein-
like (ProtL) lipophilicities scales, respectively.

(i) In the SolvL scale, the contribution of each conformational state to the partition
coefficient of the neutral/ionized species was determined using a Boltzmann weighting
scheme, where the effective free energy was estimated by combining the internal energy of
the conformer and its solvation free energy in water and n-octanol. To this end, the
geometry of all rotamers was optimized at the B3LYP/6-31G(d) level of theory while
keeping the backbone dihedrals fixed to the torsional values of the Dunbrack’s library, and
subsequently single-point calculations in the gas phase and in solution. The log Dpy was
then computed using Eq. 1, adopting the pK,values reported for ionizable residues from
experimental peptide models in aqueous solutions.%®°

(ii) In the ProtL scale, the contribution of each conformation to the partition between the
two solvents was determined by using the weights reported in the Dunbrack’s library,
which reflect the rotameric distribution in a protein environment. The pK,s of ionizable
residues were taken from values in folded proteins. 55t
For the sake of comparison, we also computed both approaches with the SMD model

using the B3LYP/6-31G(d) level of theory.3*? All calculations were performed using a

locally modified version of Gaussian 09.5"

Comparison with experimental hydrophobicity scales.

Due to the diversity of experimental lipophilicity scales of amino acids, generally
expressed in terms of transfer free energies, comparison was made by converting them to
partition/distribution coefficients, which were subsequently normalized to Gly following

Eq. S2.
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— (_AAGt-ransf,AA - AAGtransf,Gl}y
logP, /D, = RTIn10 (S2)

where AAG, .., is the transfer free energy of a given amino acid from the aqueous

phase to the organic/biological environment, and AAG is the transfer free energy of

transf,Gly

Gly.

Determination of the cumulative lipophilicity.

Most of the experimental scales present in the literature compute the lipophilicity of a
given peptide as the sum of individual lipophilicity of the constituent amino acids relative
to a reference residue, usually Gly or Ala. Since the MST solvation model gives atomic

contributions to the transfer free energy,>**>*

we can separate the global lipophilicity in
contributions corresponding to the backbone (bb), side-chain (sc), and the capping groups
(cg). Combination of the bb and sc contributions yields the amino acid lipophilicity
(reported in Table 1 in the manuscript), whereas the contribution of the capping groups has
been estimated to be (N-terminus) CH3CO- (log Py = 0.20), NHs"-(log D74 = -2.99), and
(C-terminus) NH2— (log Py =-1.08), NMe- (log Px = 0.35), COO™-(log D74 = -4.89).

The cumulative lipophilicity of a peptide with N residues may be estimated by using

Eqg. S3.
. Nres i ) Neg . .
log(PN /DPH )PLph e — E log(P1N /D;H)bbﬂc + Elog(PzN /D;H )cg (83)
i=1 i=1

where P} / DLH stands for the fragment (bb+sc or cg) partition/distribution coefficient,

Nres and Ny being the total number of residues and capping groups in the peptide.
For practical applications, this simple expression is convenient when there is no explicit

knowledge about the 3D structure of peptides, as may occur in structureless peptides.
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For our purposes here, this is the expression adopted to evaluate the lipophilicity of small,
flexible peptides in solution.

On the other hand, if the 3D structure of the peptide is known from experimental (X-ray,
NMR) or computational (Molecular Dynamics) approaches, then the cumulative
lipohilicity may be estimated taking into account the specific structural features of

peptides/proteins, as noted in Eq. S4.

Nres

log(P, /D)™™ = ¥ (X log(Py, / D, )" + 4" -log(P\, / D}, ) +a' + ) (S4)

i=1

In Eq. S4, A" stands for the fraction of solvent-exposed surface area (SASA) of the
amino acid (bb+sc) or capping group (cg) according to the local structural environment of

in a peptide/protein. For our purposes, the SASA was determined using NACCESS. 3"

In addition, two correction factors were also introduced. The parameter ¢' introduces a
correction to the hydrophobic contribution when the backbone participates in a hydrogen
bond (HB). This contribution can be estimated to amount, on average, to 0.73 (log P units)

per HB.5'® The occurrence of this kind of HBs in a given 3D structural model was
determined with the DSSP program.>*® Finally, the ' factor accounts for a correction due

to the burial of the side chain of hydrophobic residues (Ala, Leu, lle, Val, Pro, Phe, Trp,
Met and Tyr) from water to a lipophilic environment. This contribution has been estimated

to be 0.023 kcal mol™ A2 according to the studies reported by Moon and Fleming for the
transfer of nonpolar side chains from water into a lipid bilayer.>*® Therefore, the 8' term

has been estimated from the fraction of the buried side chain with respect to the fully

buried side chain, as noted in Eq. S5.
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H

where res stands for the hydrophobic contribution (in logP units) of a specific apolar

residue, which was estimated as noted in Eq. S6.

1 - 0023-SASAY

=~ 2308RT (36)
where SASAL s the average SASA of a given residue type, R is the gas constant, and T

is temperature.

i
The Hre: values for nonpolar residues are given in Table SO.

Table SO. Average solvent accessible surface area for the side-chain of the hydrophobic
residues and the hydrophobic effect contribution value when the side chain is fully buried.

Residue | Average SASA (A?) H: . (log P units)
Ala 69 1.2
Val 130 2.2
Leu 158 2.7
lle 157 2.6
Met 166 2.8
Pro 115 1.9
Phe 188 3.2
Trp 232 3.9
Tyr 201 34

N¢)
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Table S1. Protein-like (ProtL) Lipophilicity Scale Based on the logD,y Values Determined
for N-Acetyl-L-Amino Acid Amides at Physiological pH. The Lipophilicity Obtained for
Conformational Distributions in a-Helix and p-Sheet Structures, the Experimental pK, of
Side Chain lonizable Groups, and the Calculated Partition Coefficients of Neutral (log Py)
and lonized (log P,) Residues Are Also Given.

Residues Exp. pK, log Py log Py log D74
ALA - -2.47 - -2.47
a-helix - -2.87 - -2.87
p-sheet - -2.03 - -2.03
ARG -3.66 -7.38 -7.04
a-helix 12.51 -3.75 -8.09 -7.59
S-sheet -3.49 -5.98 -5.98
ASN - -3.97 - -3.97
a-helix - -4.09 - -4.09
p-sheet - -3.39 - -3.39
ASP -3.18 -8.54 -5.87
a-helix 3.50 -3.26 -7.37 -5.63
p-sheet -3.07 -10.07 -6.19
CYS -1.47 -5.78 -2.17
a-helix 6.80 -2.06 -5.75 -2.76
p-sheet -1.09 -5.81 -1.78
GLN - -4.00 - -4.00
a-helix - -5.00 - -5.00
f-sheet - -1.64 - -1.64
GLU -3.79 -6.20 -5.96
a-helix 4.20 -3.67 -6.42 -6.14
S-sheet -4.03 -5.76 -5.58
GLY - -3.13 - -3.13
HID -4.67 -5.97 -4.56
a-helix 6.60 -5.12 -6.16 -5.00
S-sheet -4.26 -5.79 -4.15
HIE -4.98 -5.97 -4.97
a-helix 6.60 -5.49 -6.16 -5.46
B-sheet -4.49 -5.79 -4.52
ILE - -0.38 - -0.38
a-helix - -0.55 - -0.55
S-sheet - -0.24 - -0.24
LEU - -1.36 - -1.36
a-helix - -1.59 - -1.59
f-sheet - -1.09 - -1.09
LYS -2.19 -6.81 -5.08
a-helix 10.53 -2.32 -7.18 -5.29
p-sheet -1.98 -6.16 -4.73
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MET -

a-helix T :
f-sheet : e 2
PHE : 5 - 15
a-helix - 753 - s
B-sheet : S - s
PRO : Wy - o
a-helix : 0 - L
-sheet : i - Lo
e : 4 - -1.42
a-helix : e - i
f-sheet : o - s
THR : Sor - i
a-helix - % - I
S-sheet : S50 - i
TRP - 36 - 2
a-helix : o5 s
[-sheet : ¥ o5
TYR - 5 o
a-helix o8 1
e 10.33 -1.96 322 o8
e _ -1.69 -9.55 T
a-helix 515 1
p-sheet : 5 25
22 - -2.19
- -1.38
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Table S2. Experimental RP-HPLC Retention Time for Eight Model Decapeptides and
Cumulative Hydrophobicity Determined with the SolvL and ProtL Lipophilicity Scales.

Retention log D74

Peptide * Sequence factor k°

(min) SolvL ProtL
PepllLeu DKDKGGGGLG 4.80 -17.09 -34.04
Pep2Leu DKDKGGGLLG 11.97 -15.03 -32.27
Pep3Leu DKDKGGLLLG 16.22 -12.97 -30.50
PeplCys DKDKGGGGCG 0.52 -17.30 -34.85
Pepllle DKDKGGGGIG 4.73 -17.64 -33.06
PeplMet DKDKGGGGMG 2.27 -17.65 -34.51
Pep1Phe DKDKGGGGFG 6.11 -16.53 -31.82
PeplVal DKDKGGGLVG 1.86 -18.07 -34.36

? Ref. 38.

Table S3. Correlation of Retention Time for Eight Model Decapeptides with the Same
Charge,® and for 218 Peptides®*“° with Three Different Charge States Using the
Cumulative Hydrophobicity with Our Adaptive Hydrophobicity Scale and with Others
Experimental Scales.

r
Scale p-value®
Ref. 38 (pH =7.4) Refs. 39,40 (pH = 2.1)
. . 0.96 0.85
Fauchére-Pliska 2. 10% <1x107
) 0.95 0.79
Eisenberg-McLachlan 3.10% <1x107
0.99 0.74
Hopp-Woods 7107 <1x1078
. 0.99 0.36
Wimley et al. 4,107 4,107
. 0.99 0.78
Moon-Fleming 3+ 107 <110
Hessa et al 0.96 0.61
' 2x10™ <1x10™"°
0.76 0.64
Koehler et al. 003 <1x107
Janin et al 0.39 0.55
' 0.3 <1x107
. 0.93 0.60
Kyte-Doolittle 810 <1x107
0.96 0.85
S 2x10* <1x1076
0.91 0.80
ProtL 18 <1x107
ar: Pearson correlation coefficient, p: statistical p-value. S11
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Table S4. Statistical Parameters of the Comparison® of the SolvL and ProtL Scale with

Others Hydrophobicity Scales Against log Py Values for 118 Random Peptides.

r

Scale p-value mse mue rsmd

— 0.90
Fauchere-Pliska <1.1076 -2.53 2.53 2.64
Eisenberg-McLachlan < 10481%_15 -2.29 2.29 2.38
Hopp-Woods < 10;7140-16 -2.07 2.11 2.31

. 0.70
Wimley et al. <1x1076 -1.54 1.67 1.81
Moon-Flemi 0.69 0.80 112 1.34

oon-rleming <1x 10_16 -U. . .

Hessa et al, 8'55 0.29 0.98 1.29
Koehler et al. e 0.35 087 | 112
Janin et al. 3, 0.65 108 | 1.28
Kyte-Doolittle T 2.85 300 | 360
ProtL per 135 1.68 2.00

0.93
SolvL 10 g -0.55 0.71 0.94

*mse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson correlation

coefficient, p: statistical p-value. mse, mue and rmsd are given in log Pn/D units.
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Table S5. Statistical Parameters of the Comparison® of the SolvL and ProtL Scale with
Others Hydrophobicity Scales Against log D; 4 Values for 116 Random Peptides.

Scale r mse mue rsmd
p-value
R . 0.76
Fauchere-Pliska <1x10 -2.76 2.76 2.88
) 0.75
Eisenberg-McLachlan <1,1076 -2.58 2.58 2.69
0.88
Hopp-Woods <1,1076 -2.32 2.33 2.43
Wimley et al. 22'%_9 -1.94 1.94 2.23
. 0.79
Moon-Fleming <1107 -1.16 1.24 1.48
0.72
Hessa et al. <1,1076 -0.22 0.60 0.73
0.76
Koehler et al. <1107 -0.90 1.01 1.19
Janin et al. 4 8'%.13 -1.12 1.21 1.38
Kyte-Doolittle 22'%.9 3.04 3.17 3.76
0.79
ProtL <1101 1.46 1.82 2.11
0.83
SolvL <1101 -0.52 0.73 0.95

#mse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson correlation
coefficient, p: statistical p-value. mse, mue and rmsd are given in log Pn/D units.
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Appendix III. Book Chapter:

Implicit Solvation Methods in the Study of Ligand-Protein Interactions.

Zamora, W. J. Campanera, J. Luque, F. (2015); Implicit Solvation Methods in the
Study of Ligand-Protein Interactions. In C. Cavasotto (Ed.), In silico Drug Discovery
and Design:Theory, Methods, Challenges, and Applications. by CRC Press.
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9.1 Ligand-Receptor Interaction

The affinity between a small compound and its macromolecular target can
be related to macroscopic observables through the laws of thermodynam-
ics. Thus, the binding affinity can be expressed in terms of the equilibrium
constant (K) for the formation of the ligand-receptor complex, which can be
related to the difference in the standard Gibbs free energy between bound
and unbound states (AG°; Equation 9.1).

AG®=-RTInK ©9.1)

where R is the gas constant and T is the temperature.

The binding affinity reflects a subtle balance between a number of separate
enthalpic and entropic contributions (Gohlke and Klebe 2002; Bissantz et al.
2010). The structural and chemical complementarity between the functional
groups that are present at the binding interface renders the net stabilizing
energy that is required to compensate unfavorable contributions to the bind-
ing. Thus, the binding between ligand and receptor is often accompanied by
conformational changes, which can encompass a range of potential scenarios
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such as the “induced fit” mechanism, the “conformational selection” pro-
cess, or even more complex models that combine the selection of specific
conformations with the induction of structural readjustments upon binding
(Csermely et al. 2010; Spyrakis et al. 2011). Predicting the energy cost associ-
ated with conformational changes in the ligand has proved to be very chal-
lenging, as noted by the uncertainties associated with the choice of the level
of theory used to determine the cost of selecting the bioactive conformation
(Tirado-Rives and Jorgensen 2006; Butler et al. 2009).

The energy gain as a result of the seemingly favorable interactions formed
in the complex must counterbalance the cost due to dehydration of the sepa-
rate partners prior to their mutual interaction. For simple neutral organic
compounds, the hydration-free energies are generally in a narrow range, as
noted in the experimental values for the transfer from gas phase to water
for compounds that mimic the side chain of noncharged amino acids, which
vary from +2 to —11 kcal/mol (Table 9.1; Wolfenden et al. 1981). However, the
hydration-free energy of charged compounds is much larger, as expected
from the strengthening of the interactions with water molecules, leading
to hydration-free energies of —77 kcal/mol for acetate anion and —71 kcal/
mol for the protonated n-butylamine (Pliego and Riveros 2002). Hence, there
must be a sizable compensation between the dehydration energy cost and
binding site residues and the energy gain triggered upon burial of the ligand
in the binding pocket.

Finally, the ligand-receptor interactions must also compensate for the
entropy changes arising upon molecular association, such as the loss of
translational and rotational degrees of freedom, the reduction in the acces-
sible states for internal rotations of both ligand and protein, and the reor-
ganization of water molecules upon formation of the complex. This can be
illustrated by the fact that binding of amprenavir to HIV protease is accom-
panied by a configurational entropy loss of 26.4 kcal/mol, which primarily

TABLE 9.1

Experimental Hydration-Free Energies (AGy,4; kcal mol™) of Organic Compounds
Chosen as Analogs of the Side Chains of Neutral Amino Acids

Residue Side Chain Analog AGyy4 Residue Side Chain Analogue AGyy4

Ala Methane 2.0 Leu Isobutane 2.3
Ile Butane 2.1 Met Methyl ethyl sulfide -1.5
Val Propane 2.0 Phe Toluene -0.9
Phe p-Cresol -6.1 Trp Methylindole -59
His Methylimidazole -10.3 Ser Methanol -5.1
Thr Ethanol -5.1 Cys Methanethiol -1.2
Asn Acetamide -9.7 Gln Propionamide -94
Asp Acetic acid -6.7 Glu Propionic acid -6.5
Lys N-butylamine -4.3 Arg N-propylguanidine -10.9
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arises from narrowness of the energy wells of bound amprenavir relative to
free ligand (Chang et al. 2007).

The net balance between enthalpic and entropic components leads to
ligand—protein binding affinities that generally fall between 102 and 10> M
(Gohlke and Klebe 2002). Unfortunately, small uncertainties in determining
the magnitude of the different free energy components may have a drastic
impact on the accuracy of the binding affinity (Williams et al. 2004; Reynolds
and Holloway 2011). Thus, an error of 1.36 kcal/mol changes the predicted
binding constant (at 298 K) by one order of magnitude. Predicting with
chemical accuracy the binding free energy is a formidable challenge to cur-
rent computational methods due to the magnitude of the separate contribu-
tions to the binding free energy, and the compensation between enthalpic
and entropic terms. However, this is a fundamental ingredient for the suc-
cess of drug discovery, especially keeping in mind that the maximal free
energy contribution per non-hydrogen atom in a drug-like ligand amounts
to ~—1.5 kcal/mol (higher values per atom are found in the case of metals,
small anions, and ligands that form covalent bonds; Kuntz et al. 1999).

The aim of this chapter is to examine the use of implicit solvation models
in the calculation of the binding affinity of ligand-receptor complexes. To
this end, the chapter is divided into two major sections. The first is focused
on the use of implicit solvation models in the context of classical force field
methods, dealing specifically with molecular mechanics Poisson-Boltmann
surface area (MM-PBSA) and its Generalized Born counterpart (MM-GBSA).
Attention is paid to the details of the underlying formalism and to the differ-
ent strategies undertaken in order to improve the accuracy of the predicted
binding affinities. In the second section, a brief overview of the application of
implicit solvation methods in the framework of quantum mechanics is given
in order to highlight the progressive development of novel implementations
and their application in drug discovery.

9.2 Molecular Mechanics and Implicit Solvation Models

Free energy perturbation (FEP) and thermodynamic integration (T1) are the
most valuable computational methods for the prediction of binding affini-
ties of small drug-candidate compounds (Brandsdal et al. 2003; Chipot and
Pohorille 2007; Jorgensen 2009). These techniques rely on the alchemical
transformation of ligands (or amino acid residues in the wild-type protein
and a mutated variant) in two states, which correspond to the ligand free in
solution, and the ligand bound to the receptor. This transformation is per-
formed by means of a series of simulations carried out at intermediate points
along the transition path that connects the Hamiltonians of the initial and
tinal states. As noted by Michel and Essex (2010), it seems reasonable to expect
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that free energy calculations cannot predict binding free energies more accu-
rately than solvation-free energies, where the uncertainties obtained for small
organic compounds are approximately 1 kcal mol™ (see also Merz 2010).

These calculations can provide the missing links between the experimen-
tal binding affinities and the atomic details of the protein-ligand complexes.
However, when there are substantial differences in the chemical scaffold of
the ligands, which differ by large substituents, or even when drastic muta-
tions occur between the native protein and the mutated variant (e.g., trypto-
phan to alanine), the reliability and chemical accuracy of these calculations
can be affected by convergence problems due to numerical instabilities and
the limited conformational sampling. Hence, reliable computational schemes
for the systematic prediction of ligand binding and mutagenesis effects are
the subject of intense research (Pitera and van Gunsteren 2002; Steinbrecher
et al. 2007; Lawrenz et al. 2011; Boukharta et al. 2014).

The high computational cost of these techniques is primarily due to the
large number of intermediate states that must be defined in the alchemical
transformation, but also to the explicit treatment of the molecular environ-
ment. These factors can be alleviated by treating solvent effects only implic-
itly using continuum solvent methods, and by considering only the endpoint
states in the free energy calculations. These approximations lead to the so-
called endpoint, implicit solvent-free energy methods, which encompass
MM-PBSA and MM-GBSA. The main advantage of these methods is the huge
reduction in the computational cost, which enables the screening of large
datasets of ligands against a common receptor in a reasonable time span.
Thus, MM-PB(GB)SA has been widely used in solving a broad range of topics
valuable in ligand-receptor interactions, and specifically in drug discovery,
such as determining hot spots in ligand-binding pockets and protein—pro-
tein interfaces, rescoring of docking poses, estimating binding affinities, and
evaluating the stability of macromolecular assemblies. Nevertheless, the
simplified description of the molecular system can also affect the chemical
accuracy in predicting both the binding pose and the binding affinity, which
makes it necessary to carry out a rigorous calibration of these methods.

9.2.1 Methodological Formalism of MM-PB(GB)SA Methods

In MM-PB(GB)SA, the binding free energy between ligand and receptor
(AG,;,) is determined by combining three terms (Figure 9.1): the gas-phase
free energy (AGyy), the solvation-free energy (AG,,), and the change in the
configurational entropy (-I'AS) upon binding (Equation 9.2).

AGhm = AGMM t AGsol —TAS (92)
The gas-phase component is determined from the molecular mechanics

energy of the molecule, including bonded and nonbonded terms as imple-
mented in a given force field. If the configurational space of the bound state
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FIGURE 9.1

Thermodynamic cycle for the calculation of the binding affinity between ligand and receptor.
Generally, MM-PB(GB)SA is used as a postprocessing method using representative snapshots
taken from the trajectory sampled in a molecular dynamics simulation. In the single trajectory
approach, ligand and receptor are taken from the snapshots sampled for the ligand-recep-
tor complex (R’-L’). Other approaches use separate trajectories for receptor (R, R) and ligand
(L, L). As noted in Equation 9.2, the binding affinity (AGy,; AGy,) combines the gas phase term
(AGgs; AGf4s), which combines the molecular mechanics (AGyy,) and entropic (-I'AS) terms, and
the solvation contribution of complex (AGE; ™), receptor (AGL;;AGY)), and ligand (AGL;; AG)).
is assumed to be representative of the configurations sampled by separate
ligand and receptor, then the AG,;,, term is merely given by the addition of

Coulomb (AG,,,) and van der Waals (AG,,;y) contributions (Equation 9.3).

elec

AC;MM = AGelec + AC;vdW (93)

The solvation-free energy is divided into polar (AG,,_,) and nonpolar
(AG,,_,y) components (Equation 94). The polar term reflects the change
in free energy for the transfer from the gas phase to the aqueous solvent,
typically modeled as homogeneous medium characterized with dielectric
constant of 1 and 78.4, respectively. This term is calculated by resorting to
numerical methods for solving the Poisson-Boltzmann equation through a
tinite-difference approach, or alternatively by means of the GB theory (for a
review, see Orozco and Luque 2000).

AC;sol = AGsol—p t AGsol—np (94)

In a continuum electrostatics model, a hydrated solute molecule is treated
as a charge distribution in a low-dielectric cavity, which is embedded in a
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high-dielectric medium representing water. The dependence between the
charge distribution and the electric potential is then given by the Poisson
equation (Equation 9.5).

Ve(r)Vo(r) = —p(r) 9.5)

where £(r) denotes the dielectric constant, ¢(r) is the electric potential, and
p(r) is the charge distribution.

In the presence of an ionic atmosphere, Equation 9.5 adopts the form given
by the nonlinear Poisson-Boltzmann equation, which under the assump-
tion that @(r) is small can be linearized (using the approximation that sinh
¢(r) = ¢(r); Equation 9.6).

Ve(r)Vo(r) - 70(r) = —p(r) (9.6)

where x is the Debye-Hiickel inverse screening length.

Equations 9.5 and 9.6 must be solved numerically. The finite-difference
method solves the differential equations by discretizing the region of interest
into grid points (typically a cubic grid). Accordingly, the solute partial charges
are fractionally distributed among the nearby grid points, the dielectric con-
stants are assigned to each grid point according to the geometry of the dielec-
tric boundary, and the second derivatives of the potential at each grid point
can be expressed in terms of the potentials at neighboring points. The coupled
expressions for the potentials on the grid produce a linear system of equations
that can be solved to yield the potential at each grid point. It is worth noting,
however, that estimates of the electrostatic component from grid-based solvers
of the Poisson equation inevitably contain numerical grid-discretization errors,
and that a careful assessment of these errors must be performed (Harris et al.
2013). Other approaches, such as the finite element method or the boundary
element method, are also available (for details, see Tomasi and Persico 1994).

The GB model offers a simpler, computationally less-expensive approach
to the electrostatic component of the solvation-free energy (Equation 9.7; Still
et al. 1990).

1 1 qiq;
AGgpp = —| 1—- —_— 7
r 2( Eoutj i,j fGB ® )

where g; denotes the partial atomic charges of the solute, €, is the dielectric
constant of the solvent environment, and f.; stands for the screening func-
tion, which is generally expressed as noted in Equation 9.8 (for a review, see
Bashford and Case 2000).

2 1/2
fes(ry) = |:7’,]2 t o0 exp[(4&?&j)ﬂ 9.8)



Implicit Solvation Methods in the Study of Ligand—Protein Interactions 255

where ri is the interatomic distance between particles i and j, o; stands for the
effective Born radius of particle i.

The use of Equation 9.7 makes the calculation of the electrostatic solva-
tion term to be the sum of pairwise interactions, thus making it suitable for
implementation in molecular dynamics (MD) programs. Furthermore, the
pairwise nature of the method also facilitates decomposition of free energies
into individual atomic contributions (see below).

The nonpolar contribution (AG,,_,,) is generally estimated by using a linear
expression with the solvent-accessible surface (SAS; Equation 9.9), which is
intended to account for the contributions due to the cavity formation within
the solvent and the change in nonpolar interactions between solute and sol-
vent (Sitkoff et al. 1994).

AC;sol—np = YSAS ¥ B (99)

Finally, the change in configurational entropy of the solute is usually esti-
mated by means of a normal mode analysis of harmonic frequencies calcu-
lated at the MM level. This analysis can be performed for simplified structures
containing the residues within a given sphere centered at the ligand, and the
energy-minimized structures are obtained by using a distance-dependent
dielectric, which is introduced to mimic the solvent dielectric (Kongsted and
Ryde 2009; Genheden and Ryde 2011; Hou et al. 2011). However, this contri-
bution is often neglected when the primary interest is the prediction of rela-
tive binding affinities between structurally similar ligands.

9.2.2 Computational Aspects of MM-PB(GB)SA Calculations

Calculation of the binding affinity between a ligand and its receptor can be
performed using two computational approaches, which involves a single tra-
jectory of the ligand-receptor complex or separate trajectories of the ligand-
receptor complex, the receptor and the ligand (Figure 9.1, Wang et al. 2006).
Although this latter approach is formally more rigorous, because it takes
into account the differences in conformational flexibility of the bound and
unbound states, the single trajectory strategy is usually adopted because it
benefits from the cancellation of intramolecular contributions in the predic-
tion of the binding affinity, especially in cases where no large structural dif-
ferences are expected to occur upon binding.

MM-PB(GB)SA calculations are generally performed for ensembles of
structures sampled along the trajectories obtained from MD simulations.
Then, a set of representative structures is extracted from the trajectory, water
molecules and counterions are subsequently removed, and the free energy is
calculated as noted in Equation 9.2. At this point, it has been pointed out that
selecting a relatively small number of representative snapshots may suffice
to obtain an accurate prediction comparable to using the full MD trajectory
(Lill and Thompson 2011).
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Since a single MD simulation may often not provide a complete description
of the conformational space available for the ligand-receptor complex (and
even for the separate receptor), it is then unclear whether the binding affin-
ity estimated from a single trajectory can be representative or not. Adler and
Beroza (2013) have recently considered this issue. Thus, replicate MM-PBSA
calculations were performed for four distinct ligand-receptor complexes.
Separate trajectories were generated using nearly identical starting coordi-
nates (1% randomly perturbed by 0.001 A), and they were found to lead to
significantly different calculated binding free energies. Thus, even though
the binding affinity did converge in each separate run, the variation across
separate runs implies that a single trajectory may inadequately sample the
system. Hence, the authors recommend that combining MM-PB(GB)SA with
multiple samples of the initial starting coordinates will lead to more accurate
estimates of the binding affinity.

However, it is worth noting that the inclusion of specific structural water
molecules has been found to be important for the accurate description of
MM-PB(GB)SA energetics. For instance, it has been reported that the differ-
ence in binding affinity of nevirapine to the wild-type HIV-1 reverse tran-
scriptase and the Y181C mutant was better discriminated upon inclusion
of key water molecules as part of the protein (Treesuwan and Hannongbua
2009). Similarly, the protein—protein interaction between the T-cell receptor
and its staphylococcal enterotoxin 3 (SEC3) binding partner was only effec-
tively discriminated against two mutated SEC3 variants only when key
explicit water molecules were included in the calculations (Wong et al. 2009).
On the contrary, a protocol for the inclusion of water molecules that medi-
ate ligand—protein interactions, denoted water-MM-PBSA, has been reported
(Zhu et al. 2014), leading to improved correlation between the binding affini-
ties estimated for a series of JNK3 kinase inhibitors and the experimental
IC;, values compared to that obtained from classical MM-PBSA calculations.

The averaged contributions obtained from the whole set of snapshots enable
to check the time convergence and internal consistency of the binding affin-
ity and its free energy components (Stoica et al. 2008), while they take into
account the effect due to conformational fluctuations of the molecular sys-
tem. However, it has been advocated that the conformational sampling of the
simulated system should be performed using simulations with explicit treat-
ment of the solvent molecules, avoiding the use of continuum solvent simula-
tions (Weis et al. 2006). Furthermore, the mixing of force fields for collecting
the snapshots along the discrete MD simulation and for the MM-PB(GB)SA
calculation is not recommended, as it may give inaccuracies (Weis et al. 2006).

Even though MM-PB(GB)SA has proven to be successful in various ligand—
protein complexes, the results also demonstrate that the overall performance
is highly system-dependent. For instance, a systematic analysis of 59 ligands
interacting with six distinct receptors showed that MM-PBSA gives good pre-
dictions for homologous ligands and has a variable performance for ligands
with diverse structures (Figure 9.2; Hou et al. 2011). Furthermore, MM-PBSA
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FIGURE 9.2

Correlations between the MM/PBSA binding affinities and the experimental values for (a)
a-thrombin, (b) avidin, (c) cytochrome c peroxidase, (d) neuraminidase, (¢) P450cam, and (f)
penicillopepsin. (Reprinted with permission from Hou, T. et al. 2011. Assessing the perfor-
mance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy cal-
culations based on molecular dynamics simulations. J. Chem. Inf. Model. 51(1): 69-82. Copyright
2011, American Chemical Society.) (Continued)

predictions were found to be very sensitive to the solute dielectric constant,
which is related to the physicochemical features of the binding interface. In
fact, Hou et al. (2011) reported that for highly charged binding interfaces, a
higher solute dielectric constant (g, ~ 4) is preferred, whereas for moderately
charged or hydrophobic binding interfaces values of ¢, equal to 2 or 1, respec-
tively, are more adequate. At this point, the authors suggested the change in
the solvent-accessible surface area (SASA) of the groups involved in strong
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Correlations between the MM/PBSA binding affinities and the experimental values for
(@) a-thrombin, (b) avidin, (c) cytochrome c peroxidase, (d) neuraminidase, (¢) P450cam, and
(f) penicillopepsin. (Reprinted with permission from Hou, T. et al. 2011. Assessing the perfor-
mance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy cal-

culations based on molecular dynamics simulations. J. Chem. Inf. Model. 51(1): 69-82. Copyright
2011, American Chemical Society.)

polar—polar interactions between ligand and receptor as a valuable guide to
select the dielectric constant of the solute. Moreover, this study also concluded
that inclusion of conformational entropy is crucial for predicting absolute bind-
ing free energies, but not for ranking the binding affinities of similar ligands.

Similar studies have been performed for MM-PB(GB)SA calculations for
a total of 46 small molecules targeted to five different protein receptors (Xu
et al. 2013). Attention was paid to the effect of (i) AMBER force fields (ff99,
tf99SB, ff99SB-ILDN, ff03, and ff12SB), (ii) the timescale of MD simulations,
and (iii) the impact of four different charge models (RESP, ESP, AM1-BCC,
and Gasteiger) for small molecules.

In a separate work, Swanson et al. (2005) also examined the impact of solute
charge, dielectric coefficient, and atomic radii on the accuracy in predicting
the solvation-free energies. To this end, a set of 14 polyalanine peptides and
a series of 20 nonzwitterionic N-acetyl-X-N-methylamide dipeptides, with
X representing one of the 20 standard amino acids, were subject to explicit
solvent simulations, and the charging free energies were determined by
means of FEP calculations. These data were then utilized for deriving two
optimized sets of atomic radii, which were chosen to define either abrupt or
cubic-spline smoother dielectric boundaries, to be used in conjunction with
AMBER (parm99) charges. The optimized radii were found to offer increased
accuracy of solvation energies and atomic forces in a test set of four protein-
like polypeptides. The application of these optimized radii to the binding of
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peptides to human class II MHC molecules was shown to reflect adequately
the distinction between strong and for binding peptides (Cardenas et al. 2010).

The aim of deriving parameters for implicit solvent models optimized
in a system- or atom-specific manner on the basis of experimental data or
more rigorous explicit solvent simulations has been adopted in other studies.
For instance, the performance of PB calculations with regard to the TIP3P
explicit solvent has been examined for a variety of systems of biochemical
interest (Tan et al. 2006). The results support the transferability of empirically
optimized parameters for the implicit solvent from small training molecules
to large testing peptides. However, a computational strategy for optimiz-
ing the solute radii on the basis of forces and energies from explicit solvent
simulations has been reported in the context of the AMBER partial charges
and a spline-smoothed solute surface (Swanson et al. 2007). An alternative
approach for deriving optimized radii for PB calculations has been under-
taken by Yamagishi et al. (2014). The radii were optimized using results from
explicit solvent simulations of amino acid templates and large peptides in
the framework of the AMBER protein force field and using a smoothing
dielectric function. Moreover, discrimination between radii assigned to N-
and C-terminal residues from nonterminal ones was also considered.

In a different approach, Purisima and coworkers have developed the sol-
vated interaction energy (SIE) method, which is an endpoint MM-PBSA-based
scoring function that approximates the protein-ligand binding affinity by an
interaction energy contribution and a desolvation free energy contribution
(Naim et al. 2007; Cui et al. 2008). Electrostatic solvation effects are calculated
with the boundary element solution to the Poisson equation, while nonpolar
solvation is based on change in the SAS. As in the single-trajectory approach,
the free state is generally obtained by separation of both ligand and recep-
tor from the ligand-receptor complex sampled along the MD trajectory. The
SIE method has been carefully calibrated using a diverse set of ligand—pro-
tein complexes, including the calibration of parameters such as the dielectric
constant, the surface tension coefficient, and the inclusion of an enthalpy-
entropy compensating scaling factor. The SIE scoring function leads to a rea-
sonable agreement between predicted and experimental binding affinities,
as noted in the external testing against a curated dataset of 343 ligand—pro-
tein complexes, leading to a root-mean square error in the predicted binding
affinities of 2.5 kcal mol™ (Sulea et al. 2011).

9.2.3 Large-Scale Application of MM-PB(GB)SA Models

The advent of faster computers and automated procedures for preparation
of ligands and receptors has promoted the use of MM-PB(GB)SA models in
medium- and high-throughput screenings, making them valuable for rerank-
ing of docked poses. As an example, Brown and Muchmore (2009) reported a
large-scale application to a set of 308 small-molecule ligands in complex with
urokinase, PTP-1B, and Chk-1. Briefly, they use a GB implicit solvation model
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during the computer-intensive ensemble-generating MD runs, whereas in
the postproduction process a PB solver that employs a diffuse representation
of the dielectric boundary (instead of the more common discrete transition
between solute and solvent). Statistically significant correlations to experi-
mentally measured potencies were found, leading to correlation coefficients
for the three proteins in the range 0.72-0.83.

Greenidge et al. (2013) have validated an automated implementation of
MM-GBSA using a large and diverse selection of 855 protein-ligand com-
plexes. In particular, calculations were performed using the VSGB 2.0 energy
model, which features an optimized implicit solvent model that includes
physics-based corrections for hydrogen bonding, pi—pi interactions, self-con-
tact interactions and hydrophobic contacts, and parameters were fit to a crys-
tallographic database of 2239 single side chain and 100 11-13 residue loop
predictions (Li et al. 2012). Calculations were performed using the KNIME-
automated workflow. After carefully removing flawed structures, compari-
son of calculated and experimental binding affinities showed a significant
correlation (R*=0.63; Figure 9.3). The study also discussed the impact of
ligand strain and water molecules, revealing that while inclusion of water
molecules deteriorates the predictive quality, inclusion of ligand strain
slightly improves the overall accuracy. In an independent study, the accu-
racy of the VSGB 2.0 energy model in predicting binding free energies was
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FIGURE 9.3

Comparison of computed and experimental binding affinities. (Reprinted with permission
from Greenidge, P. A. et al. 2013. MM/GBSA binding energy prediction on the PDBbind data
set: Successes, failures, and directions for further improvement. . Chem. Inf. Model. 53(1): 201-
209. Copyright 2013, American Chemical Society.)
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also tested for 106 protein-ligand complexes (Mulakala and Viswanadhan
2013). The results indicate that this method may be approaching the accuracy
required for absolute binding free energy determination, although through
linear regression and without any conformational sampling. Furthermore,
given the modest computational cost of these calculations, the MM-GBSA
formalism may be poised toward generating physics-based scoring func-
tions for docking.

Very recently, Greenidge et al. (2014) have shown that MM-GBSA can be
used as an independent scoring function to assess the energetically preferred
pose as generated with multiple scoring functions, and in multiple protein
conformations. The results supported the role of MM-GBSA to distinguish
between true and decoy poses of a ligand in addition to the rescoring of
data sets.

A last example of the progressive large-scale application of MM-PB(GB)
SA methods is the high-throughput virtual screening pipeline for in silico
screening of virtual compound databases using high-performance com-
puting (Zhang et al. 2014). This pipeline involves an automated receptor
preparation scheme with unsupervised binding site identification, includ-
ing receptor/target preparation, ligand preparation, VinaLC docking calcu-
lation, and MM-GBSA rescoring. The results demonstrate that MM-GBSA
rescoring has higher average receiver operating characteristic (ROC)
area under curve (AUC) values and consistently better early recovery of
actives than Vina docking alone, though the enrichment performance is
target-dependent.

9.3 Per-Residue Decomposition of the MM-PB(GB)SA
Free Energy

The decomposition into per-residue and residue-pairwise contributions of
the MM-PB(GB)SA binding free energy allows to unravel the network of
energetic interactions that stabilize ligand—protein binding, thus providing
insight into key features of binding (Gohlke et al. 2003). All the components
of the binding affinity (Equation 9.2) can be decomposed with certain degree
of approximation into per-residue and also residue-pairwise contributions
according to the standard scheme given by Equation 9.10.

n

AGyy = 2 AG' = 2 2 AGY (9.10)
i=1

=1 jzi

where 7 is the total number of residues, AG are the per-residue contributions,
and AG'/ are the residue-pairwise interaction contributions.
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Under this scheme AG,;, can also be partitioned into the receptor and
ligand components by summing the corresponding per-residue contribu-
tions of each fragment (Equation 9.11).

AGhin — AGreceptor + AGligand (911)

It is worth noting that only the electrostatic (AG,,,) and van der Waals
(AG,,;w) terms are strictly residue-pairwise decomposable, so that one-half
of the pairwise interaction energy between two residues i and j is attributed
to both of them. However, the solvation terms are not inherently decompos-
able, since the effective Born radii for GB and dielectric boundaries for PB are
dependent on the surroundings (Miller et al. 2012).

Regarding the GB polar solvation term, AG.)_ ,, @ pairwise descreening
approximation was implemented by Onufriev et al. (Onufriev et al. 2000;
Tsui and Case 2001) based on the improvement of the standard GB model
(Hawkins et al. 1995) as noted in Equation 9.12.

Gil, ZZ —(Em— e j‘ijBk ©.12)

€
lei  kej out

where ¢, and ¢,, are the solute and solvent dielectric constants, ¥ is the
Debye-Hiickel screening parameter to account for salt effects at low salt con-
centrations (Srinivasan et al. 1999).

Since f.; depends on the effective Born radius (Equation 9.8), AG._ p 1
inherently nondecomposable, that is, the polar solvation interaction between
residues i and j is affected by all other atoms in the system. Therefore, the
binding free energies of receptor and ligand (Equation 9.11) become asym-
metric, since the effective Born radius yields different values depending on
the overall structure of either complex or receptor/ligand. A similar reason-
ing can be used in relation to the PB dielectric boundary to reach the conclu-
sion that the PB polar solvation energy is neither inherently decomposable
nor produces symmetric binding free energies. However, the nonpolar solva-
tion term, AG,,_,,, also contains intrinsic difficulties in its geometry decom-
position due to the nonlocal character of the SASA-dependent term used for
its calculation (Gohlke et al. 2003), introducing asymmetry in the binding
free energy between the protein and the ligand.

Regarding the configurational entropy, the decomposition at residue or
residue-pairwise level remains still to be solved, though attempts to decom-
pose the normal modes that contribute to the vibrational entropy into atomic
contributions have been reported (Zoete and Michielin 2007). Generally, the
configurational entropy decomposed at the residue level due to the loss of
torsional freedom can be computed using the computational scheme adopted
by Honig and coworkers (Froloff et al. 1997), which is based on the empirical
scale of Pickett and Stemberg (1993). This procedure separates backbone and
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side-chain components. For the backbone, an entropic penalty of 2 kcal mol™
per residue is considered, whereas a variable value is computed for side-
chain component depending on the solvent-exposed surface area (Doig and
Sternberg 1995).

The MM-PB(GB)SA fragmental decomposition yields a high number of
components that, combined with the systematic application to a set of pro-
tein-ligand complexes either from MD simulations or other sampling meth-
ods, can form voluminous energy matrices. The amount of data generated
for this decomposition is vast and thus impedes univariate exploration.
Alternatively, multivariate data analysis techniques such as partial least
squares (PLS) or principal component analysis (PCA) have found their appli-
cability to the in-depth exploration of the computed energy matrices in order
to find significant residues or residue-pairwise contributions that govern the
binding free energy.

The per-residue decomposition methodology has been widely applied to
the study of protein-ligand binding free energy (Zoete and Michielin 2007;
Berhanu and Masunov 2012; Laurini et al. 2013). However, the residue-pair-
wise decomposition has been less used, though recently several works have
explored its potentiality. For instance, it has been used to elucidate the sig-
nal transmission mechanism in the allosteric regulation of protein kinases
C by determining the differences in the residue-pairwise interaction pro-
files among six protein states of the mentioned protein (Seco et al. 2012).
Furthermore, Pouplana and Campanera (2015) have used it to determine
the relative importance of the hydrophobic fragments of A oligomers in the
oligomerization process of such peptides. As shown in the decompostion
of the intermonomeric van der Waals free energy in Figure 9.4, the hydro-
phobic collapse in the formation of these oligomers is caused by hydro-
phobic interactions between three well-defined hydrophobic fragments:
31-35 (C-terminal hydrophobic region [CTHR]), 17-20 (central hydrophobic
region [CHC]), and 12-14 (N-terminal hydrophobic region [NTHR]), ordered
according to their importance.

9.4 Quantum Mechanics and Implicit Solvation Models

The use of simplified expressions in classical force fields is understand-
able in terms of providing an efficient sampling, as well as in facilitating
the parametrization of the large number of functional groups that can be
incorporated into drug-like molecules. However, these approximations also
limit the accuracy of classical force fields in describing the intermolecular
interactions that mediate the recognition between ligands and proteins.
Thus, besides typical interactions such as salt bridges, standard hydrogen
bonds, and van der Waals forces, a wider number of stabilizing interactions
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(See color insert.) Residue decomposition of the intermonomeric total stability free energy
(kcal mol™) of different oligomers of B-amyloid peptide. (Reproduced from Pouplana, R. and J.
M. Campanera. 2015. Phys. Chem. Chem. Phys. 17(4): 2823-2837. With permission from the PCCP

Owner Societies.)

have been characterized in the last decades, including cation-n or anion-nt
complexes (Frontera et al. 2011), nonstandard hydrogen bonds (Hobza and
Havlas 2000), and halogen bonding (Nguyen et al. 2004; Sarwar et al. 2010).
Quantum mechanical (QM) methods are the most accurate approach
to the calculations of intermolecular interactions, and they form the basis
for the parametrization of force fields. The continued increase in accuracy
achieved by QM methods has also stimulated the implementation and
usage of QM-based techniques for different applications in the study of
ligand—protein complexes. Most of these applications follow the hybrid
QM /MM computational scheme (Warshel 2003; Friesner and Guallar 2005),
where the Hamiltonian of the whole system can be defined as the sum of
three terms (Equation 9.13) corresponding to the QM subsystem (Hqw), the
MM subsystem (Huw), and the coupling between the QM and MM regions

(HQM/MM)'

H-= HQM t ﬁMM t HQM/MM (9.13)
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Although the major goal of QM /MM methods has been the study of reac-
tive processes in condensed media or in enzymes, a wider range of applica-
tions is being explored in drug discovery, including the calculation of the
ligand—protein interaction energy and the analysis of the energy components,
and the rescoring of docking calculations (Hensen et al. 2004; Cho et al. 2005;
Ilingworth et al. 2008; Cho and Rinaldo 2009; Chaskar et al. 2014).

QM-based strategies have also been developed for the prediction of binding
affinities of ligand—protein complexes. To this end, a variety of methodologi-
cal strategies have been adopted, as will be illustrated by the representative
cases presented below (Zhou et al. 2010; Barril and Luque 2012; Ilatovskiy
et al. 2013; Mucs and Bryce 2013).

Balaz and coworkers have proposed a four-step strategy for the study of
ligand-metalloprotein complexes (Khandelwal et al. 2005). The procedure
involves docking of ligands, optimization of the complex, conformational
sampling with constrained metal bonds, and a single point QM/MM cal-
culation for the time-averaged structure. Finally, the QM/MM interaction
energy, MEqy/mw), is combined with a desolvation term in order to deter-
mine the binding free energy (Equation 9.14). After suitable parametrization
against experimental data for a set of 28 hydroxamate inhibitors binding to
zinc-dependent matrix metalloproteinase 9, Equation 9.14 was able to account
for 90% of variance in the inhibition constants.

AGyin = 0A (Equiyvm )+ YA(SASA) K (9.14)

where A(SASA) denotes the change in SAS upon complexation.

In a distinct study, the ability of QM/MM combined with the PBSA model
has been utilized for the calculation of binding affinities for flexible ligands
(Graéter et al. 2005). The method was tested for a set of 47 benzamidine deriv-
atives binding to trypsin. The suitability of the computational strategy for
automated ligand docking and scoring is supported by the accuracy in pre-
dicting the experimental range of binding energies, with a root-mean square
error of 1.2 kcal mol™.

Das et al. (2009) followed a strategy based on the use of protein-polarized
QM charges in GBSA calculations for nine protease inhibitors. In this work,
the general expression of a GBSA model was adopted, but the ligand was
described by assigning either MM charges or the protein-polarized ones as
derived from QM/MM calculations. Moreover, attention was paid to the effect
of including bridging water molecules that mediate hydrogen bonding with
the ligand. The results showed that the binding free energies determined by
using those polarized charges (and specific water molecules) showed higher
correlation with antiviral IC;, data. The importance of including polarization
effects through QM/MM methods, combined with a van der Waals correc-
tion and a term accounting for desolvation, has also been highlighted for
ligands binding to trypsin and cytochrome c peroxidase (Burger et al. 2011).
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An elaborate scheme was reported by Raha and Merz (2004, 2005) with
the aim to perform a large-scale validation of a QM-based scoring function
for predicting the binding affinity of a diverse set of ligands. In this study,
the binding affinity was determined as noted in Equation 9.15, where it is
decomposed into the gas-phase interaction energy (AG;”), and the change
in solvation-free energy (AAG,,,) of the complex (AGL},) relative to protein
(AGL;,) and ligand (AGL)).

AGpin = AGE™ + AAGy, = AGE™ + AGLL, — AGE, — AGL, (9.15)

The gas-phase interaction energy was determined as a sum of electro-
static and nonpolar interaction energies. The former was calculated using
the divide-and-conquer method and the semiempirical AM1 or PM3
Hamiltonians, and the latter with the classical attractive component of the
Lennard—Jones interaction potential. Furthermore, the entropic term was
expressed as the addition of conformational and solvent entropy compo-
nents. The former was estimated by considering a conformational penalty
of 1 kcal mol™ for each rotatable bond of the ligand and in the protein side
chains frozen upon formation of the complex. The solvent entropy term
accounts for the entropy gained by release of water molecules upon binding,
and it was calculated from the buried surface area resulting upon complex-
ation. Finally, the solvation-free energy term was determined using a QM
self-consistent reaction field calculation for the complex, ligand, and protein.
Finally, the weights of the different components were adjusted by fitting to
experimental binding free energies. The method was shown to be effective
as scoring function for predicting ligand poses docked to a protein target
and for discriminating between native and decoy poses.

A related QM-based scheme based on the semiempirical QM PM6-DH?2
method, which includes corrections dispersion energy and hydrogen bonds,
has been proposed for the computation of binding affinities (Fanfrlik et al.
2010; Dobes et al. 2011a). Here, the binding affinity is determined by adding
the PM6-DH2 interaction enthalpy evaluated in a continuum water environ-
ment using the COSMO model. The desolvation of the ligand was further
refined by means of solvation model based on density (SMD) continuum
calculations. Furthermore, the deformation contribution due to changes in
protein and ligand upon binding was also considered. The method was suc-
cessful in ranking 22 ligands binding to HIV-1 protease, and for the binding
of 15 structurally diverse inhibitors to CDK2. Recently, the method has been
extended to treat halogen bonding (Dobes et al. 2011b) as well as to treat non-
covalent binding in protein-ligand complexes (Fanfrlik et al. 2013).

The MM/QM-COSMO strategy has been adopted to evaluate the bind-
ing affinity of phosphopeptide inhibitors of the Lck SH2 domain (Anisimov
and Cavasotto 2011). Starting from MD trajectories of the complex, a QM
postprocessing is made for a selection of representative snapshots, which
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were first refined using the PM3 Hamiltonian and the COSMO continuum
solvent model. The binding free energy was then determined as noted in
Equation 9.16, where the first term in the right-hand side was determined
using Equation 9.17, and the entropic term included changes in translational
and rotational rigid body component and the change in vibrational entropy.

AGpinding = A<H COSMO> — TASRE — TAS™ (9.16)

FJCOSMO = COSMO 4 Gaal (9.17)

where ECOSMO represents the PM3 QM energy (including vacuum and solva-
tion energy components), and the nonpolar contribution (G;p°) is determined
using a linear relationship with the change in SAS.

The binding affinities derived from MM/QM-COSMO calculations were
compared with the results determined using MM-PBSA and MM-GBSA,
as well as the SIE method. The MM/QM-COSMO method showed the best
agreement both for absolute (average unsigned error of 0.7 kcal mol™) and

relative binding free energies.

9.5 Conclusion

Despite substantial progresses made in the last years, predicting the bind-
ing free energy of ligand to their targets still remains a major challenge for
computational chemistry. This conforms to the involvement of different
enthalpic and entropic components, each playing a significant contribution,
and to the important compensation between these thermodynamic quanti-
ties. Furthermore, the need to develop fast, yet accurate estimates of binding
affinities, which may discriminate between strong and weak binders and
between distinct poses of a given compound, is required for large-scale appli-
cation in drug discovery. In this context, the use of implicit solvation meth-
ods represents a fundamental tool in the path toward novel computational
strategies for the high-throughput analysis of ligand-receptor complexes.

In the classical framework, MM-PB(GB)SA methods are a priori well suited
to attain the preceding goal due to the continuous development of more accu-
rate force fields, and specially to the refinement of the crude approximations
inherent in the description of solvent effects through implicit continuum
models. Thus, among the wide range of applications achieved by MM-PB(GB)
SA methods in the study of biomolecular systems, the large-scale application
to virtual screening appears to be especially promising, as these methods
are reaching the predictive accuracy that would be required to discriminate
among large sets of compounds covering a wide range of binding affinities.
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However, the availability of decomposition schemes permits to disclose the
contribution of specific molecular determinants (i.e., chemical groups in the
ligand or residues in the binding pocket) that play a distinctive role in the
binding affinity, thus providing valuable guidelines to assist the structure-
based drug design.

The investigation of compounds with small differences in the binding
affinity seems still out of the realm of MM-PB(GB)SA methods, partly due
to the limitations of the classical force field to account for the interactions
formed between a ligand and its target, taking a proper accounting of elec-
trostatic, induction, charge transfer, and dispersion effects, as well as from
the simplified description of environmental effects. At this point, QM-based
methods used directly for the modeled structures of ligand—protein com-
plexes or in the framework of endpoint sampling techniques represent
a promising alternative as a tool to develop and calibrate novel computa-
tional strategies designed to provide accurate estimates of binding affinities
(Yilmazer and Korth 2013). Furthermore, the development of QM-based strat-
egies can give rise to accurate tools for lead optimization, even though this
option is seriously limited by the huge computational cost of high-level QM
computations. This explains why most of the QM-based strategies devised
for the study of ligand—protein complexes rely on semiempirical methods,
often supplemented by suitable correction terms to assure the description
of certain types of interactions. On the contrary, current efforts for making
quantum chemistry codes more efficient and implementing them in power-
ful computational resources can be relevant to alleviate the computational
requirements of QM-based strategies. Overall, it can be envisaged that
(QM-based approaches will be an increasingly used and valued tool in com-
putational medicinal chemistry and structure-based drug discovery.
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