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Summary 

Lipophilicity is a key physicochemical descriptor used to understand the 

biological profile of (bio)organic compounds, xenobiotics and a broad variety of 

biochemical, pharmacological, and toxicological processes. This property is 

estimated from the partition coefficient between aqueous and nonaqueous 

environments for neutral compounds (PN) and corrected for the pH-dependence 

of ionizable compounds as the distribution coefficient (D). In this context, in this 

doctoral thesis the Miertus–Scrocco–Tomasi continuum solvation model was used 

to check the suitability of some reported and proposed formalisms to estimate the 

distribution coefficient for a set of small acidic and basic compounds. The results 

indicate that in general the simple pH-dependence model of the ionizable 

compound in water suffices to predict the partitioning at or around physiological 

pH. However, at extreme pH values, where ionic species are predominant, more 

elaborate models provide a better prediction of pH-dependent distribution curves 

of log D for both acidic and basic compounds as well as for amino acid analogues. 

New theoretical treatments for the lipophilicity profile of ionizable compounds 

were proposed to account for the electroneutrality in the phases of the n-

octanol/water system.  In this context, was used the theory of ion-transfer across 

the interface between two immiscible electrolyte solutions (ITIES). Experimental 

research is being carried out to see the scope of those formalisms developed in this 

thesis. 

 

Taking advantage of the successful results in small compounds, a lipophilicity 

scale adapted to different pH conditions was built for the 20 natural amino. The 

environment-dependence was introduced from the Dunbrack’s backbone-

dependent conformational library using two weighting schemes for the rotamers: 

solvent-like (SolvL) and protein-like (ProtL) lipophilic schemes. The veracity of our 

scale was corroborated with successful correlations with other consolidated 

experimental scales. Characterization of short disordered peptides (retention times 

in RP-HPLC, log PN and log D7.4 values) was best described using the former 

approach, and biological properties of peptides with available three-dimensional 



 

 

structure (local context-dependent lipophilicity e.g binding free energies) with the 

second one. Our theoretical lipophilicity scale was thus characterized by its 

versatility and adaptability, which confers a unifying character. Future studies 

will address the application of this methodology to the calculation of lipophilic 

parameters for no proteogenic amino acids, other conformations of the actual 

residues (proline cis) and other fragments relevant to proteins. On the other hand, 

the applicability of the present versatile scale is vast and promising, including for 

instance the use as scorings for protein-protein docking protocols, among others. 



 

 

Resumen 

La lipofilicidad es un descriptor fisicoquímico clave utilizado para comprender el 

perfil biológico de los compuestos (bio)orgánicos, xenobióticos y una amplia 

variedad de procesos bioquímicos, farmacológicos y toxicológicos. Esta propiedad se 

estima a partir del coeficiente de reparto entre ambientes acuosos y no acuosos para 

compuestos neutros (PN) y corregido para la dependencia del pH de los compuestos 

ionizables como el coeficiente de distribución (D). En este contexto, en esta tesis 

doctoral se usó el modelo de solvatación continua de Miertus-Scrocco-Tomasi para 

verificar la idoneidad de algunos formalismos reportados y propuestos para estimar 

el coeficiente de distribución para un conjunto de pequeños compuestos ácidos y 

básicos. Los resultados indican que, en general, el modelo simple de dependencia del 

pH del compuesto ionizable en agua es suficiente para predecir la partición en o  

alrededor del pH fisiológico. Sin embargo, a valores extremos de pH, donde 

predominan las especies iónicas, los modelos más elaborados proporcionan una 

mejor predicción de las curvas de distribución dependientes del pH de log D tanto 

para compuestos ácidos como básicos, así como para análogos de aminoácidos. Se 

propusieron nuevos tratamientos teóricos para el perfil de lipofilicidad de 

compuestos ionizables para explicar la electroneutralidad en las fases del sistema n-

octanol/agua. En este contexto, se utilizó la teoría de la transferencia de iones a 

través de la interfase entre dos soluciones de electrólitos inmiscibles (ITIES por sus 

siglas en inglés). Se están llevando a cabo investigaciones experimentales para ver el 

alcance de los formalismos desarrollados en esta tesis. 

Aprovechando los resultados exitosos en pequeños compuestos, se construyó una 

escala de lipofilicidad adaptada a diferentes condiciones de pH para los 20 

aminoácidos naturales. La dependencia del entorno se introdujo a partir de la 

biblioteca conformacional dependiente del “backbone” de Dunbrack utilizando dos 

esquemas de ponderación para los rotámeros: el esquema lipofílico tipo solvente 

(SolvL) y tipo proteíco (ProtL). La veracidad de nuestra escala se corroboró con 

correlaciones exitosas con otras escalas experimentales ya consolidadas. La 

caracterización de péptidos cortos desordenados (valores de tiempos de retención en 



 
 

 

“RP-HPLC”, log PN y log D7.4) fue mejor descrita 

utilizando el primer esquema, y las propiedades biológicas de los péptidos con 

estructura tridimensional disponible (lipofilicidad dependiente del contexto local y 

energías libres de unión) con la segunda. Nuestra escala teórica de lipofilicidad se 

caracterizó por su versatilidad y adaptabilidad, lo que le confiere un carácter 

unificador. Los estudios futuros abordarán la aplicación de esta metodología al 

cálculo de parámetros lipofilicos para aminoácidos no proteogénicos, otras 

conformaciones de los residuos actuales (prolina cis) y otros fragmentos relevantes 

para las proteínas. Por otro lado, la aplicabilidad de la escala versátil actual es amplia 

y prometedora, incluyendo, por ejemplo, el uso como ponderantes para protocolos 

de acoplamiento de proteína- proteína, entre otros. 
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1. INTRODUCTION

The physicochemical characterization of various types of compounds, including 

(bio)organic compounds and xenobiotics, is of utmost significance in environmental, 

biochemical and pharmaceutical research, because it covers diverse areas in drug 

discovery and development, such as absorption, distribution, metabolism, excretion 

and toxicity (ADMET) properties, quantitative structure-activity relationships 

(QSAR), molecular recognition, and guidelines for agrochemicals. For such purpose, 

both experimental and theoretical techniques have been constantly improved in 

recent years to deliver a more detailed description of molecular properties, especially 

those related to lipophilicity.  

Lipophilicity (Lip), expressed as the differential solubility of solutes in aqueous and 

nonaqueous (organic) environments, is regarded as the most important and used 

physical chemistry descriptor to quantify this property. Thus, the n-octanol/water 

system has served as standard method to quantify lipophilicity in both theoretical1–4 

and experimental methods.5–7 

This doctoral thesis tackles the computation of lipophilicity by computing the free 

energy of solvation in both, water and n-octanol using the version of the implicit 

solvation model IEFPCM/MST parametrized in Barcelona. The response in the last 

solvent was further calibrated in this work for nitrogen-containing heterocyclic 

molecules as well as a variety of ionic compounds. Also, the theoretical models of 

lipophilicity were refined and proposing a general formalism where the theory of 

ion-pairing and the Galvani potential in the interphase of the immiscible solvents 

were considered. The performance of the refined lipophilicity models was tested by 

calculations of the distribution coefficient to physiological conditions for a set 35 

ionizable compounds. Further, calculations were extended to several drugs and 

amino acid analogues, which were considered to examine the pH-dependent 

lipophilicity profiles. Finally, taking advantage of the successful results for 

computing the distribution  coefficients  to  physiological  conditions  as  well  as for  
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reproducing lipophilicity profiles in amino acid analogues, a new lipophilicity scale 

was developed for amino acids, which incorporate the effect of the pH but also an 

environment-dependence by using two weighting schemes for the rotamers given in 

the Dunbrack’s backbone-dependent conformational library. From those schemes 

were derived the Solvent-like (SolvL) and the Protein-like (ProtL) lipophilic 

approaches. 

 

This dissertation, therefore, is structured in various chapters. In Chapter 1, the 

history of the emergence of partition schemes as descriptors of lipophilicity as well as 

their state of the art until today are described. Also, the most common theoretical and 

experimental methodologies to calculate/measure the lipophilicity are reviewed. 

Finally, besides the application to small molecules, the impact of lipophilicity in the 

field of amino acid through the so-called “hydrophobicity scales” is discussed. Chapter 

2 points out the main objective as well as the specific aims of this thesis. The results, 

in conjunction with new data derived from ongoing work are described in Chapter 3, 

together with their discussion. The methodology, including the computational and 

experimental techniques employed in this thesis is described in Chapter 4. Finally, 

the main conclusions are given in Chapter 5 together with the future perspectives 

emerging from this doctoral thesis.  
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1.1 Lipophilicity 

1.1.1 History 

The differential solubility of solutes in aqueous and nonaqueous (organic) 

environments, known as lipophilicity, is a fundamental physicochemical property for 

understanding a wide range of biochemical, pharmacological, and toxicological 

processes of bioactive compounds.4,5,7–13 This property has been estimated from the 

partition coefficient (PN; eq 1) between aqueous (w) and nonaqueous environments, 

typically n-octanol (o), for a neutral compound (HX). 

(1)	

The first general description for the partition coefficient was presented in 1872 by 

Berthelot and Jungfleisch14 and further elaborated for neutral species by Nernst in 

1891.15 This descriptor set the basis for the lipoid theory of narcosis, also known as 

Meyer–Overton rule, which stated that not structurally related narcotic compounds 

must be fat-soluble, its action is more pronounced in cells where lipids are vital (i.e. 

nerves), and the relative potency depends on its partition coefficient between water 

and a fatty system.16,17  

PN =
HX⎡
⎣

⎤
⎦o

HX⎡
⎣

⎤
⎦w
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Figure 1. Correlation between the partition coefficients for narcotic compounds 
(trional (1), tetronal (2), butyl chloral hydrate (3), sulfonal (4), bromal hydrate (5), 
triacetin (6), diacetin (7), choral hydrate (8), ethyl urethan (9), monoacetin (10), 
benzamine (11), methyl urethan (12), ethanol (13)) in the olive oil/water system and 
the minimum narcosis concentration in tapoles.18–20 
 

 

Figure 1 shows the original data that Meyer and Baum used to support their theory 

based on the partition coefficient between water and olive oil of thirteen narcotic 

compounds.18–20 This theory showed that earlier hypothesis that related the narcotic 

potency of a compound with the number of ethyl groups and its susceptibility to 

form an active form21, or to its lower solubility in water22 were not correct.  

 
The Meyer–Overton rule also explained the permeability of small molecules through 

membranes using the partition coefficient (eq 2) as long as the mechanism of 

transport was assumed to be simple diffusion.  

 

P
M

=
PN ⋅DM

d
	 (2)	

 
where PM  denotes the permeability coefficient of a solute, PN  and DM , stand for the 

partition and diffusion coefficient, respectively, for a solute, and d is the membrane 

thickness. At present, although violations to this rule have been reported, it 

continues having great acceptance.23 
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1.1.2 Definitions 

In spite of being used in the literature, there is still ambiguity regarding the correct 

use of the terms lipophilicity and hydrophophicity24. According to the International 

Union of Pure and Applied Chemistry (IUPAC), lipophilicity “represents the affinity of 

a molecule or a moiety for a lipophilic environment. It is commonly measured by its 

distribution behaviour in a biphasic system, either liquid-liquid (e.g., partition coefficient in 

1-octanol/water) or solid-liquid (retention on reversed-phase high-performance liquid 

chromatography (RP-HPLC) or thin-layer chromatography (TLC) system)”,25 while 

hydrophobicity “is the association of non-polar groups or molecules in an aqueous 

environment which arises from the tendency of water to exclude non-polar molecule”.26  

In this context, lipophilicity (Lip) is a more complete and general descriptor than 

hydrophobicity (Hpho), which in fact can be viewed as a part of lipophilicity, as noted 

in eq 3, which provides a qualitative expression for lipophilicity.27  

Lip = Hpho + polarity + ionic interactions (3) 

In addition to the above-described definition for lipophilicity, hydrophilicity (Hphi) 

can be defined as “the tendency of a molecule to be solvated by water”.28 From these 

definitions, lipophilicity can be proposed as the balance betwen hydrophobicity and 

hydrophilicity, as schematically shown in Figure 2. Accordingly, the lipophilicity 

represents a balance between the factors that energetically favour affinity by apolar 

environments and those that do not. In other words, lipophilicity refers to the 

hydrophobicity of a molecule minus the penalty due to hydrophilic interactions with 

the polar environment. 
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Figure 2. Lipophilicity (Lip) can be represented by the differential solubility of solutes 
in aqueous (blue) and nonaqueous (organic, yellow) environments. Lipophilic 
compounds (left) present mostly hydrophobic components that favor their 
preference towards oily environments, whilst poorly lipophilic compounds (rigth) 
are more likely to be in water because of the predominance of their hydrophilic 
features. 
 
 
 
Despite the efforts made to clarify definitions as lipophilicity, hydrophobicity and 

hydrophilicity, the relationship between those concepts is still controversial and the 

division between them is definitely not easy to recognize.24 This is illustrated in Table 

1, which shows some definitions for the terms hydrophobicity and hydrophilicity. 

For instance, in surface science the differentiation between hydrophobic and 

hydrophilic surfaces rely on the static water contact angle θ, so that the former term 

is characterized by θ > 90º and the last one by θ < 90º. Note that this separation is just 

given for a change in 2º and so, it is not free of controversy because using this angle 

crossover Teflon surface has been denominated as hydrophilic even when its 

repulsion by water is evident.29 An improved definition using the receding angle (θR) 

was recently given by Law30 (see Table 1). On the other, the distinction between 

hydrophobic and hydrophilic compounds have also been performed using the free 

energy of hydration, considering a threshold value of around -27 mcal/m2  (see Table 

1).31 

 

 

Hydrophobic (Hpho)

Lipophilicity (Lip)

Hydrophilic (Hphi)

Lip = Hpho - Hphi

ººº 
- -- -

o ººº 
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Table 1. Examples of Various Types of Classification for the Terms Hydrophobic and 

Hydrophilic Used in Surface Science and Physical Chemistry Topics. 

 a NA: Not Applicable 

 

From a molecular point of view, the distinction between hydrophobic and 

hydrophilic properties is fundamental to understand a wide range of properties, 

such as the formation of micelles, ligand binding and protein folding.32–35 The 

“hydrophobic effect”, in a thermodynamic perspective, depends on the solute size, the 

crossover length scale being close to 1 nm.36–38 Entropy is considered to dominate the 

hydration of small hydrophobic molecules where water can keep the hydrogen-bond 

network around them. On the other hand, for large hydrophobic solutes there is a 

loss of hydrogen bonds, giving rise to an enthalpy-driven contribution that can 

conduct to aggregation favoured by van der Waals interactions between apolar 

molecules.39 In this process, water-mediated interactions can be either attractive, as it 

has been usually accepted, or repulsive (hydrophobic solutes are driven apart), 

depending on the solute size, being attractive when the buried water-exposed area 

buried is larger than 1 nm2.34  

 

Overall, hydrophilicity, hydrophobicity and lipophilicity are physical chemistry 

descriptors closely related, but the precise understanding at the molecular level is 

still subject to debate. 

  

Field Variable Hydrophilic Hydrophobic Superhydrophobic

Surface 

Science30 

static 

contact angle 

( θ ) 
θ < 90º θ > 90º θ > 150º 

receding angle 

( θR ) 
θR < 90º θR > 90º θR ≥ 145º 

Physical  

Chemistry31  
(mcal/m2 ) 

< -27 > -27 NAa 
'Ghyd
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1.1.3 Applications 

Lipophilicity is a permissive physicochemical concept in the sense that several apolar 

environments can be adopted to quantify this descriptor (e.g. olive oil18–20, fatty 

acids40, alkanes41 and cycloalkanes42, n-octanol43, membrane mimics44–48 among many 

others49). However, since 1964 Hansch et al43 set down the n-octanol/water system as 

a standard method to quantify lipophilicity (log PN) in both theoretical1–4 and 

experimental methods.5–7 The relevance and impact of this work has been clearly 

reflected by Lipinski’s rule of five9 where the partition coefficient was crucial for 

determining the drug-likeness of compounds. Hence, the partition of a compound in 

two immiscible phases has represented an essential property for the prediction of 

ADMET properties.  

PN-based models are not able to explain the partition of ionizable compounds. Figure 

3 depicts the composition of (bio)organic compounds with ionizable groups. For 

individual natural amino acids, 35% of them have an ionizable side chain, but this 

percentage can reach almost 100% if peptides and/or proteins are considered. 

Similarly, most drug-like compounds included in chemical libraries contain ionizable 

groups.46,50 Therefore, distinct neutral and ionized species may exist at a given pH, 

and handling the acid/base properties of compounds has added value in fields like 

drug discovery51 and in agrochemical studies.52 For instance, it is well-known that 

the absorption of bioactive compounds is influenced by the pH changes along the 

human gastrointestinal tract, with a maximal absorption of weak acids in the jejunum 

(pH ≈ 4.5) and weak bases in the ileum (pH ≈ 8.0).53 Similarly, herbicides with a pKa < 

5 are preferred because in this way relatively high concentrations of the herbicide can 

be achieved within the phloem sap.52 
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Figure 3. Overall composition of marketed drugs and amino acid side chains. 
 
 
For an ionizable compound (HX) where both neutral and ionized species may exist at 

a given pH in aqueous solution, the total partitioning of the compound between 

aqueous and organic phases is better described by the distribution coefficient (D), 

which generally considers the equilibrium concentrations of the neutral and ionized 

forms.54 Different formalisms have been proposed to derive the formal description of 

this descriptor, as will be detailed later in this thesis.  

 
Following the considerations outlined above, it is expected that distribution 

coefficient works better as a lipophilic descriptor for ionizable compounds than the 

partition coefficient. In fact, drug-like compounds are characterized more efficiently 

using this descriptor (log D5.5 ≤ 5)11, chemicals with no concern for acute aquatic 

toxicity are classified with higher sensitivity using log D7.4 (≤ 1.7)55 and drug 

distribution among milk fat and skim milk are better predicted employing log D6.8 

than the pH-independent log PN.56–58  

 

The n-octanol/water distribution coefficient (D) is the most widely lipophilic 

descriptor used, as an inheritance given by the partition coefficient (PN), and has a 

major impact in drug discovery. Figure 4 illustrates the classification of drug-like 

compounds according to the log D values59  and their implications in drug 

development to physiological conditions (log D7.4).60 Thus, it is recommended to 

maintain log D values comprised between 0 and 3 in order to keep an acceptable 

AA 
side chains 

Drugs 

Non lo · / · nisable (5%) 

11 
Non•lon· ,sable (6S%) 

Acid (20%) 

Basic (75%) 
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level of in vivo clearance, but also other ADMET properties as solubility, passive 

permeability and low metabolic liabilities are affected by log D51,60, reflecting the 

impact in optimization of ADMET properties.61 

 

	  
Figure 4. Proposed log D ranges as a guide to success in ADMET properties. 59 

 

It is worth noting that both n-octanol/water partition (PN) or distribution coefficients 

(D) are simple surrogates of biological and/or chemical systems. According to 

Ribeiro et al.62, they are rudimentary approaches to lipid vesicle-based methods, 

which are highly recommended as the best models for the study of lipophilicity48,62. 

However, Sugano et al59 advocate that these descriptors can still be considered as the 

“gold standard” for lipophilicity due to the good correlation with oral absorption in 

rats, the fraction of a dose absorbed in humans, and the Caco2 membrane permeation 

for a varied set of up 500 drugs.  

To date, the n-octanol/water system remains alive and this can be seen especially 

reflected in the research of the pharmaceutical industry sheltered in the concept of 

lipophilic efficiency (LipE; eq 4).27,51,61,63–66 

 

	 (4)	
 
where potency can be represented by Kd (dissociation constant), which is usually 

replaced by Ki (inhibitor constant) or IC50 (half-maximal inhibitory concentration) or 

EC50 (half-maximal effective concentration), and Lip stands for lipophilicity, generally 

estimated from calculated or experimental n-octanol/water biphasic framework.64  

 

 

LipE = − log potency( )−Lip

Oxidative Clearance 

Renal Clearance 

Salubility 

Passive Premeability 

-1 o 1 2 3 4 5 
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LipE is a metric that normalizes the potency of a compound by its lipophilicity and 

explicitly considers the balance between these two variables.27,51 It can be read as the 

difference between partition/distribution to a specific target (potency) and 

partition/distribution in a model system (lipophilic measurements).61 It was 

conceived with the aim of contrasting different chemical series and assessing the 

impact in potency of small structural (lipophilic) modifications within series of 

compounds.66 The usage of LipE in drug discovery and development has been 

imperative and recommended at all stages of discovery process. As a practical 

guideline, the best strategy is try to increase or at least maintain potency while 

lipophilicity is reduced.27,67,68  

 

1.1.4 Theoretical Physicochemical Models of Lipophilicity Profile 

	
The transfer free energy of neutral or ionic solutes between water and an organic 

phase ( ), typically n-octanol, can be related to the difference in the solvation 

free energy upon transfer from the gas phase to the two solvents ( and ; 

Scheme 1). Using this approach, it is possible to calculate	the partition coefficient of a 

neutral (PN) or ionic (PI) compound. 

 

Scheme 1. Thermodynamic Cycle Used to Determine the Transfer Free Energy of a 
Neutral (HX) or Ionic (X-) Compound between Two Immiscible Solvents. 
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Since the equilibrium between neutral and charged species is a function of pKa and 

pH in the aqueous phase, different theoretical formalisms have been proposed to 

estimate the distribution coefficient (D) for ionizable compounds. For the sake of 

simplicity,	the focus here will be limited to the distribution coefficient for monobasic 

and monoacid compounds.  

 

In 1940, Jacops69 established the pH-partition theory by noting that the ionization in 

aqueous phase of weak electrolytes affected the cell permeability. This theory states 

that for an ionizable compound only its uncharged form can move through a cell 

membrane by passive diffusion. Hogben and collaborators70,71 supported this theory 

in the 1950s from their studies of stomach and intestinal absorption of acidic and 

basic drugs, which partitioned preferably in conditions of low and high pH, 

respectively. Indeed, this theory illustrates the simplest and most widely used model 

to account for the pH dependence on the partition of ionizable compounds (Scheme 

2).54,71,80–84,72–79   

 
Scheme 2. Mechanism of n-Octanol/Water Partition for an Ionizable Neutral 
Compound (HX). 

 
 
In this model, only the neutral species of an ionizable compound (HX) can partition 

between water and n-octanol, whereas both neutral and ionized species may exist in 

aqueous solution at a given pH. Under these circumstances, the distribution 

coefficient (D) of the compound between aqueous and organic phases depends on 

the pH of the aqueous solution, as noted in eq 5. 

 

	 (5)	
 
where δ = pH − pKa for acids and δ = pKa − pH for bases.  

water

n-octanol

X
Ka

PN

pH

HX

HX

D =
HX⎡
⎣

⎤
⎦o

HX⎡
⎣

⎤
⎦w

+ X−⎡
⎣

⎤
⎦w

	

logD = logPN − log(1+10δ )

0 



                                                                                                                           CHAPTER 1. INTRODUCTION 
 

Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules 

   
37 

Nevertheless, the studies by Auerbach85 and coworkers on the extraction of 

quaternary ammonium salts from aqueous solutions to organic solvents74,86–89 

demonstrated that ions can cross the interphase between water and an immiscible 

organic medium. Levine90 used the same type of compounds to analyse its intestinal 

absorption and, even though it was poor, they could pass through the biological 

membranes. Furthermore, Winne and Högerle91 showed deviations of the pH-

partition theory in intestinal absorption curves of benzoic acid and aminopyrine, 

mainly due to the local pH effects but also to the partition of charged compounds. 

These facts suggest that explaining the partition of ionizable organic species in 

solvent models or the gastrointestinal absorption on the basis of pH-partition theory 

was not cogent.72,92  

In agreement with the experimental evidence of the ion partition (PI), more elaborate 

models have been proposed to refine the distribution model of ionizable compounds. 

The most straightforward correction comes from the assumption that a certain 

amount of the ionic species may also partition between water and n-octanol (Scheme 

3).5,44,99–106,49,53,93–98  

Scheme 3. Mechanism of n-Octanol/Water Partition for Both Neutral (HX) and Ionic 

(X−) Species 

 

For a monoprotic acid (HX) the total partition of the solute can be expressed in terms 

of the partition constant of the neutral compound and of the ionic species (see 

Scheme 1), as noted in eq 6. 

 (6) 
 

water

n-octanol

X
Ka

PN

pH

HX

HX

PI

X

D  
HXª¬ º¼o � X�ª

¬
º
¼o

HXª¬ º¼w � X�ª
¬

º
¼w

 

logD  log P
N
�P

I
�10G� � � log(1�10G )

0 
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This approach challenges both experimental and computational chemistry due to the 

difficult of obtaining reliable values of partition of ionic species, which are usually 

largely hydrophilic. On the one hand, classical experimental methods such as shake-

flask, pH-metric (potentiometric) and HPLC methods cover ranges of log P between -

2, -1 and 0 (log P units), respectively.107,108 In this regard, electrochemistry methods 

(lower log P range around -8)98 are recommended. On the other hand, using 

thermodynamic cycles (see Scheme 1) challenges the suitability of theoretical models 

for estimating the differential solvation of ionic species with chemical accuracy. Thus, 

the solvation free energy of neutral solutes is generally determined from partition 

coefficients between the gas phase and aqueous solutions, and the experimental 

uncertainty increases with the solvation free energy, limiting the applicability of this 

technique to solutes with solvation free energy (in absolute terms) less than -12 

kcal/mol.109 Accordingly, ionic compounds require the use of indirect approaches 

based on the use of suitable thermodynamic cycles.110–114  

In the partitioning schemes presented before, no account is made of the presence of 

the counter ion ( C
I

+ ) for the dissociated organic species (X-). The most accepted 

hypothesis states that the transfer of charged species are accompanied by counter 

ions, reflecting the formation of ion pairs ( X-C
I

+ ). For instance, Colaizzi and Klink115 

concluded that absorption of tetracycline antibiotics in the duodenum of the dog 

(where those compounds are completely ionized) occurred via the formation of a 

charge-neutral ion pair. In this context, Scheme 3 may be modified to include the 

contribution arising from ion pairs (Scheme 4).  
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Scheme 4. Mechanism of n-Octanol/Water Partition for Neutral (HX), Ionic (X-) and 

Ion Pair (X-CI
+ ) Species.	 

Although at low concentration of the compound the ion pair (X-CI
+ ) may dissociate 

at large extent in aqueous solution, the low permittivity of the organic phase may 

favour the formation of the ion pair.116 This makes it necessary to account for the 

partitioning of this species, PIP (eq 7), and for the formation constant of the ion pair 

(eq 8). 

(7)	

K IP =
X−CI

+⎡
⎣

⎤
⎦

[X−][CI
+]

(8)	

According to Inagi et al.,117 the log D of a compound can be written as a function of 

the partition coefficients of the neutral, ionic species, and of the ion pair (eq 9). 

(9)	
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Ka

PN

pH

HX
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+⎡
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⎣

⎤
⎦o
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⎣
⎤
⎦w

logD = log PN + PIP ⋅KIP ⋅[CI
+]( ) ⋅10δ( )− log 1+KIP ⋅[CI

+]( ) ⋅10δ( )
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Using the same mechanism exposed in the Scheme 4, Ingram et al.118 used other 

considerations and proposed a expression to determine the log D as follows: 
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N
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¹

¸
¸
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For practical purposes, however, the application of eq 10 has been largely limited not 

only by the scarce availability of accurate values of the partitioning constants (mainly 

PI and PIP), but also for the association constant of the ion pair (KIP).118 The most 

common approximation to this formalism considers that the partition of the ionic 

compound (PI) is negligible67,95,125,117–124 (see Scheme 4), and thus the distribution 

coefficient can be determined from eq 11. 

 

 (11) 

 

1.1.5 Methods to Determine Lipophilicity 

Conceptually, as detailed in the models shown in the previous section, in order to 

determine the lipophilicity for a given compound, it is necessary to 

measure/compute the partition of the neutral and ionic species of a given compound, 

the pKa and takes into account the background salt used. Experimentally, these 

variables can be extracted from a lipophilic profile curve (apparent partition versus 

pH). There are several experimental approaches that can be classified as direct (shake-

flask and potentiometric) and indirect (RP-HPLC) methods of measuring 

lipophilicity. Those methods have been reviewed and compared meticulously in the 

literature.24,98,108,126 In addition to quantifying lipophilicity, they are the basis for 

development of high quality predictive in silico models67 which are helpful at early 

stages of the drug discovery and development process but also for applications in 

food40,58 and xenobiotic52,55 either in academia, industry and/or government 

regulations.  Some experimental methods will be reviewed in the next sections.  

logD  log P
N
�P

IP
�10G� � � log(1�10G )
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1.1.5.1.3 Indirect: High Performance Liquid Chromatography Methods  
 

High-performance liquid chromatography (HPLC) is a chromatographic method that 

is used to separate and quantify components of a mixture of compounds in analytical 

chemistry and biochemistry. The differential elusion time of each compound directly 

relates to the compound partition between the mobile and the stationary phases. The 

retention factor (k) can be related to the partition coefficient of the compound 

between the mobile and the stationary phase, according to eq 14. 

logk  log P
N

/D� � � log
Vs
Vm

§

©
¨̈

·

¹
¸̧  (14)

 

where (Vs/Vm) represents the ratio of the stationary and mobile phases to obtain the 

absolute value of the chromatographic partition coefficient.  

 

There are two major approaches for investigation of lipophilicity using HPLC: 

isocratic and gradient methods.126 In the first ones, previous estimation of probable 

compound lipophilicity and measurements at different mobile phase concentrations 

are needed.126,128 The gradient method consists in programmed increase during the 

chromatographic process of organic solvent in the aqueous mobile phase. Thus, the 

pool of compounds is eluted of the column (stationary phase) allowing 

measurements in a range of 0 to 5 of logarithm partition coefficients. In most of cases, 

impurities rarely affect results and simultaneous analysis of several substances are 

possible.129 
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1.1.5.2 Theoretical Methods 

 
In addition to experimental methods for quantifying lipophilicity, an extensive 

variety of computational approaches for estimating this descriptor have also been 

developed.1–3,130 These approaches can be classified in substructure and property-

based methods, which encompass a wide variety of formalisms, from atomic (e.g 

ACD/logD131 and ChemAxon/logD132), fragmental and molecular contributions to 

quantum mechanical (QM)-based strategies (e.g IEFPCM/MST133–136 and SMD137 

models), and lately fashionable, machine learning methods. Theoretical methods are 

imperative when is wished to analyze a huge amount of compounds what would be 

experimentally unviable. 

 

1.1.5.2.1 Substructure-Based Methods 
 
Beyond simplicity and low expensiveness, fragment-based methods are able to 

dissect the lipophilicity of a compound, which is a property of the whole molecule, in 

empirical contributions of atoms and/or fragments. Accordingly, it can be utilized to 

gain insight into the molecular determinants that govern the interactions between 

bioactive molecules and receptors. Thus, within the framework of atoms/groups 

based methods for estimation of partition coefficients, fragmental and atom-based 

techniques follow a general additive scheme as show in eq 15. 

 

 (15) 

 

where log PN is the sum of the weighted (ܽ௜) contribution of each atom/fragment ( ௜݂) 

and a correction factor (ܾ௜ܨ௜).  

 

Leo and Hansch5 exposed the first fragmental method, named cLOGP. It allowed to 

extrapolate log PN starting from a list of experimentally fitted fragmental 

contributions to lipophilicity. Then, Ghose2 proposed the ALOGP method using a list 

of 120 atom types for carbon, hydrogen, oxygen, nitrogen, sulfur, and halogens.138–140 

Another version of these methods, the XLOGP141 was based on the summation of 

logP
N
 aii 1

n¦ fi � bij 1
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atomic contributions derived from experimental lipophilicity data of 1831 organic 

molecules, which includes correction factors for some intramolecular interactions. 

 

1.1.5.2.2 QM-based Methods 
 
The paramount importance of lipophilicity in molecular recognition justifies the 

efforts conducted to develop quantum mechanical (QM)-based strategies for the 

calculation of lipophilic descriptors. A straightforward strategy for the computation 

of lipophilicity/hydrophilicity patterns of molecules comes from QM self-consistent 

reaction field (SCRF) models, which rely on the description of the solvent as a 

continuum polarizable medium that reacts against the perturbing field created by the 

charge distribution of the solute.  

	
The Miertus-Scrocco-Tomasi (MST) solvation model has been used to develop 3D 

distribution patterns of lipophilicity using log P as descriptor. The MST model is a 

parametrized version of the polarizable continuum model developed by Tomasi and 

coworkers142,143 at both semiempirical, Hartree-Fock and B3LYP levels.133–136 From the 

solvation free energies in water and n-octanol, one can derive the n-octanol/water 

partition coefficient, which is a property of the whole molecule. Nevertheless, by 

decomposing the solvation free energy into atomic contributions, one can obtain the 

3D profile of lipophilicity from the corresponding atomic contributions to the log P. 

For a molecule (M) containing N atoms, this is achieved by decomposing the log P 

(or the corresponding transfer free energy,	 ΔGtr ,Mw→o ) into electrostatic ( logPele ,i ), 

cavitation ( logPcav ,i ) and van der Waals ( logPvdW ,i ) components, which can be derived 

from the polar (ΔGele ,i
w→o ) and non-polar (ΔGcav ,i

w→o ,ΔG
vdW ,i
w→o ) contributions to the solvation 

free energy (eqs 16 and 17) 

 

	 (16)	
 

	 (17)	

 

ΔG
tr ,M
w→o = ΔG

tr ,i
w→o =

i=1

n

∑ ΔG
ele ,i
w→o +ΔG

cav ,i
w→o +ΔG

vdW ,i
w→o( )i=1

n

∑

logPN,M = log
i=1

n

∑ PN,i = logP
ele ,i + logPcav ,i + logPvdW ,i( )i=1

n

∑



CHAPTER 1. INTRODUCTION	

 Toward Refined Theoretical Models for the Description of Lipophilicity in Biomolecules 

	 	 	
46 

Partitioning of the electrostatic term into atomic contributions can be made resorting 

to a perturbation approximation of the coupling between the solute charge 

distribution and the solvent reaction field144, leading to eq 18. 

 

	 (18)	

 

where  is the solute wave function in the gas phase, and K and L stand for the 

total number of reaction field charges in water ( ) and n-octanol ( ), located at 

positions  and .  

 

The atomic decomposition of the cavitation and van der Waals terms takes 

advantage of the linear dependence with the solvent-exposed surface of the atoms in 

the molecule (eqs 19 and 20). 

logP
cav ,i =

S
i

ST
ΔGP,i

w→o

i=1

N
∑

	
	

(19) 

logP
vdW ,i = S

i
⋅ Δξ

i
w→o

i=1

N
∑ 	 (20)	

 

where ΔGP,i
w→o = ΔGP,i

o −ΔGP,i
w , withΔGP,i  being the cavitation free energy of atom i, 

Δξ
i
w→o = ξ

i
o −ξ

i
w , with ξ

i being the atomic surface tension, and Si denotes the 

contribution of atom i to the total molecular surface (ST ).  

 

Other IEFPCM approach widely used in the literature to compute solvation energies 

and thus, lipophilic descriptors, is the universal solvation model based on solute 

electron density (D) called SMD continuum solvation model. In this model the 

standard-state free energy of solvation (ΔGº
solv ) is computed according to eq 21. 

 

ΔGº
solv

= ΔG
ENP

+G
CDS

+ΔGº
conc 	 (21) 
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where 'GENP  denotes the electronic (E), nuclear (N), and polarization (P) terms of the 

solvation energy; GCDS  stands for the changes associated with the cavitation (C),  

dispersion (D) and local structure (S) of the solvent and 'Gº

conc
 accounts for the 

concentration change between the gas-phase standard state and the liquid-phase 

standard state (this term is 0 for 1 mol/L or well 1.89 kcal/mol for 1 atm).137 This 

model has been recently used to calculate the lipophilicity of cytisine104 (nicotinic 

receptor partial agonist) and thiosemicarbazide derivatives145 (drug candidates). 

1.1.6 Lipophilicity in Amino Acids, Peptides and Proteins 

Proteins and their constituents, amino acids residues, perform their task in diverse 

environments, from water-like to less polar environments. Solvation free energy, as a 

measure of the energy cost to transfer a molecule from vacuum to solvent, has been 

extremely useful to unravel the mechanism of protein folding to native structure, 

protein function and molecular recognition.146 Derived magnitudes such as transfer 

free energies and thereby lipophilicity has also been used to describe the balance of a 

molecule to interact with different solvation environment. So, lipophilicity plays a 

crucial role in many chemical and biochemical events such as transport and 

distribution of biological molecules, solubility, molecular recognition, aggregation 

and protein folding among many other implications.147 Recently, more than 7000 

peptides are known and approximately 140 peptide drugs are currently being 

considered in clinical trials. In that sense, the rapid and accurate determination of 

their physicochemical properties is of vital importance in peptide drug discovery.148 

However, the quantification of peptide and protein lipophilicity presents a 

significant challenge since has a multidimensional nature that depend on the 

environment conditions like thermodynamic variables (temperature, concentration, 

pH, pressure), additives (salts, osmolytes) and even on residue sequence (primary 

structure), surface topography (secondary and tertiary structures) and size. 149,150 

As a consequence of the aforementioned, a manifold of lipophilicity scales have been 

developed, giving insight into the biological world using this descriptor. 
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1.1.6.1 Lipophilicity Scales of Amino Acids 

 

Since the quantitative description of solvent accessible surface area (SASA) by Lee 

and Richards151 to account for the interaction among proteins and solvent, and the 

solubility of amino acids in ethanol and dioxane by Nazaki and Tanford152, several 

efforts have been made in order to quantify the stability to remove nonpolar amino 

acids from water to nonpolar environment. This phenomenon is called “the 

hydrophobic effect” and it is well known that this repulsive free energy between water 

and the nonpolar side chain of amino acids depends on the SASA of the latter. Table 

2 reports a set of values for the free energy of transfer of nonpolar medium to water 

for different models, employing nonpolar side chain of amino acid analogues, amino 

acid or peptides models.153–159 

 

Table 2. Values for the Free Energy of Transfer of Nonpolar Medium to Water for 

Nonpolar Side Chain of Amino Acid Analogues, Amino Acids or Peptides Models.  

Reference 

''G transfer from nonpolar medium to 

water per nonpolar accessible surface 

(cal/molÅ2) 

Chothia et al. (1974) a 22 

Reynolds et al. (1974) b  23 r 2 

Fauchère-Pliska (1983) c 20.9 r 2.5 

Rose et al. (1985) a 18.9 r 0.7 

Einserberg-McLachlan (1986) c 16 r 2 

Wimley et al. (1996) c 22.8 r 0.8 

Moon-Fleming (2011) d 23 
a By means of amino acid solubility in ethanol and dioxane, b hydrocarbons solubility in water,                      

c partition between water and n-octanol of amino acid and/or peptide systems and d partition in a 

biological system. 

 

 

Nevertheless, amino acid contains also ionizable side chains and thus not just 

hydrophobic interactions should be taking into account but also polar and ionic 

interactions. Again, the lipophilicity reappears as the appropriate descriptor to 

understand the preferences for certain environments (bulk solvent or buried in a 

protein) of these biomolecular building blocks.   
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Several methods have been proposed for the fast and reliable quantification of 

lipophilicity of peptides, but the so-called “hydrophobic scales” based on amino acid 

contributions has found specially acceptance. The hydrophobic scales present a 

relative ranking of hydrophobicity for each of the 20 natural amino acids using 

various experimental, statistical and theoretical measurements. Consequently, scales 

are usually classified as biological-based, knowledge-based or bulk-solvent-based 

(Table 3). As expected, those scales have been subjected to many reviews, as 

illustrated by Simm et al.160, Peters et al.161 and MacCallum et al.162  

 

Table 3. Lipophilicity Contribution of 20 Coded Amino Acids (Including Two 

Tautomers for His) Expressed as log P/D Coefficients. 

Residue 

Scales 

Bulk-Solvent 
Adapted Scales 

Biological-Based 
Scales 

Knowledge-Based 
Scale 

Consensus  
Scale 

Fauchère-

Pliska 

Eisenberg-

McLachlan 
Hopp-

Woods

Wimley

et al. 
Moon-

Fleming

Hessa 

et al. 
Janin 

et al. 
Koehler 

et al. 
Kyte- 

Doolittle 
Ala  0.31  0.49  0.36  0.00 0.00 -0.08  0.30  0.12  1.31 

Arg -1.01 -1.53 -2.19 1.55 -2.71 -1.88 -1.40 -0.40 -3.28 

Asn -0.60 -0.44 -0.15 -0.42 -2.53 -1.50 -0.50 -0.36 -2.55 

Asp -0.77 -0.88 -2.19 -2.43 -2.15 -2.55 -0.60 -0.53 -2.55 

Cys  1.54  0.28  0.73  0.26 -0.36  0.09  0.90 -0.01  1.82 

Gln -0.22 -0.16 -0.15 -0.42 -2.20 -1.72 -0.70 -0.34 -2.55 

Gln -0.64 -0.55 -2.19 -2.48 -1.20 -1.96 -0.70 -0.51 -2.55 

Gly  0.00  0.00  0.00  0.10 -1.26 -0.54  0.30  0.15 -0.29 

His(δ)  0.13  0.47  0.36  0.04 -3.47 -1.50 -0.10 -0.28 -2.34 

His(ε)  0.13  0.47  0.36  0.04 -3.47 -1.50 -0.10 -0.28 -2.34 

Ile  1.80  1.39  1.31  0.94 1.14  0.44  0.70  0.28  3.28 

Leu  1.70  1.39  1.31  1.04 1.32  0.40  0.50  0.22  2.77 

Lys -0.99 -0.42 -2.19  1.18 -3.93 -1.98 -1.80 -0.66 -2.85 

Met  1.23  1.75  0.95  0.61 0.55  0.07  0.40  0.15  1.39 

Phe  1.79  1.68  1.82  1.32 1.61  0.23  0.50  0.34  2.04 

Pro  0.72  0.88  0.00  0.02 1.11 -1.63 -0.30 -0.36 -1.17 

Ser -0.04  0.01 -0.22 -0.01 -1.34 -0.61 -0.10 -0.04 -0.58 

Thr  0.26  0.38  0.29  0.06 -1.30 -0.38 -0.20  0.01 -0.51 

Trp  2.25  1.90  2.48  1.53 0.28 -0.22  0.30  0.02 -0.66 

Tyr  0.96  1.17  1.68  0.58 0.80 -0.50 -0.40  0.09 -0.95 

Val  1.22   1.09  1.09  0.54 0.57  0.23  0.60  0.18  3.07 
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It is important to note that apart from the theoretical or experimental source of data, 

each scale gives a slightly distinct model of lipophilicity. For instance, in the bulk-

solvent adapted scales Fauchère-Pliska155 used partitioning of N-acetyl-L-amino-acid 

amides between n-octanol and water in a neutral pH. Similarly, Eisenberg-

McLachlan and coworkers163 build their scale using the summation of the atomic 

solvation parameter multiplied by the atomic solvent accessible surface area (SASA, 

for the amino acid X in Gly-X-Gly sequence in a extended conformation) for each 

atom in an amino acid. The atomic solvation parameter was taken, in fact, from the 

Fauchère-Pliska scale. Hopp-Woods scale164 put special attention to charged amino 

acids by virtue of their role in antigenic determinants, since they are very common in 

these regions. Wimley et al. scale165 also used the n-octanol/water transfer energy for 

a pentapeptide model (AcWL-X-LL) but employed a pH = 9. 

  

On the other hand, biological scales are exemplified the studies of Kyte-Doolittle166, 

Moon-Fleming167 and Hessa et al.168. In the Kyte-Dolittles scale water-vapour transfer 

free energies in conjunction with the interior-exterior distribution of amino acid side-

chains were considered to build the hydrophaty scale (consensus scale). Moon-

Flemings scale was developed using a β-barrel system inside a membrane where the 

transfer free energy for a given was measured at pH 3.8. Hessa et al. scale is based on 

the recognition of artificial helices by the Sec61 translocon, thus it gives an estimate 

of the relative stability of a residue to be inserted into a cell membrane at 

physiological conditions.  

 

Finally, knowledge-based scales are developed from statistical methods taken 

information from an average hydrophobicity values of amino acids in folded 

proteins (Koehler et al. scale169) or well from transfer energy from molar fraction of 

buried and accessible amino acids in proteins (Janin scale170).  

 

To sum up, lipophilicity scales have been built for specific purposes. Though there is 

a significant degree of correlation between the most cited ones, there are conceptual 

differences,   which   give   rise   to   discrepancies   in   the   predicted  lipophilicities, 

particularly at non-physiological pH values.
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2. AIM 

The main objective is to refine the theoretical models of lipophilicity estimated as the 

n-octanol/water distribution coefficient in (bio)organic compounds and 

biomolecules. To this end, a general formalism where the theory of ion-pairing and 

the Galvani potential at the interphase of the immiscible solvents has been proposed.  

The models have been applied to a variety of small molecules, including ionizable 

monoacid and monobasic substances. For the specific case of amino acid analogues, a 

lipophilicity scale has been developed, which opens the way to explore the 

recognition and binding in peptides and proteins. 

 

With this general aim, the specific objectives that encompass the research developed 

in this work are indicated as follows. 

 

2.1 Testing Models for Lipophilic Profiles of (Bio)Organic Compounds.  

The first aim is the refinement of the Miertus-Scrocco-Tomasi (MST) continuum 

solvation model, which relies on the integral equation formalism of the polarizable 

continuum model (IEFPCM), to account for the solvation free energy of nitrogen-

containing heterocyclic molecules, as well as ionic compounds, in n-octanol. 

 

Second, it also aims to develop a formalism for predicting the pH-dependent 

lipophilicity profile, taking into account the effect of counter ion accompanying the 

ionizable (bio)organic compound. In this context, the aim is to use the theory of ion-

transfer across the interface between two immiscible electrolyte solutions (ITIES).  

 

Finally, the refined MST model will be used to determine the lipophilicity profile in 

conjunction with different physicochemical models for the partition of ionizable 

compounds.  
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2.2 Exploring the Effect of Galvani Potential on the Lipophilicity Profile. 

Our aim here is to revise the suitability of a general formalism, which includes the 

effect of both the Galvani potential and ion-pairing, for determining lipophilicity 

profiles of monoacid and monobasic compounds at different ionic strength 

conditions, and validated against experimental data. 

 

2.3 Development of a Lipophilicity Scale for Amino Acid Residues.  

The final aim is to develop a lipophilicity scale for the natural amino acids using 

implicit solvation calculations in n-octanol and water, which account for the 

structural (conformational) dependence of residues and adapted to pH conditions. 

As a potential application, attention will be placed to the analysis of peptides 

involved in Alzheimer`s disease for a better understanding of the relationship 

between lipophilicity and toxicity. 
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3. RESULTS AND DISCUSSION

In this dissertation, we have first refined the parametrization of the MST model for 

neutral nitrogen-containing aromatic compounds but also for ionic compounds in n-

octanol. Together with the free energy of solvation in water, these improvemenst 

have been exploited for the computation of partition coefficients of neutral and ionic 

compounds. Furthermore, we have studied different theoretical models of pH-

dependent lipophilicity profiles based on the n-octanol/water distribution coefficient 

in (bio)organic compounds and biomolecules. In order to refine the formalisms 

reported in the literature, we have taken into account the effect of counter ion 

accompanying the ionizable (bio)organic compound using the theory of ion-transfer 

across the interface between two immiscible electrolyte solutions (ITIES).  Thus, we 

have revisited a new formalism for predicting the pH-dependent lipophilicity profile. 

The suitability of different formalisms to estimate the distribution coefficient for a 

wide range of pH values has been examined for a set of small acidic and basic 

compounds. 

For the sake of completeness, a general formalism, which combines the acid 

dissociation constant in water, pH, background salt and partition of neutral, ionic, 

and ion-pair species, is proposed and its validity is being tested experimentally.  

From these initial studies, an extension of the research line has allowed us to obtain 

successful results for computing the distribution coefficients to physiological 

conditions as well as for reproducing pH-adapted lipophilicity profiles in amino acid 

analogues. Thus, we have elaborated a lipophilicity scale for the 20 natural amino 

acids from theoretical computations that take into account the structural dependence 

of the conformational preferences of amino acids as well as the influence of pH in 

order to provide a consistent description of pH-adapted lipophilicity profiles in 

peptides and proteins.  
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Two weighting schemes have been considered to derive Solvent-like and Protein-like 

lipophilicity scales, which have been calibrated by comparison with other 

experimental scales reported in the literature, as well as by examining properties 

such as the retention time of small peptides, and the recognition of antigenic 

peptides. Finally, the lipophilicity scale have been applied to the study of the 

differentiated toxicity of 11 Aβ42 peptides involved in Alzheimer`s disease. 

 

 

3.1 The Miertus−Scrocco−Tomasi Model: Framework for Continuum Solvation 
Calculations. 

In this thesis, the theoretical computation of solvation free energy in n-octanol and 

water was needed to achieve the objectives of the thesis. This is a considerable 

challenge since the model has to be capable of describing the specific interactions of 

the solute in the two solvents, as a preliminary requirement to the computation of the 

free energy of transfer (Scheme 1).  

 

QM-SCRF continuum models have been one of the most powerful approaches that 

have succeeded in this context. Among these methods, the MST model has proven to 

be a robust approach due to the rigorous formalism utilized for describing 

electrostatic and non-electrostatic interactions, and to the precise parametrization 

against experimental data, including properties such as solvation free energies, 

partition coefficients, tautomerism equilibria, ionization, and solvent-induced 

spectral shifts (Scheme 5). 

 

Within this strategy, the solvation free energy accounts for the reversible work 

necessary to transfer a molecule from gas phase to a specific solvent at constant 

temperature, pressure and concentration. This thermodynamic process can be 

divided into three contributions 

 (22) 
 

ΔG
solv

= ΔG
ele

+ΔG
cav

+ΔG
vdW
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where denotes the cavitation free energy,  is the van der Waals term 

(considering dispersion and repulsion interactions), and  is the electrostatic free 

energy component. 

 

Scheme 5. Miertus-Scrocco-Tomasi (MST) Model: Framework for Continuum 

Solvation Calculations ( ). 

 
 
 

 
The cavitation free energy ( ) is computed following Pierotti’s scaled particle 

theory171 adapted to molecular-shaped cavities according to the procedure proposed 

by Claverie172. In this model, the atomic cavitation free energy is computed according 

to: 

 

 (23) 

 

where  stands for the cavitation free energy of the isolated atom i in Pierotti’s 

formalism, Si is the solvent-exposed surface of such an atom, and ST denotes the total 

surface of the atom. 
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The term  is determined as the sum of the solvent-exposed surface of each 

atom weighted by a scalar factor determined by parametrization according to the 

following expression:  

 (24) 

 

where ξ is the atomic surface tension determined by fitting experimental values.  

 

The electrostatic term () measures the work needed to build up the solute charge 

distribution in the solvent. Here, the integral equation formalism (IEF) was 

employed. Under this formalism, can be decomposed into atomic contributions 

by using the surface-based partitioning method173 (eq 25), where the fractional 

electrostatic contribution of a given atom i is determined from the interaction energy 

between the whole charge distribution of the molecule with the apparent charges 

located at the surface elements pertaining to the portion of the cavity generated from 

that atom.  

 

 (25) 

 

where M is the total number of surface elements j, Ψº denotes the wave function of 

the solute in the gas phase, and qj
sol

 stands for the apparent charge created on the j 

surface element j (located at rj) in response to the fully polarized solute in solution.  

 

A solvent-excluded surface is obtained by scaling the atomic radii by a factor (λ; 

Scheme 5) of 1.25 for solvation in water, and 1.50 for solvation in n-octanol.135,136 

These values were derived from a systematic analysis that included the comparison 

between the electrostatic component obtained from MST calculations and the work 

required to annihilate the solute charge in solution as determined from classical free-

energy calculations. However, while this strategy is valuable for describing the 

solvation of neutral solutes, accounting for the strong electrostatic response of the 
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solvent induced by ionic species, and the structural perturbation of the solvent 

molecules in the first hydration shell relative to the bulk solvent, was treated by 

reducing the solvent-excluded surface in the IEFPCM/MST model. Thus, the 

optimum cavity for the hydration of charged compounds was defined by scaling the 

atomic radii of the groups bearing the formal charge by a factor of �1.13, which 

implies a reduction of ca. 10% relative to neutral solutes. 

 

3.2 Refinement of the MST Model for Solvation of Neutral Nitrogen-Containing 

Aromatic Compounds in n-Octanol. 

One of the initial aims of this study was to refine the parametrization of the MST 

model for neutral nitrogen-containing aromatic compounds (see Figure 7), as they 

are key structural elements in many biologically relevant molecules and drugs, but 

were poorly represented in the data set of compounds considered in the original 

B3LYP/6-31G(d) parametrization of the IEFPCM/MST model.  

 

First, preliminary calculations performed for a subset of 12 heterocyclic organic 

compounds (2−7, 9, 11−13, 15, and 16; see Figure 7) revealed the need to adjust the 

surface tension of the pyridine-like nitrogen atom for solvation in n-octanol. Thus, 

the original atomic surface tension assigned to the N-type atom                  

(ξN = -0.115 kcal mol-1 Å-2) was found to underestimate the solvation free energy in   

n-octanol, and a better agreement with experimental data was achieved upon 

adjustment to a surface tension of -0.161 kcal mol-1 Å-2, which was therefore adopted 

in the refined version (see Figure 8). Additional studies were performed to check the 

surface tension for the pyrrole-like nitrogen atom (NH-type), even though in this 

case the adjustment of the original surface tension (ξNH = -0.234 kcal mol-1 Å-2) to        

-0.295 kcal mol-1Å-2 was found to have a lower effect on the solvation free energy in 

n-octanol (see Figure 8). 
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Figure 7. Pyridine and pyrrole-like nitrogen atom type which the atomic surface 

tension ([) in the van der Waals component of the free energy of solvation in n-

octanol was adjusted for the data set of 19 neutral nitrogen-containing aromatic 

compounds. Nitrogen atoms subjected to reparametrization are shown in blue. 
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Table 4. Calculated and Experimental n-Octanol/Water Partition Coefficient (log PN) 

for the Series of Neutral Nitrogen-Containing Aromatic Compounds Used in the 

Refinement of ξN and ξNH Atomic Surface Tensions for n-Octanol.

Compounda 
Computed log PN 

(original) 

Computed log PN 

(refined) 
Exptl.b 

6-methyluracil (1) -1.7 -0.5 -1.2

9-methyladenine (2) -2.9 -0.3  0.0

adenine (3) -4.1 -1.1 -0.1

albendazole (4)  2.0  3.7  2.7 

caffeine (5) -0.2 0.9 -0.1

clonidine (6)  1.1  2.8  1.6 

cytosine (7) -4.3 -2.2 -1.7

diphenylamine (8)  3.1  3.7  3.5 

fluconazole (9) -1.2  1.1  0.4 

fluorouracil (10) -2.2 -0.9 -0.9

guanine (11) -5.9 -2.7 -0.9

imidazole (12) -2.2 -1.1 -0.1

metronidazole (13) -0.9  0.0  0.0 

phenytoin (14)  2.0  3.2  2.5 

pyridine (15)  0.4  0.9  0.7 

pyrimidine (16) -0.8 0.1 -0.4

pyrrole (17) -0.2  0.5  0.8 

thymine (18) -1.8 -0.5 -0.6

uracil (19)  -2.3 -1.1 -1.1 

mse c  1.4 -0.1 

mue c  1.4  0.6 

rmsd c  1.9  0.8 
a See Figure 7 b Ref 174. c Mean signed error (mse), mean unsigned error (mue), and root-mean square 

deviation (rmsd) calculated relative to the experimental values are given in log P units. 
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Figure 9. Comparison between experimental and calculated n-octanol/water log PN 

for the series of neutral nitrogen-containing aromatic compounds. Calculated values 

determined from IEFPCM/MST calculations using the original parametrization of 

the IEF-MST method (green) and the refined atomic surface tension for N- and NH-

atom types (blue). 

 

 

3.3 Calibration of the MST Model for Ionic Compounds in n-Octanol. 

In the MST model the electrostatic contribution to the hydration free energy of 

charged species is determined by reducing the solvent-exposed cavity of the charged 

atoms by a factor close to 10%.175 While this strategy proved to be valuable for 

calculating the solvation of univalent ionic species in water, its suitability in other 

solvents has never been checked. Therefore, for our purposes here, it is necessary to 

calibrate the reliability of this strategy for the solvation of ionic compounds in n-

octanol. To this end, calculations were performed for a set of 27 compounds, 

including 9 anions (22, 29-31, 36, 37, 39 and 41; see Figure 10) and 18 cations (20, 21, 

23-28, 32-35, 38, 40, 43-46; see Figure 10), taking advantage of the availability of 

partition coefficients for these charged species.80,95,104,119,123,155,165,176      
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Figure 10. Data set of 27 ionizable compounds used to refine the MST solvation 

model for solvation in n-octanol. Atoms subjected to reparametrization are shown in 

blue and red for cations and anions, respectively. 
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Comparison of the calculated and experimental log PI values determined for these 

compounds suggested that the optimal scaling factor, λ, for solvation in n-octanol 

must be reduced by around 19%, which implies that the scaling factor used for 

neutral compounds (λ = 1.50) must be close to 1.20 for charged chemical groups. This 

adjustment enhances the contribution of the electrostatic component to the solvation 

free energy for charged compouds, following the trends reported for the hydration of 

monovalent ions,175 an effect interpreted from the balance between the gain in 

solvent-solute stabilization energy triggered by the solute's electron density 

redistribution upon solvation and the energy cost associated to distortion of the 

electron density by the solvent reaction field.177–179 

 

Due to the formal simplicity of this correction, the suitability of the atomic surface 

tension was further checked. In the case of cations with a localized charge on the sp3 

nitrogen atom, it was necessary to enlarge the surface tension of the nitrogen atom 

(NH atom type) by a factor of 17% (ξNH = -0.274 kcal mol-1 Å-2; see Figure 11). This 

enlargement was also extended to the methylene/methyl groups bound to the 

protonated nitrogen atom (ξCHx = -0.227 kcal mol-1 Å-2; see Figure 11), which may be 

related to the inductive effect noted in the increased chemical shift observed in 1H-

NMR studies (see Table 5).180 This effect is known to be less important for the carbon 

atoms bound chemical groups with delocalized charges (i.e., carboxylate anions; see 

Table 5), where no further adjustment was needed. 
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The log PI values calculated for the whole set of ionic organic compounds using the 

new parameters are presented in Table 6, which also collects the experimental data. 

The mean signed error was reduced from 4.1 to -0.2 (log PI units), and the rmsd was 

decreased from 4.7 to 1.1 (log PI units) after implementation of the preceding 

adjustments in the MST model. Furthermore, Figure 12 shows the improved 

correlation between the refined log PI values and the experimental ones, which 

corrected the systematic tendency to overestimate the hydrophilicity of the charged 

compounds in the original parametrization of the IEFPCM/MST method. For the 

sake of comparison, it is worth noting that the refined log PI values are in agreement 

with the behavior observed for the values estimated by using empirical methods, 

such as ACD/I-Lab131 and ChemAxon132 methods (see Figure 12) 
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Table 6. Experimental and Computed log PI Values for the Set of 27 Ionic 

Compounds Used in the Refinement of the MST Method.  

Compound a 
Computed   

log PI 

(original) 

Computed    

log PI 

(refined) 

Exptl.

2-2-pyridyl-ethylammonium (20) -1.7 -0.4 -2.3 b 

2-phenethylammonium (21) -7.1  0.4 -1.6 b 

2-4-dichlorophenoxyacetate (22) -5.5 -0.7 -0.9 c 

3-carboxyanilinium (23) -9.2 -1.6 -0.9 c 

4-carboxyanilinium (24) -9.4 -1.6 -0.4 c 

4-methyl-N-ethylbenzylammonium (25) -6.4 -1.9 -0.8 d 

4-methyl-N-heptylbenzylammonium (26) -3.6  0.1    2.1 d 

4-methyl-N-pentylbenzylammonium (27) -4.7 -0.9  0.8 d 

4-phenylbutylamine (28) -6.1 1.5 0.7 e 

5-phenylvalerate (29) -6.1 -0.4 -1.0 c 

N-acetyl-L-aspartic amide (30)f -6.8 -2.8 -2.6 g 

N-acetyl-L-glutamic amide (31)f -6.2 -3.4 -2.5 g 

N-acetyl-L-histidine amide (32)h -7.9 -1.7 -3.4 g 

N-acetyl-L-lysine amide (33)f -7.7 -1.8 -2.8 g 

amitriptyline (34) -1.1 1.3 0.2 c 

desipramine (35) -2.7 0.0 0.3 c 

diclofenac (36) -4.3 0.7 0.7 c 

ibuprofen (37) -5.9 -0.7 -0.2 c 

imipramine (38) -0.6 1.8 0.5 c 

indomethacin (39) -2.7 2.1 0.6 c 

lidocaine (40) -2.6 -0.7 -0.5 c 

naproxen (41) -5.5 -0.6 -0.2 c 

pentachlorophenol (42) -1.9 1.8 1.3 i 

tetrabutylammonium (43)  1.2 3.3  2.3 j 

tetraethylammonium (44) -2.8 -0.8 -0.9 j 

tetramethylammonium (45) -5.6 -2.7 -2.0 j 

tetrapentylammonium (46)  3.0  5.1  3.8 j 

mse k  4.1 -0.2 

mue k  4.1  0.9 

rmsd k  4.7  1.1 
a See Figure 10. b Ref. 123. c Ref. 99. d Ref. 238. e Ref. 95. f  Values derived from log D7.4  data reported in 

ref. 66, assuming full ionization of the compounds at physiological pH. g Refs. 165 and 155. h Estimated 

from additive scheme (see Methods).  i Ref. 119. j Ref. 176. kMean signed error (mse), mean unsigned 

error (mue), and root-mean square deviation (rmsd) calculated relative to the experimental values are 

given in log P units. 
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Figure 12. Comparison between experimental and calculated log PI values for the 

series of 27 ionic compounds (acidic and basic compounds are shown in blue and 

green, respectively). Calculated values were determined from IEFPCM/MST 

computations using the original (top left) and refined (top, right) parameters, as well 

as ACD/I-Lab (bottom left) and ChemAxon (bottom right). 
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3.4 Refinement of Lipophilic Profiles of (Bio)Organic Compounds. 

In the simulation of pH-dependent lipophilicity profiles based on the n-

octanol/water for (bio)organic compounds, as presented in the introduction of this 

thesis, the log PN and pKa values are the minimal data for a theoretical model (eq 5). 

The degree of refinement of these models explicitly brings about a greater complexity 

and imposes the need for using more variables (i.e log PI, and/or log PIP), which 

should a priori be rewarded by greater accuracy. As mentioned before, the refined 

MST model enables the calculation of reliable values of log PN and log PI, opening 

the door to the study of the computation of distribution coefficients (D) employing 

different formalism.  

In this work, an alternative theoretical formalism for the lipophilicity profile of 

ionizable compounds was proposed to account for the electroneutrality in the phases 

of the n-octanol/water system (Scheme 6).  

 

Scheme 6. Mechanism of n-Octanol/Water Partition for Neutral (HX) and Ionic 

Species ( and ) Influenced by the Electric Potential at the Interphase ( ) 
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This development was aimed to look upon the effect of the counter ion ( ) 

accompanying the ionizable (bio)organic compound ( ). In this context, the most 

accepted hypothesis reported in the literature relies on the formation of ion pairs (

).67,95,125,117–124 However, electrochemistry offers another perspective based on 

powerful methods for studying and predicting the behaviour of ionic species of an 

ionizable compound in the interface between two immiscible electrolyte solutions 

(ITIES).  

The formalism presented here uses the pioneering theories of Hung181 and 

Kakiuchi182, whose foundation assumes the electroneutrality of each phase and 

allows to derive expressions for the partition for an ionic compound from the initial 

concentrations of the ions in the solution, its standard Gibbs free energy of transfer, 

and the volume ratio of the two phases.  

On the basis of the ITIES theory, the standard partition coefficient of a given ionic 

species i is given by183 

 (26) 

 

where R is the gas constant, T the absolute temperature, F is the Faraday constant,  zi 

stands for the net charge of i and is the standard transfer potential of the ionic 

specie i, which only depends on the chemical structure. 

As expected, there are other ions in the solution and the Galvani potential difference 

in the interphase ( ) is a function of their type and concentration. Thus, for the 

ionic organic species ( ) the apparent partition is given by eq  27.184 

 (27) 
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It can be demonstrated that if the two immiscible electrolyte solutions are dilute, and 

that all ionic species are fully dissociated in both phases (i.e., no ion pair formation), 

for a generic electrolyte the Galvani potential difference can be rewritten as182 

 (28) 

Employing eq 26 in eq 28, it can be deduced that the apparent partition can be 

expressed as  

 (29) 

Using this approach, the distribution coefficient is given by  

 (30) 

which explains in an alternative way to the ion pair theory why the distribution 

coefficient increases in the presence  of a more hydrophobic counter ion. 

In addition, if one assumes that the partitioning of the main ionic species 

corresponds to the generic electrolyte ( ; Scheme 7), as in cases of high ionic 

strength, the Galvani potential difference in the interphase ( ) depends entirely 

on those species and permits to rewrite eq 29 as noted in eq 31. 

 (31) 

In this way, the distribution coefficient can be expressed as  

 (32) 
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Scheme 7. Mechanism of n-Octanol/Water Partition for Neutral (HX) and Ionic 

Species ( , and ) Influenced by the Electric Potential at the Interphase ( ) 

Formed by the Salt Background ( ).  

 

 

Eq 32 indicates that for an acidic compound (HX), there will be an increase in the 

lipophilicity when a salt ( ) is added whenever the partition of the cation ( ) 

increases and decreases to the anion ( ) independently of the standard partition of 

its ionic form (X-) 

As a final remark, it must be noted that partitioning of a cationic species, X+, would 

give rise to distribution coefficients formally analogous to eqs 30 and 32, which are 

omitted here for the sake of brevity. It is also worth noting that the preceding 

formalisms limit the distribution coefficient to the partition of both neutral and ionic 

species of an ionizable compound. 

With the aim to look for a unified model that includes both the effect of the Galvani 

potential and ion-pairing for determining lipophilicity profiles of monoacid and 

monobasic compounds, a general theoretical formalism was proposed (Scheme 8), 

whose validity is currently being tested experimentally in collaboration with Prof. 

Clara Ràfols and Prof. Martí Rosés, members of the research group PhysChem (Fac. 

Chemistry) at the University of Barcelona. 
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Scheme 8. Mechanism of n-Octanol/Water Partition for Neutral (HX) and Ionic 
Species ( , and ) Influenced by the Electric Potential at the Interphase ( ) 

and Ion Pair Formation ( ). 
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could make an approximation in intermediate cases defining a variable, r
CI

, 

according to eq 34, 

r
CI

=
X−⎡
⎣

⎤
⎦

X−⎡
⎣

⎤
⎦+ A

−⎡
⎣

⎤
⎦

 (34) 

where X−  represents the ionic organic species, and A−  stands for the ionic species 

with the same charge from the background salt. Here, for the sake of brevity we limit 

ourselves to the specific case of an acidic compound (HX). So, the  can be 

approximated using this variable r
CI

, although future work is still necessary to 

calibrate the formal dependence of r
CI

, which could adopt either linear (eq 35) or a 

exponential (eq 36) models. 

P
I,X-
app = P

I,X-
º ⋅ P

I,CI
+

º /P
I,A-
º ⋅ rCI( )+ P

I,X-
º ⋅P

I,CI
+

º ⋅ 1− rCI( )  (35) 
 
 
 

P
I,X-
app =

P
I,CI

+
º ⋅ P

I,X-
º( )

(rCI
+1)

P
I,A-
º( )

rCI  
(36) 

 

From these two last equations, if the r
CI

is known, and the standard partition of ech 

ion in the background salt, the standard partition for the organic ion of interest can 

be derived.  

 

P
I ,X−

app
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 3.5 Estimation of n-Octanol/Water Distribution Coefficients at Physiological 

Conditions (log D7.4). 

The log D7.4 values compiled for a set of 35 ionizable small molecules (see Figure 13) 

were used as a test set to calibrate the suitability of the adjustments introduced in the 

refined IEFPCM/MST model.  
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Figure 13. Data set of 35 ionizable compounds used to calibrate the MST solvation 

model for estimating the distribution coefficient. 

 

These compounds encompass a broad range of chemical diversity in selected 

physicochemical properties (see Figure 14), such as molecular weigth (up to 400 

Dalton), number of rotatable bonds (up to 8), number of aromatic rings (up to 3), and 

number of hydrogen bond donors (up to 5) and acceptors (up to 7). 
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Figure 14. Histograms of molecular properties (molecular weight, number of 

rotatable bonds, number of aromatic rings and hydrogen bond acceptors and donors) 

for the set of 35 small molecules. 

 

 

 

In order to reproduce the experimental distribution coefficients within the 

framework of the partition formalisms represented by eqs 5, 6, and 30, log PN and log 

PI values were estimated from MST calculations, whereas the pKa of these 

compounds and the partition coefficient of the counter ion were taken from 

experimental data (see Table 7). We first evaluated the capacity of the refined MST 

model for predicting the experimental log PN of these compounds. This comparison 
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is shown in Table 7 and Figure 15. The rmsd between experimental and calculated 

values is 1.1 (log PN units), and the calculated values exhibit a good correlation with 

the experimental ones (r = 0.94). Furthermore, these trends compare well with the 

values predicted by using empirical methods (ACD/I-lab or ChemAxon; Figure 15), 

although they exhibit a slightly better correlation with the experimental data, which 

likely reflects the most extensive parametrization of fragmental contributions that 

lies behind these methods.138,185 

 

Since the distribution coefficient takes into account the partition of both neutral and 

ionic species of ionizable compounds, it provides an indirect approach to test the 

reliability of the calculated PI values. This is more challenging, because the measured 

log D may be affected by the experimental conditions, such as the nature of the 

background salt and the concentration of the solution, which would influence the 

potential difference between the two phases.186 Moreover, different formalisms have 

been proposed to combine log PN, log PI and pKa to estimate the log D. Accordingly, 

the log D7.4 was determined using the log PN and log PI values determined from 

IEFPCM/MST computations, and were combined with experimental pKa values 

reported for the set of compounds (see Table 7). 
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Table 7. Experimental and Computed Data for the Set of 35 Ionizable Compounds 

Used to Analyze the Performance of the MST Solvation Model for Estimating the 

Partition and Distribution Coefficient (Data taken from refs. 6, 7, 99 and 155). 

Compound a 
Exptl.

pKa 

Exptl. 

log PN

Comp. 

log PN

Exptl. 

log D7.4

Comp. log D7.4 

eq 5 eq 6 eq 30

albendazole (47) 4.21  2.7 3.7 3.3 3.7 3.7 3.7 

amitriptiline (48) 9.40  4.9 6.5 2.8 4.5 4.5 4.5 

antipyrine (49) 1.40  0.4 2.0 0.2 2.0 2.0 2.0 

bumetanide (50) 3.60  2.6 2.6 -0.1 -1.2 -0.2 -1.0 

caffeine (51) -0.92 -0.1 0.9 0.0 0.8 0.8 0.8 

clomipramine (52) 9.40  5.2 6.7 3.3 4.7 4.7 4.7 

clonidine (53) 8.05  1.6 2.8 0.6 2.1 2.1 2.1 

clozapine (54) 7.50  3.2 5.5 3.0 5.1 5.1 5.1 

cyclobenzaprine (55) 8.47  5.2 6.3 2.9 5.2 5.2 5.2 

desipramine (56) 10.4  4.9 5.7 1.4 2.7 2.7 2.7 

diazepam (57) 3.30  2.8 4.5 2.7 4.5 4.5 4.5 

diclofenac (58) 4.15  4.5 5.6 1.1 2.3 2.4 2.3 

diphenylamine (59) 1.03  3.5 3.7 3.4 3.7 3.7 3.7 

estradiol (60) 10.7  3.7 4.2 4.0 4.2 4.2 4.2 

fluconazole (61) 2.94  0.4 1.1 0.5 1.1 1.1 1.1 

fulbiprofen (62) 4.22  4.2 4.2 0.9 1.0 2.2 1.0 

ibuprofen (63) 4.91  4.0 3.2 1.3 0.7 0.7 0.7 

imipramine (64) 9.40  4.8 5.9 2.5 3.9 3.9 3.9 

indomethacin (65) 4.50  4.3 4.9 0.8 2.0 2.4 2.0 

lidocaine (66) 8.01  2.4 2.8 1.6 2.1 2.1 2.1 

loratadine (67) 4.58  5.2 7.4 4.4 7.4 7.4 7.4 

maleic acid (68) 1.83 -0.5   -1.5 -5.0 -7.1 -4.5 -3.5 

metoclopramide (69) 9.27  2.6 2.2 0.5 0.3 0.3 0.3 

metronidazole (70) 2.60  0.0 0.0 -0.1 0.0 0.0 0.0 

mesoridazine (71) 8.89  3.9 6.5 1.8 5.0 5.0 5.0 

N-acetyl-L-aspartic amide (72) 3.90 -2.0   -2.3 -2.6 -5.8 -2.8 -2.6 

N-acetyl-L-glutamic amide (73) 4.20 -1.9   -1.5 -2.5 -4.7 -3.4 -2.9 

N-acetyl-L-histidine amide (74) 7.00 -1.9   -0.9 -3.5 -1.0 -0.9 -1.0 

N-acetyl-L-lysine amide (75) 11.1 -0.8   -0.4 -2.8 -1.8 -1.8 -3.1 

naproxen (76) 4.15  3.2 2.7 0.3 -0.6 -0.3 -0.5 

paracetamol (77) 9.38  0.5   -0.1 0.3 -0.1 -0.1 -0.1 

pentachlorophenol (78) 4.83  5.0 3.8 2.5 1.2 1.9 1.2 

pentoxifylline (79) 0.28  0.3 1.6 0.3 1.6 1.6 1.6 

phenytoin (80) 8.33  2.5 2.0 2.2 1.9 1.9 1.9 

triflupromazine (81) 9.40  5.5 6.6 3.4 4.6 4.6 4.6 

mse b 

  

  -0.6 

 

-0.6 -0.9 -0.8 

mue b 0.9  1.3  1.1  1.1 

rmsd b 1.1  1.6  1.4  1.4 
a See Figure 13. b Mean signed error (mse), mean unsigned error (mue), and root-mean square 

deviation (rmsd) calculated relative to the experimental values are given in log P units. 
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Figure 15. Comparison between experimental and calculated log PN for a set of 35 

small molecules. Computed values were determined by using the refined 

IEFPCM/MST calculations (top), and by using ACD/I-Lab log D (bottom left) and 

ChemAxon (bottom right). 
 

Table 7 reports the log D7.4 values obtained from IEFPCM/MST calculations. In 

general, there is a slight tendency to overestimate the hydrophobicity of the 

compounds, as noted in the mean signed error (mse) of ~ -0.7 (log D units) found for 

eqs 5, 6, and 30, while the rmsd amounts to ~ 1.5 (log D units). The performance of 

the IEFPCM/MST model is similar for the three formalisms examined in this study, 

with a slightly larger rmsd when eq 5 is used. Similar regression equations between 

calculated and experimental log D7.4 values are also found (r ≈ 0.92), albeit Figure 16 

shows a slightly larger deviation from the perfect linear regression for the values 

obtained with eq 5. For this latter formalism the largest errors (given in log D units in 

parenthesis) are found for the subset of amino acid analogues N-acetyl-L-aspartic 
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acid amide (+3.2), N-acetyl-L-glutamic acid amide (+2.2) and N-acetyl-L-histidine 

amide (+2.5), as well as for mesoridazine (-3.1), loratadine (-3.0), cyclobenzaprine (-

2.3), clozapine (-2.1), and maleic acid (+2.1). Nevertheless, when the partition of the 

ionic species is taken into account (Eqs. 4 and 9), the deviation found for aspartic and 

glutamic analogues, and for maleic acid is largely reduced, whereas the value 

predicted for N-acetyl-L-histidine amide remains unaffected. 

 

 

  

 

Figure 16.  Comparison between experimental (determined by the shake-flask 

method) and calculated log D7.4 for 35 ionizable small molecules. Computed values 

were derived from IEFPCM/MST (blue) calculations using eqs 5 (top), 6 (bottom 

left), and 30 (bottom right). 
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To further check the reliability of the log PI values, the calculated log PN values were 

replaced by the experimental ones, and the log D7.4 was determined using eqs 5, 6, 

and 30. The distribution coefficients obtained by limiting the IEFPCM/MST 

calculation to the partition coefficient of the ionized species (log PI) reduces the rmsd 

between predicted and experimental data to ~ -0.8 (log D units), and the correlation 

coefficient is increased to 0.96 (Table 8). Note that these statistical parameters 

compare well with the values estimated using empirical methods (ACD/I-Lab, 

ChemAxon), as noted in Table 8 and Figure 17.  

 

Table 8. Statistical Parameters of the Comparison between Experimental and 

Calculated log D7.4 Values for the Series of 35 Small Molecules. 

Method mse mue rmsd r 
ACD/ I-Lab  0.0 0.5 0.8 0.95 

ChemAxon  0.2 0.5 0.8 0.95 

IEFPCM/MST, eq 5 -0.6 1.3 1.6 0.91 

IEFPCM/MST, eq 5 (exptl. log PN)  0.1 0.5 0.8 0.96 

IEFPCM/MST, eq 6 -0.9 1.1 1.4 0.92 

IEFPCM/MST, eq 6 (exptl. log PN) -0.3 0.4 0.6 0.96 

IEFPCM/MST, eq 28 -0.8 1.1 1.4 0.91 

IEFPCM/MST, eq 28 (exptl. log PN) -0.2 0.4 0.5 0.97 
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Figure 17. Comparison between experimental and calculated log D7.4 for the set of 35 

small molecules. Values were obtained using (left) ACD/ I-Lab and (right) 

ChemAxon. N-acetyl-L-aspartic acid amide, N-acetyl-L-glutamic acid amide and N-

acetyl-L-histidine amide are shown as red dots. 

 

 

Overall, these results give confidence to the partition values of ionic species 

determined with the refined IEFPCM/MST method, especially taking into account 

the limited extension of the model refinement, and the single-conformation approach 

adopted in present calculations. Nevertheless, the use of representative 

conformational ensembles may be required to obtain more accurate estimates of log 

D7.4 in flexible molecules able to form distinct patterns of intramolecular interactions. 

187–189 

 

3.6 Simulation of pH-Dependent Lipophilicity Profiles.  

While the preceding results support the refined IEFPCM/MST method, there is 

generally little difference between the distinct formalisms previously tested (eqs 5, 6, 

and 30) for calculation of log D7.4. This may reflect the fact that all molecules are 

approved drugs with high log PN values, and that the log D was calculated at 

physiological pH, while the contribution of ionic species may be expected to be more 
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relevant at extreme pH values. Hence, we decided to determine the lipophilicity 

profile of 7 drugs and 4 amino acid analogues between pH 2 and 12, taking 

advantage of the experimental data about the pH-dependent partitioning of these 

compounds. 80,99,119,155,165 

 

For ibuprofen, warfarin and pentachlorophenol, the three formalisms give similar log 

PN values at low pH, where the neutral species predominates (see Figure 18). 

However, the profiles diverge at intermediate pH values (between 6 and 8), 

following the increased population of the anionic species. Eq 5, which does not take 

into account the partition of the ionic species, gives rise to a profile that decreases 

steadily with increasing pH. In contrast, eqs 6 and 30 show an asymptotic behavior at 

basic pH.   

 

For imipramine, amitriptyline, desipramine, and lidocaine all the methods exhibit the 

same log D at pH ~ 10, which arises from the partition of the neutral species. The pH-

dependence of the profiles is similar up to acidic solutions (pH < 5), where the 

contribution of the cationic species is more important. Again, eq 5 shows a 

continuous decrease in log D with decreasing pH, whereas the profiles obtained from 

eqs 6 and 30 show the appearance of an asymptotic behavior at low pH. Note, 

however, that the appearance of this asymptotic value occurs at lower pH values for 

eq 30, leading generally to a larger deviation with regard to the experimental profile 

compared with the results obtained from eq 6, which reproduces well the general 

trends of the experimental sigmoidal profile. On the other hand, it is worth noting 

that the IEFPC/MST profiles obtained with eq 6 compare well with the pH-

dependent profiles obtained from empirical methods (ACD/I-Lab and ChemAxon; 

see Figure 19).  
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Figure 18. Comparison of n-octanol/water distribution coefficient profiles of selected 

drugs using eq 5 (red), 6 (blue), and 30 (green). The experimental data are shown in 

black. 
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Figure 19. Comparison of n-octanol/water distribution coefficient profiles of selected 

drugs using ACD/I-Lab (cyan), ChemAxon (purple) and experimental data (black). 
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The pH-dependent lipophilicity profile determined for the set of amino acid 

analogues is shown in Figure 20.  

 

         

         
Figure 20. Comparison of n-octanol/water distribution coefficient profiles of selected 

amino acid analogues using eq 5 (red), 6 (blue), 30 (green), and experimental data 

(black). 

 

As noted above, eq 5 works worse at extreme pH, as expected from the neglect of the 

contribution arising from the partition of ionic species. On the other hand, eqs 6 and 

30 give similar profiles that reproduce the experimental values for the whole range of 

pH values. Furthermore, for the analogues of aspartic and glutamic acids the 

IEFPCM/MST results obtained for eqs 6 and 30 improve the pH-dependent profiles 

obtained from empirical methods, which predict a much higher hydrophilic behavior 

for pH values larger than 5 and lower than 9 for aspartic/glutamic acid and lysine, 

respectively (compare Figure 20 and Figure 21). 
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Figure 21. Comparison of n-octanol/water distribution coefficient profiles of selected 

amino acid analogues using ACD/I-Lab (cyan), ChemAxon (purple) and 

experimental data (black). 

 

Overall, the results support the suitability of eq 6 for estimating the pH-dependence 

of the distribution profiles of ionizable compounds. The limited success found for eq 

30 is surprising, especially when one takes into account the results obtained for 

amino acid analogues, but it may reflect the marked influence of inorganic ions on 

the experimental measurements of the distribution coefficient of ionized 

compounds.118,121,124,190,191 In general, shake-flask experiments are performed in wet n-

octanol/water systems using 0.15 mol/L KCl or NaCl, and reliable values for the 

inorganic standard partition coefficients have been reported. 25,60,61 However, it is 

also known that the distribution coefficient can be expected to increase substantially 

when a more hydrophobic cation is added in excess to the system, as has been 

reported for both ibuprofen and pentachlorophenol.80,99,119 Finally, the potential 

contribution due to the formation of ion pairs may also have a significant effect of the 

distribution coefficient of ionized compounds, especially when the salt concentration 

is large enough relative to the ionized compound.118,125 
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3.7 Verification Experimental of the Effect of Background Salt Concentration in 

the Partition of Ionic Species. 

The effect of the background salt in the determination of distribution coefficients has 

been actually discussed before (see Scheme 8). Here, we have analyzed the effect of 

the concentration of KCl in the experimental determination of log PN and log PI for 

indomethacin (acid compound; 65) and chlorpromazine (basic compound; 82) using 

the potentiometric method (see Table 9).  

Table 9. Potentiometric Determination of the log PN and log PI Using Different 

Background Salt Concentrations (KCl) in the Aqueous Phase for Deriving the 

Standard Partition of the Organic Ionic Species.  

Compound 

Aqueous 

KCl 

(mol/L) 

log PN 

 

log PI 

 

Derived  

( r
C

I

) 

eq 35 eq 36 

 
(65) 

0 4.27±0.03 n.da 
- 

(0) 

- 

(0) 

1x10-5 4.47±0.03 n.da 
- 

(≈0) 

- 

(≈0) 

1x10-3 4.45±0.09 1.01±0.18 
0.2 

(0.6) 

1.0 

(0.6) 

0.15 4.59±0.10 1.47±0.13 
0.5 

(1.0) 

0.5 

(1.0) 

 

 
(82) 

0 5.05±0.03 n.da 
- 

(0) 

- 

(0) 

1x10-5 5.13±0.02 n.da 
- 

(0) 

- 

(0) 

1x10-3 5.20±0.01 0.70±0.03 
2.0 

(0.6) 

2.8 

(0.6) 

0.15 5.02±0.04 1.14±0.07 
2.1 

(0.6) 

2.1 

(0.6) 

a no detectable (n.d; log PI < -1) 

 

 

logPI
º

OH

O

O

N

Cl

O

N

N

S

Cl
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This work is being performed in collaboration with the PhysChem Group (Faculty of 

Chemistry, University of Barcelona), and we only report preliminary results collected 

up to now. The partition of the neutral species is poorly affected by the absence or 

presence of different concentrations of KCl in the aqueous phase. However, as 

expected, the partition of ionic species was more sensible to the background salt, it 

being affected as a function of the concentration of KCl, especially at high 

concentrations (0.15 and 1x10-3 mol/L). In the case of low salt concentrations, no 

partition for the ionic species was detected. 

At the time of submitting this thesis, present results do not suffice to calibrate the 

formalism that exploit the partition of the ionic species for both indomethacin and 

chlorpromazine. Additional potentiometric measurements (see Methods) will be 

recorded in future studies in order to obtain accurate values of apparent log PI in all 

background salt concentrations studied.  

 

 3.8 Development of a Structure-Based, pH-Dependent Lipophilicity Scale of 

Amino Acids from Continuum Solvation Calculations. 

Taking advantage of the successful results for computing the distribution coefficients 

to physiological conditions as well as for reproducing lipophilicity profiles in amino 

acid analogues, it was planned to develop a new lipophilicity scale for amino acids. 

There are many lipophilicity scales reported in the literature, which have generally 

been designed under specific conditions for extracting structural information (i.e., 

distribution probability of amino acids for some kind of secondary structures) or 

preferences towards diverse phases (e.g., solution, stationary phase or membrane 

environments) from a given sequence, which may restrict the capacity of being 

extrapolated to other environments (e.g., solvents, sorbents, membranes or proteins) 

and conditions (e.g., pH or ionic strength). 
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The lipophilicity scale was built from theoretical computations that take into account 

the structural dependence of the conformational preferences of amino acids as well 

as the influence of pH in order to provide a consistent description of pH-adapted 

lipophilicity profiles in peptides and proteins. Here attention was paid to the set of 

natural amino acids, but the methodological strategy is intended to be easily adapted 

to nonstandard residues, such as nonproteinogenic residues, or to chemical 

modifications, such as phosphorylation, sulphonation and nitrosation, which 

regulate enzyme activity and signalling processes. Here, the theoretical formalism 

represented by eq 5 was selected to describe the distribution coefficient (D) of each 

residue using as model system the corresponding N-acetyl-L-amino acid amides.  

Two schemes were explored for weighting the contribution of each conformational 

state to the differential solvation in the two solvents. In one case, PN and PI were 

determined using a Boltzmann`s weighting scheme to the relative stabilities of the 

conformational species of a given residue in the two solvents, leading to the solvent-

like scale (SolvL). In the second scheme, named protein-like scale (ProtL), the 

contribution of each conformation was directly taken from the population 

distribution reported in the backbone-dependent conformational library. Therefore, 

these weighting schemes are expected to yield scales better suited for reflecting the 

lipophilic balance of amino acids well exposed to bulk solvent or in a protein-like 

environment, respectively. Finally, the effect of pH on the log D values was 

introduced from the experimental pKas of ionizable residues in peptide models in 

aqueous solution192,193 and in folded proteins194,195 for the SolvL and ProtL scales.  

The values of these lipophilicity scales for the amino acids at physiological pH are 

shown in Table 10 and Figure 22. ProtL data are averages of the logD7.4 values 

determined separately for D-helix and E-sheet structures, which are depicted in 

Figure 22 (top). Taken Gly as reference, the ProtL scale comprises logD7.4 values 

ranging from -3.91 (Arg) to 3.99 (Phe), reflecting the extreme values of hydrophilic 

residues (Arg, Asp, Glu and Lys), and hydrophobic ones (Trp, Phe) (see Figure 22). 

These trends are also found in the SolvL scale, even though the distribution of logD7.4 

values vary from -1.35 (Glu) to 2.62 (Phe). This trait is also found in other scales, as 
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knowledge-based methods generally give rise to a narrower range of lipophilicites 

compared to other experimental scales.169 In our case, this arises from the distinct 

weighting factors used in ProtL and SolvL scales, leading to larger differences in the 

logD7.4 values of polar and ionizable amino acids, which show a preference for 

extended conformations (see Figure 23), likely reflecting the formation of stabilizing 

interactions (e.g salt bridges) or the solvent exposure to bulk water in proteins.196,197  

 

Table 10. Solvent-like (SolvL) and Protein-like (ProtL) Lipophilicity Scales Based on 

the log D Values Determined for N-Acetyl-L-Amino Acid Amides at Physiological 

pH. The Experimental pKa of Side Chain Ionizable Groups, and Calculated Partition 

Coefficients of Neutral (log PN) and Ionized (log PI) Residues are also Given. 

Residue 
Exp. pKa log PN log PI log D7.4 a 

SolvL  ProtL SolvL  ProtL SolvL  ProtL SolvL  ProtL 

Ala - - -1.16 -2.47 - - -1.16 (0.85)  -2.47 (0.66) 

Arg 12.5b 12.5b -2.86 -3.66 -2.99 -7.38 -2.99 (-0.98) -7.04 (-3.91) 
Asn - - -2.98 -3.97 - - -2.98 (-0.97) -3.97 (-0.84) 

Asp 3.90c 3.50d -2.26 -3.18 -2.80 -8.54 -2.80 (-0.79) -5.87 (-2.74) 
Cys 9.83e 6.80d -0.16 -1.47 -4.19 -5.78 -0.16 (1.85) -2.17 (0.96) 
Gln - - -2.22 -4.00 - - -2.22 (-0.21) -4.00 (-0.87) 

Glu 4.20c 4.20d -1.49 -3.79 -3.38 -6.20 -3.36 (-1.35) -5.96 (-2.83) 

Gly - - -2.01 -3.13 - - -2.01 (0.00) -3.13 (0.00) 

His (δ) 7.00 c 6.60d -1.20 -4.67 -4.06 -5.97 -1.35 (0.66) -4.56 (-1.43) 
His (ε) 7.00 c 6.60d -0.72 -4.98 -4.06 -5.97 -0.87 (1.14) -4.97 (-1.84) 

Ile - - -0.50 -0.38 - - -0.50 (1.51) -0.38 (2.75) 

Leu - - 0.05 -1.36 - - 0.05 (2.06) -1.36 (1.77) 

Lys 11.1c 10.5d -0.40 -2.19 -3.24 -6.81 -3.18 (-1.17) -5.08 (-1.95) 
Met - - -0.51 -1.83 - - -0.51 (1.50) -1.83 (1.30) 

Phe - - 0.61 0.86 - - 0.61 (2.62) 0.86 (3.99) 

Pro - - -0.77 -1.44 - - -0.77 (1.24) -1.44 (1.69) 

Ser - - -2.04 -4.12 - - -2.04 (-0.03) -4.12 (-0.99) 

Thr - - -1.22 -3.01 - - -1.22 (0.79) -3.01 (0.12) 

Trp - - 0.33 0.16 - - 0.33 (2.34) 0.16 (3.29) 

Tyr 10.3c 10.3d -0.49 -1.80 -4.21 -9.59 -0.49 (1.52) -1.80 (1.33) 
Val - - -0.93 -1.68 - - -0.93 (1.08) -1.68 (1.45) 

  a Values for ionizable residues are shown in italic. Log D7.4 values relative to glycine are given in        

parenthesis. b Ref 192. c Ref  193. d Ref 194. e Ref 195. 
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Table 11 shows the comparison of the SolvL and ProtL lipophilicities with other 

experimental scales, including four bulk solvent-based scales (Fauchère-Pliska,155  

Eisenberg-McLachlan,157 Hopp-Woods,164 Wimley et al.165), two biological-derived 

(Moon-Fleming,167 Hessa et al.168) and two knowledge-based (Koehler et al.,169 Janin et 

al.170) scales, and a consensus (Kyte-Doolittle166) one. The bulk solvent-based scales 

rely on experimental measurements of the transfer between n-octanol and water 

(Fauchère-Pliska, Eisenberg-McLachlan) at physiological pH or at basic conditions 

(pH = 9.0; Wimley et al.), and between ethanol and the vapor phase (Hopp-Woods). 

Excellent correlations are found with Fauchère-Pliska, Eisenberg-McLachlan, and 

Hopp-Woods scales (0.89 < r < 0.92), whereas a worse correlation (r | 0.60) is found 

with Wimley et al. scale. However, this can be attributed to the formation of salt 

bridges between Arg/Lys residues with the terminal carboxyl group in n-octanol for 

the AcWL-X-LL pentapeptides used as model systems, as noted by 13C-NMR 

studies.158 Exclusion of Arg and Lys enhances the correlation coefficient to 0.87. On 

the other hand, the bulk solvent-based lipophilicities are consistently closer to the 

values collected in the SolvL scale (mue of 0.36-0.92 log P/D units) than to the ProtL 

ones (mue of 0.84-1.24 log P/D units). 

The correlation coefficients obtained with biological-, knowledge-based and 

consensus scales are still satisfactory (0.74 < r < 0.94), but tend to be lower than the 

values obtained with the bulk solvent-based transfer scales. This is not unexpected 

keeping in mind that the lipophilicites are derived from statistical analysis of 

topological distributions of residues in proteins (Koehler et al., Janin et al.), or from 

complex biochemically-adapted assays, such as the transfer of amino acids from 

water to a phospholipid bilayer (Moon-Fleming), the recognition of artificial helices 

by the Sec61 translocon (Hessa et al.), or the combination of water-vapor transfer free 

energies with the interior-exterior distribution of amino acids in the consensus (Kyle-

Doolittle) scale. 
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Table 11. Statistical Parameters of the Comparison of the SolvL and ProtL Scales with 

other Lipophilicity Scales. Comparison Was Made Using the Values Adapted to the 

Specific pH of each Scale and Relative to Gly. 

Scalea 
SolvL ProtL 

mseb mue rsmd r mse mue rsmd r 

Bulk-Solvent Adapted Scale 

Fauchère-Pliska -0.20 0.36 0.46 0.94 0.36 0.98 1.28 0.92 

Eisenberg-McLachlan -0.20 0.44 0.57 0.90 0.36 1.08 1.35 0.91 

Hopp-Woods -0.49 0.60 0.74 0.91 0.07 0.84 1.08 0.89

Wimley et al.c -0.60  

(-0.87) 

1.02 

(0.92) 

1.16 

(1.03) 

0.59 

(0.87) 

0.04 

(-0.30) 

1.24 

(1.03) 

1.64 

(1.25) 

0.61 

(0.87) 

Biological-Based Scale 

Moon-Fleming -0.12 0.57 0.67 0.94 0.24 0.72 0.93 0.91 

Hessa et al. -0.92 0.93 1.18 0.79 -0.36 1.08 1.46 0.82 

Knowledge-Based Scale 

Koehler et al. -0.91 1.10 1.33 0.78 -0.35 1.55 1.87 0.80

Janin et al. -1.06 1.11 1.32 0.78 -0.51 1.36 1.71 0.74 

Consensus Scale 

Kyte-Doolittle -0.81 1.43 1.71 0.72 -0.25 1.13 1.41 0.78

a A physiological pH was considered in all cases, but for Wimley et al. and Moon-Flemin., since the 

corresponding pH was fixed at 9.0 and 3.8 following the specific experimental conditions. 
b mse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson 

correlation coefficient. mse, mue and rmsd are given in log PN/D units.  
c Values in parenthesis obtaining upon exclusion of Arg and Lys. Since this scale was built up using 

model pentapeptides (AcWL-X-LL) at pH 9.0, Arg and Lys formed a salt bridge with the terminal 

carboxyl group in n-octanol as noted by 13C-NMR studies.158   

It is worth noting that by using the relatively simple n-octanol/water system for 

deriving the lipophilicity of amino acids, even subject to a controversial capacity as a 

mimic of biological environments, it was possible to correlate efficiently present 

values with those reported by Moon-Fleming and Hessa et al., which were compiled 

from more complex biological systems (Figure 27). Surprisingly, the Moon-Fleming 

scale, where the chemical equilibrium occurs between the unfolded hydrated protein 

to those that folds in a β-barrel inside a membrane, was practically emulated. The 

outlier is represented by the residue arginine (Arg) whose lipophilicity is greater in 
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Our computations using those two approaches reveal that the hydrophobic effect 

amounts to 20.0 r 2.7 cal/mol Å2 and 24.6 r 3.0 cal/mol Å2 to the stability of 

removing apolar side chains or non-electrostatic terms from water to n-octanol, 

respectively. Our average hydrophobic effect (22.3 cal/mol Å2) matches previously 

experimental values (see Table 2). Therefore, despite of explaining the stability of 

proteins in solution or inside membranes (Moon-Fleming), the hydrophobic effect 

also works in the stabilization of amino acid analogues-determinate experimentally 

(Fauchère- Pliska155) or computed (our approach) in solvent systems to an equivalent 

degree.   

 

3.10 Application of the Lipophilicity Scale to Small Peptides Properties. 

The reliability of the SolvL/ProtL scales has been calibrated by comparing the 

cumulative lipophilicity with the (RP-HPLC) retention time determined for different 

sets of peptides.203,204 Given the small size of the peptides (≤ 13 residues) and the lack 

of well defined secondary structures, non-additivity effects can be expected to play a 

minor role.205 Accordingly, the cumulative lipophilicity was determined assuming an 

additive scheme (see Methods).  

The first test comprises eight 10-mer peptides with equal charge that differ in the 

content of hydrophobic residues (see Table 12).206  

Table 12. Experimental RP-HPLC Retention Time for Eight Model Decapeptides and 

Cumulative Lipophilicity Determined with the SolvL and ProtL Lipophilicity Scales. 

Peptide a Sequence 

Retention 

factor k`   

(min) 

log D7.4 

SolvL ProtL 

 Pep1Leu  DKDKGGGGLG 4.80 -17.09 -34.04 

 Pep2Leu DKDKGGGLLG 11.97 -15.03 -32.27 

 Pep3Leu      DKDKGGLLLG 16.22 -12.97 -30.50 

 Pep1Cys  DKDKGGGGCG 0.52 -17.30 -34.85 

 Pep1Ile      DKDKGGGGIG 4.73 -17.64 -33.06 

 Pep1Met   DKDKGGGGMG 2.27 -17.65 -34.51 

 Pep1Phe      DKDKGGGGFG 6.11 -16.53 -31.82 

 Pep1Val  DKDKGGGLVG 1.86 -18.07 -34.36 
  a Ref. 206 
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A more challenging test is the set of 248 analogues of the influenza virus 

hemagglutinin 13-mer peptide (98–110) Ac-YPYDVPDYASLRS-NH2, with equal 

length, but different net charge at the experimental acidic conditions (pH = 2.1),207,208 

comprising 36 peptides with two charged amino acids (Arg combined with His or 

Lys), 105 peptides with a single charged residue (Arg, Lys, or His), and finally 17 

neutral peptides. The SolvL cumulative lipophilicity correlates satisfactorily with the 

retention time determined for the whole set of peptides (r = 0.85; Figure 30B). Among 

bulk solvent-based scales, Fauchère-Pliska, Eisenberg-McLachlan and Hopp-Woods 

also provided reasonable correlations coefficients (0.74 < r < 0.85; Table 13 and Figure 

31), but a worst correlation was found for Wimley et al., although this may be 

attributed to the different pH used in this latter scale (pH = 9.0) and the experimental 

assay conditions (pH = 2.1). The performance of biological-, knowledge-based and 

consensus scales was also worse (0.55 < r < 0.64; Table 13 and Figure 31), but for 

Moon-Fleming (r = 0.78), likely reflecting the acidic pH conditions considered in the 

derivation of this lipophilicity scale. 
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Table 13. Correlation of Retention Time for 8 Model Decapeptides with the Same 

Charge,206 and for 218 Peptides207,208 with Three Different Charge States Using the 

Cumulative Hydrophobicity with Our Adaptive Hydrophobicity Scale and with 

Others Experimental Scales.   

Scale 
Set of 10-mer Peptides 

(pH 7.4) 

Set of 13-mer Peptides 

 (pH 2.1) 

Fauchère-Pliska 0.96 0.85 

Eisenberg-McLachlan 0.95 0.79 

Hopp-Woods 0.99 0.74 

Wimley et al. 0.99 0.36 

Moon-Fleming 0.99 0.78 

Hessa et al. 0.96 0.61 

Koehler et al. 0.76 0.64 

Janin et al. 0.39 0.55 

Kyte-Doolittle 0.93 0.60 

ProtL 0.96 0.85 

SolvL 0.91 0.77 
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Table 14. Statistical Parameters of the Comparisona of the SolvL and ProtL Scale with 

Others Hydrophobicity Scales Against log PN Values for 118 Random Peptides. 

Scale r mse mue rsmd 

Fauchère-Pliska 0.90 -2.53 2.53 2.64 

Eisenberg-McLachlan 0.89 -2.29 2.29 2.38 

Hopp-Woods 0.74 -2.07 2.11 2.31 

Wimley et al. 0.70 -1.54 1.67 1.81 

Moon-Fleming 0.69 -0.80 1.12 1.34 

Hessa et al. 0.22 0.29 0.98 1.29 

Koehler et al. 0.45 -0.35 0.87 1.12 

Janin et al. 0.38 -0.65 1.08 1.28 

Kyte-Doolittle 0.50 -2.85 3.00 3.60 

ProtL 0.60 1.35 1.68 2.00 

SolvL 0.93 -0.55 0.71 0.94 
a mse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson 

correlation coefficient. mse, mue and rmsd are given in log PN/D units.  

  

 

Table 15. Statistical Parameters of the Comparisona of the SolvL and ProtL Scale with 

Others Hydrophobicity Scales Against log D7.4 Values for 116 Random Peptides. 

Scale r mse mue rsmd 

Fauchère-Pliska 0.76 -2.76 2.76 2.88 

Eisenberg-McLachlan 0.75 -2.58 2.58 2.69 

Hopp-Woods 0.88 -2.32 2.33 2.43 

Wimley et al. 0.52 -1.94 1.94 2.23 

Moon-Fleming 0.79 -1.16 1.24 1.48 

Hessa et al. 0.72 -0.22 0.60 0.73 

Koehler et al. 0.76 -0.90 1.01 1.19 

Janin et al. 0.61 -1.12 1.21 1.38 

Kyte-Doolittle 0.52  3.04 3.17 3.76 

ProtL 0.79  1.46 1.82 2.11 

SolvL 0.83 -0.52 0.73 0.95 
a mse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson 

correlation coefficient. mse, mue and rmsd are given in log PN/D units.  

 

 

In these test cases, the ProtL scale performed worst (0.60 < r < 0.91; Figure 32) than 

the SolvL one, suggesting that the Boltzmann-weighting scheme is better suited for 

describing the lipophilicity of residues in structureless peptides. 
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contribution due to the involvement of the backbone in hydrogen bonds,213 and to 

the burial of apolar residues from water to hydrophobic environments167 (See 

Methods). Thus, using this model our scale would have a potential application in 

differentiating either sequences of the same composition with different order, which 

should lead to a different molecular arrangement, as well as identical sequences with 

conformational differences (e.g structures obtained from a molecular dynamics 

simulations, NMR experiments or different crystallization conditions).  

 

At first exploration, the tridimensional structure of the transmembrane segment of 

the influenza M2 protein that includes residues 25 to 46 was considered. This 

segment has been obtained using different experimental methods: an ensemble of 

structures derived from ssNMR experiments refined with MD simulations in water214  

(hydrophilic environment), and other from a detergent-solubilized state with octyl-

D-glucoside crystalized with the vapour diffusion hanging drop method215 

(hydrophobic environment). 

 

As expected, Figure 34 (left) illustrates that the X-ray average structure is more 

hydrophobic than the average ssNMR one, highlighting the effect of the environment 

on the final three-dimensional arrangement. To reveal the reason of the hydrophobic 

differences, we analysed the individual residue contribution to the global 

hydrophobicity in each average structure and we found that the exposure of 

ionizable residues (Asp44 and Arg45) determines the hydrophobic variance between 

those structures. As is shown in Figure 34, the X-Ray structure presents a cation-S 

interaction between Trp41/Arg45, which is more favoured in protein environments 

than in aqueous solutions,216,217 increasing the lipophilic profile of this structure. On 

the other hand, the ssNMR structure present Asp44 and Lys45 directed to the 

solvent, enhancing its hydrophilicity, especially at physiological pH where both 

residues are present as charged species. 
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Although more extensive analysis are required, these preliminary results suggest 

that, unlike previous applications of hydrophobic scales, our methodology can be 

used to explore the effect of subtle differences due to the usage of different 

experimental conditions.  

 

Finally, one might expect an improved performance of the ProtL scale in the analysis 

of the lipophilic complementarity in peptide-protein and protein-protein complexes 

with regard to the SolvL approach. To this end, we have examined the relationship 

between the ProtL cumulative lipophilicity and the experimental binding free 

energies of 19 peptides to MHC (HLA-A*02:01 allele) proteins (see Table 16). These 

peptides were chosen subject to the availability of (i) a precise structural information 

of the peptide-protein complex in the Protein Data Bank,222 and (ii) an estimate of the 

binding affinity in the Immune Epitope Database and Analysis Resource223 (see Table 

16). 
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Table 16. Length (L), Net Charge (Q) and Cumulative Lipophilicity Determined Using Protl, SolvL and Experimental Lipophilicity 

Scales of Peptides and Experimental Binding Affinities (BA; kcal/mol) Toward MHC (HLA-A*02:01 allele) from the Immune Epitope 

Database and Analysis Resource (Ref. 223). 

PDB  Sequence L Q BA a 

Lipophilicity Scale 

SolvL ProtL 
Fauchère-

Pliska 

Eisenberg- 

McLachlan 

Hopp- 

Woods

Wimley

 et al. 

Moon-

Fleming

Hessa

et al. 

Koehler 

et al. 

Janin 

et al. 

Kyle- 

Doolittle 

2BST SRYWAIRTR 9  3 -6.4 -9.29 -22.50 2.51 0.75 -0.67   7.75 -8.55 -6.99 -0.72 -3.60 -7.95 

3BO8 EADPTGHSY 9 -1 -7.1±0.3 -3.12 -17.72 0.93 1.97   -1.91    -4.12 -8.81 -9.75 -1.35 -1.80 -9.63 

1QVO QVPLRPMTYK 10  2 -7.1±0.3 -4.58 -15.13 4.59 5.43  0.79 5.18 -4.68 -9.02 -1.47 -3.60 -5.25 

2X4S AMDSNTLEL 9 -2 -5.8 -1.85 -15.83 3.15 3.54 -0.53 -2.59 -5.33 -6.21 -0.72 -0.40 -0.50 

2X4U ILKEPVHGV 9  0 -6.7±0.6 -3.98 -13.24 5.16 5.34  0.78  1.92 -5.15 -6.31 -0.80 -0.20  2.99 

2GT9 EAAGIGILTV 10 -1 -6.6 -1.34 -11.34 6.76 6.07  3.84  1.24 -0.85 -2.07  1.00  2.80    11.38 

1T22 SLYNTVATL 9  0 -7.2±0.1  1.92 -10.44 5.77 5.86  5.96  2.89 -2.46 -2.42  0.45  0.50  4.82 

5W1W VMAPRTLVL 9  1 -6.8  0.87 -10.44 7.35 6.93  4.21  5.40  1.43 -2.64  0.32  1.00  9.42 

2X4O KLTPLCVTL 9  1 -6.5  4.20 -9.56 8.11 6.76  4.14  5.24 -1.25 -2.85 -0.17  0.50   8.16 

5EU3 YLEPGPVTA 9 -1 -7.0 -0.22 -9.19 5.25 5.73  2.54 -0.12  1.15 -6.09 -0.46 -0.20   0.51 

3MRM KLVALGINAV 10  1 -7.3 -1.04 -8.66 6.67 6.47  4.49  4.96 -2.80 -2.48  0.45  1.50    11.89 

3UTQ ALWGPDPAAA 10 -1 -7.9  2.42 -8.44 5.86 6.13  3.04  0.28  0.41 -6.49 -0.38  1.10  2.17 

3GSN NLVPMVATV 9  0 -6.6±0.1  1.69 -7.45 7.28 7.72  6.03  2.93  0.86 -2.43  0.32  2.00    10.45 

3QEQ AAGIGILTV 9  0 -7.01  1.60 -6.59 7.40 6.62  6.03  3.72  0.35 -0.11  1.51  3.50    13.93 

3MRG CINGVCWTV 9  0 -5.9±0.1  2.96 -5.68 9.23 5.97  7.57  3.81 -3.25 -1.56  0.44  3.60  9.05 

2PYE SLLMWITQC 9  0 -6.4  8.19 -2.24    10.22 8.33  8.01  5.05 -0.59 -1.53  0.51  2.30  7.73 

1HHK LLFGYPVYV 9  0 -8.4  7.24 -0.04    10.27 9.86  9.98  5.76  6.84 -1.68  1.11  1.90    10.36 

2VLL GILGFVFTL 9  0 -8.6±0.1  6.76 1.21    10.26 9.00  8.95  6.46  3.75  0.47  1.89  3.70 14.88 

3OX8 FLPSDFFPSV 10 -1 -8.7±0.1  4.75 1.30      8.88 8.42  5.23  3.13  4.11 -5.71  0.09  1.20  5.91 
a Estimated generally using cellular MHC/competitive/fluorescence half maximal inhibitory concentration (IC50), and exceptionally from radiactive assays. 

When several data were available, the binding affinity is given as the mean value together with the standard deviation.  
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Table 17. Correlation Coefficient of Cumulative Lipophilicity Determined Using 

Different Lipophilicity Scales of MHC (HLA-A*02:01 allele)-Bound Peptides with 

Experimental Estimates of Binding Affinities. 

 

Scale 
Entire Set 

(n=19) 

No Cys Set 

(n=16) 

Fauchère-Pliska 0.34 0.67 

Eisenberg-McLachlan 0.51 0.66 

Hopp-Woods 0.36 0.62 

Wimley et al. 0.18 0.31 

Moon-Fleming 0.61 0.65 

Hessa et al. 0.07 0.25 

Koehler et al. 0.32 0.41 

Janin et al. 0.18 0.39 

Kyte-Doolittle 0.21 0.34 

ProtL 0.58 0.80 

SolvL 0.42 0.73 

 

 

3.12 Relationship between Toxicity and Lipophilicity of AE42 Peptides Involved in 

the Alzheimer`s Disease. 

Formation of molecular agragates in the brain, is one of the main hallmark in the 

Alzheimer`s disease. These aggregates are form of repeated units of amyloid 

peptides. The amyloid peptides come from the transmembrane amyloid precursor 

protein (APP e.g presenilin 1 and presenilin 2) upon proteolysis by the combination 

of β- and γ-secretases226,227 being the Aβ42 peptides the more toxic ones.228,229 

Hydrophobicity has been recognized to take part actively in the Alzheirmer`s 

disease. For instance, mutants that compromise the stability of APP (presenilin 1) in 

the membrane, via a reduction of the global hydrophobicity of the protein, are 

correlated with a increase of toxic species (Aβ42 peptides relative to Aβ40 peptides) 

that could cause the disease.230 Also, toxic species from amyloid peptides (i.e dimers 

and aggregates) have been reported to be highly dependent of its hydrophicity, 
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especially of the hydrophobic residues.231,232 Lately, attention have been put in the 

wild type and mutants of monomeric species of Aβ42 peptides where computed 

properties as secondary structure, solvent accessible surface areas and radius of 

gyration have improved the understanding of experimental toxicity reported in these 

biomolecules. AE42 monomers with reduced helix propensity of the ensembles have 

produced the more toxic mutants.233  

 
Thus, the understanding of changes of the conformational ensemble of AE42 

monomers upon residue mutations could provide crucial information about the 

propensity to aggregation and also to the toxicity of specific proteins. These 

conformational ensembles of the monomers will determine ultimately the main 

features of the monomer like global and local lipophilicity.  

 

The available experimental toxicity data233 for wild type and mutated AE42 is 

presented in Table 18. The toxicity of the AE peptides in Alzheimer's disease is 

attributed to the oligomerization propensity. Somehow such propensity is encoded 

into the properties of the corresponding monomers, the basic building blocks of 

oligomers. 

 

Table 18. Net Charge (Q), Toxicity (relative EC50 to WT peptide), and Average 

Cumulative Lipophilicity  in AE42 Peptides.  

Peptide Q 
Toxicity 

(EC50) 
 

E22Q -2 0.07 -6.9 

E22G -2 0.14 -8.6 

E22K -1 0.14               -11.2 

D23N -2 0.38 -5.1 

D7N -2 0.70 -6.1 

A2V -3 0.80 -4.2 

H6R -2 0.80 -7.2 

D7H -2 0.80 -4.9 

WT -3                 1.0 -5.6 

K16N -4                 1.0 -6.2 

A21G -3                 1.7 -7.0 
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There is a general consensus that hydrophobic interactions take part actively to the 

oligomer formation and mutations that increase the lipophilicity promote 

aggregation. Our ProtL scale, however, despite of having some degree of correlation, 

did not show significant tendency between global lipophilicity and toxicity. Recently, 

it has been demonstrated that hydrophobic fragments in the Aβ42 sequence are 

responsible to promote aggregation instead of the specific side chains of those 

residues or well the entire peptide.231 Thus, segment rather than global features of the 

monomer AE42 mutants could shed some light in the understanding of the toxicity 

and give a better explanation of this phenomenon. Here, we studied the classical 

segments reported in the literature for AE42 peptides (Figure 37): N-terminal (NT; 

residues 1-16), Central hydrophobic core (CHC, residues 17-21), Loop (Loop, 

residues 22-30), C-terminal (CT, residues 31-42) and Body (residues 17-42). 

 

The classical segments (see Figure 37) gave a significant correlation (r = 0.76) with the 

NT fragment, and some correlation (r = 0.52) with the CHC fragment and Loop          

(r = -0.44). 
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Figure 37
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A systematic analysis for searching the non-classical fragments that better correlate 

with the experimental toxicity (see Table 19) showed, in agreement with the classical 

segments, two different trends. In one hand, the best positive correlation (r=0.91) for 

a non-classical segment is composed for a merge segment that includes residues of 

the NT and CHC stretches. On the other hand, the best negative correlation (r=-0.81) 

with another mixed segment form the Loop and CHC fragments. The first fragment 

suggest that toxic peptides tends to be more hydrophilic in this region and contrary, 

the second one suggests that the toxicity of the peptide increases with the 

hydrophobicity of this segment. 

 

Table 19. Systematic search for the top 10 best positive and negative correlations (r) 

between non-classical fragment lipophilicity and experimental toxicity for 11 AE42 

peptides. The length (L) and residues involved with its classification based on the 

classical segments are also given for each fragment.  

Top 10 best positive non-classical 

fragments correlation 

Top 10 best negative non-classical 

fragments correlation 

Fragment

(residues) 

Classical 

segments 

involved 

L r Fragment

(residues)

Classical 

segments 

involved 

L r 

2-20 NT-CHC 19 0.91 21-24 CHC-Loop 4 -0.81 

2-18 NT-CHC 17 0.90 21-23 CHC-Loop 3 -0.77 

2-19 NT-CHC 18 0.90 21-25 CHC-Loop 5 -0.77 

3-20 NT-CHC 18 0.90 20-22 CHC-Loop 3 -0.76 

3-18 NT-CHC 16 0.89 21-26 CHC-Loop 6 -0.76 

3-19 NT-CHC 17 0.88 22-23 Loop-Loop 2 -0.75 

1-18 NT-CHC 18 0.88 22-24 Loop-Loop 3 -0.74 

1-19 NT-CHC 19 0.87 21-22 CHC-Loop 2 -0.73 

3-21 NT-CHC 19 0.87 20-24 CHC-Loop 5 -0.73 

2-21 NT-CHC 20 0.87 20-25 CHC-Loop 6 -0.71 

mean 18 0.89 mean 4 -0.75 
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These results pointed out two divergent tendencies between classical and non-

classical (i.e functional fragments) that led us to the hypothesis that the 

amphipathicity, expressed as the difference in lipophilicity between the two 

segments, could explain better the toxicity of AE42 peptides. In fact, it is well known 

that amphipathic peptides (e.g antimicrobial peptides) are more active but also more 

toxic when their amphipathicity increase.234 However, despite of the AE42 peptides 

having an amphipathic sequence (polar amino acids are found in the first 28 residues 

while the apolar ones in the last 14 residues)235 there is no a reported relationship 

between toxicity and amphipathicity for these peptides. To this end, we have 

examined systematically all possible combinations between different segments with 

diverse lengths (l > 2) with an opposite correlation with toxicity in order to compute 

its amphipathicity and correlate it with the experimental toxicity (see Table 20 and 

Figure 38). 

 

Table 20. Systematic search for the top 10 best correlations (r) between non-classical 

fragment amphipathicity and experimental toxicity for 11 AE42 peptides. The residues 

involved with its classification based on the classical segments are also given for each 

fragment.  

Residues Classical segments involved r 

(35-39) vs (2-18) CT vs NT-CHC -0.97 

(36-39) vs (2-18) CT vs NT-CHC -0.96 

(36-39) vs (2-19) CT vs NT-CHC -0.96 

(35-39) vs (2-19) CT vs NT-CHC -0.96 

(34-39) vs (2-19) CT vs NT-CHC -0.96 

(33-39) vs (2-19) CT vs NT-CHC -0.96 

(33-41) vs (2-19) CT vs NT-CHC -0.96 

(36-39) vs (2-20) CT vs NT-CHC -0.96 

 (21-22) vs (2-18) CHC-Loop vs NT-CHC -0.95 

(21-23) vs (2-18) CHC-Loop vs NT-CHC -0.95 
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Overall, the results are in line with the role of beta-hairpins in the aggregation11 and 

the prominent role of the NT region in the toxicity profile.12,13 Even more, overall, the 

present results point out to beta barrels as possible toxic oligomer structure, where 

the CHC-CT fragments would form the main body of the barrel and the NT segment 

would be exposed into solvent.13  

 

Finally, our findings suggest that the amphipathicity of monomeric AE42 peptides 

could drive its toxicity, similarly as has been widely reported in antimicrobial 

peptides and from there, the modulation of this physicochemical descriptor could be 

evaluated to control the toxic amyloid species. 
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4. METHODS 

4.1 Refinement of the MST Model for Solvation of Neutral and Ionic Compounds 

in n-Octanol. 

 

For the purpose of this study, several sets of molecules were used to refine the MST 

model. First, a set of 19 small nitrogen-containing aromatic compounds was used to 

calibrate the parametrization of pyridine-type and pirrole-type nitrogen atoms. This 

data set includes 6-methyluracil, 9-methyladenine, adenine, albendazole, caffeine, 

clonidine, cytosine, diphenylamine, fluconazole, fluorouracil, guanine, imidazole, 

metronidazole, phenytoin, pyridine, pyridimidine, pyrrole, thymine, and uracil (see 

Figure 7).  

 

Next, a set of 27 compounds was used to calibrate the suitability of the MST model to 

compute log PI values, This set included 18 cations (2-(2-pyridyl)-ethylammonium, 2-

phenylethylammonium, 3-carboxyanilinium, 4-carboxyanilinium, 4-methyl-N-

ethylbenzylammonium, 4-methyl-N-heptylbenzylammonium, 4-methyl-N-

pentylbenzylammonium, 4-phenylbutylamine, AceHisNH2, AceLysNH2, 

amitriptyline, desipramine, imipramine, lidocaine, tetrabutylammonium, 

tetraethylammonium, tetramethylammonium, tetrapentylammonium) and 9 anions 

(2-4-dichlorophenoxyacetate, 5-phenylvalerate, AceAspNH2, AceGluNH2, diclofenac, 

ibuprofen, indomethacin, naproxen, pentachlorophenolate; see Figure 10).  

 

Finally, a set of 35 compounds was used to calibrate the behavior of the refined MST 

model for predicting the partition coefficient of the neutral compound (PN), and the 

distribution coefficient at pH 7.4 (D7.4,), taking advantage of the available 

experimental data for pKa, log PN and log D7.4. This data set includes 31 drugs 

(albendazole, amitriptyline, antipyrine, bumetanide, caffeine, clormipramine, 

clonidine, clozapine, cyclobenzaprine, desipramine, diazepam, diclofenac, 

diphenylamine, estradiol, fluconazole, flurbiprofen, ibuprofen, imipramine, 

indomethacin, lidocaine, loratadine, maleic acid, metoclopromaide, metronidazole,
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 mezoridazine, naproxen, paracetamol, pentachlorophenol, pentoxifylline, 

phenytoin, and triflupromazine; see Figure 13) and 4 amino acids (aspartic acid, 

glutamic acid, histidine and lysine, capped with acetyl and amide groups at the N- 

and C-terminus).  

 

On the other hand, the refined model was checked by computing the pH-dependent 

distribution profiles in the framework of the different partitioning schemes discussed 

above. To this end, several drugs (ibuprofen, imipramine, desipramine, 

pentachlorophenol, lidocaine, amitryptiline, and warfarin), and four amino acid 

analogues (N-acetyl-L-aspartic acid amide, N-acetyl-L-lysine amide, N-acetyl-L-

glutamic acid amide, and N-acetyl-L-histidine amide) were considered taking 

advantage of the available experimental data for these compounds.  

 

The molecular geometries of the compounds were fully optimized at the B3LYP/6-

31G(d) level of theory in the corresponding solvent phase, water or n-octanol, using 

the IEFPCM version of MST model. Then, single point calculations in gas phase and 

in solution were performed in order to estimate the free energy of solvation in water 

and n-octanol. All calculations were performed in Gaussian 09.239  

 

For the set of ionizable compounds, computations were performed for the minimum 

structure obtained after geometry optimization of an extended conformation of the 

molecule. This strategy was motivated by the generally low number of rotatable 

bonds present in these compounds (see Figure 14), as well as by the similar n-

octanol/water transfer free energies obtained from a single-conformation approach 

and from conformational ensembles for drug-like compounds in a previous study.57 

Nevertheless, for the subset of N-acetyl-L-amino acid amides, calculations were 

performed taking into account all possible rotamers with a probability contribution 

higher than 5% to the total conformational space as given by the backbone-

dependent conformational library reported by Dunbrack and Karplus.58,59 

Calculation of the log D was accomplished using eqs 5, 6, and 30. Data for the 
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partition of inorganic ions required for eq 30 were taken from the literature (

,  and ).191,240,241 

4.2 Experimental Determination of Partition of Neutral and Ionic Species for 

Indomethacin and Chlorpromazine. 

Partition of neutral and ionic species for indomethacin and chlorpromazine were 

performed using the potentiometric method. For this task was designed a multiset of 

the potentiometric pKa determinations using different ratios of volumes of water and 

n-octanol how is shown in the Tables 21 and 22. 

 

Table 21. Experimental Design for the Potentiometric Determination of log PN and 

log PI for Indomethacin.  

id 
Mass 

(mg) 

Initial KCl 

in aqueous 

solution 

(mol/L) 

Volume 

water 

(Vw, mL) 

Volume 

n-octanol 

(Vo, mL) 

Ratio 

(Vw/ Vo) 
File 

1 3.15 

- 

15 3 5 0502 

2 3.95 10 1 10 0503 

3 3.16 19 1 19 0702 

4 3.44 20 0.5 40 1002 

5 2.74 21 0.3 70 1003 

1 4.12 

1x10-5 

15 1 5 0803 

2 3.32 10 2 10 0804 

3 3.93 19 3 19 1202 

4 3.26 20 4 40 1203 

5 3.45 21 5 70 1204 

1 3.10 

1x10-3 

19 1 19 2904 

2 3.14 16 3 5 2905 

3 3.01 20 0.5 40 3002 

4 3.33 10 1 10 3003 

5 3.04 17 0.2 85 3102 

1 3.13 

0.15 

15 3 5 3103 

2 2.93 10 1 10 3104 

3 3.59 19 1 19 0603 

4 3.24 20 0.5 40 0604 

5 3.15 21 0.3 70 0605 

 

 

 

 

logP
I ,Cl�
º  �4.5 logP

I ,Na�
º  �2.5 logP

I ,K�
º  �2.6
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Table 22. Experimental Design for the Potentiometric Determination of log PN and 

log PI for Chlorpromazine.  

id 
Mass 

(mg) 

Initial KCl 

in aqueous 

solution 

(mol/L) 

Volume 

water 

(Vw, mL) 

Volume 

n-octanol 

(Vo, mL) 

Ratio 

(Vw/ Vo) 
File 

1 3.81 

- 

15 1 5 1103 

2 3.98 10 2 10 1104 

3 3.93 19 3 19 1105 

4 3.07 20 4 40 1106 

5 3.00 21 5 70 1107 

1 3.13 

1x10-5 

15 1 5 1204 

2 3.18 10 2 10 1205 

3 3.59 19 3 19 1206 

4 3.32 20 4 40 1207 

5 3.30 21 5 70 1702 

1 3.56 

1x10-3 

19 1 19 1703 

2 3.86 16 3 5 1704 

3 3.64 20 0.5 40 1705 

4 3.50 10 1 10 1802 

5 3.33 17 0.2 85 1803 

1 3.20 

0.15 

15 3 5 1804 

2 3.27 10 1 10 1805 

3 3.74 19 1 19 1806 

4 3.40 20 0.5 40 1807 

5 3.10 21 0.3 70 - 

 

 

4.3 Development of the Lipophilicity Scale for Amino Acid Residues. 

Following a previous study on the hydration free energy of the natural amino 

acids,155 the N-acetyl-L-amino acid amides (CH3-CO-NH-CHR-CONH2) were chosen 

as molecular models. Using the backbone-dependent conformational library reported 

by Dunbrack and coworkers,190,242,243 a total of 572 rotamers (i.e., conformers with a 

probability contribution higher than 5% to the total conformational space of each 

residue) were compiled. These structures were then used to compute the n-

octanol/water transfer free energies, which were performed with the B3LYP/6-

31G(d) MST136 version of the IEF-PCM143,244 model. Computation of the distribution 

coefficients at a given pH (log D) was performed by combining the partition 

coefficient of neutral and ionic species (for ionizable residues) using eq 6. 
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The contribution of the conformational species in water and n-octanol was accounted 

for considering two weighting schemes, giving rise to the Solvent-like (SolvL) and 

Protein-like (ProtL) lipophilicities scales, respectively.   

 

(i) In the SolvL scale, the contribution of each conformational state to the partition 

coefficient of the neutral/ionized species was determined using a Boltzmann 

weighting scheme, where the effective free energy was estimated by combining the 

internal energy of the conformer and its solvation free energy in water and n-octanol. 

To this end, the geometry of all rotamers was optimized at the B3LYP/6-31G(d) level 

of theory while keeping the backbone dihedrals fixed to the torsional values of the 

Dunbrack’s library, and subsequently single-point calculations in the gas phase and 

in solution. The log D was then computed using eq 6, adopting the pKa values 

reported for ionizable residues from experimental peptide models in aqueous 

solutions.192,193 

 

(ii) In the ProtL scale, the contribution of each conformation to the partition between 

the two solvents was determined by using the weights reported in the Dunbrack`s 

library, which reflect the rotameric distribution in a protein environment. The pKas of 

ionizable residues were taken from values in folded proteins.194,195 

 

For the sake of comparison, we also computed both approaches with the SMD model 

using the B3LYP/6-31G(d) level of theory.137All calculations were performed using a 

locally modified version of Gaussian 09.239   
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4.4 Comparison of the Lipophilicity Scale for Amino Acid Residues with 

Experimental Scales. 

Due to the diversity of experimental lipophilicity scales of amino acids, generally 

expressed in terms of transfer free energies, comparison was made by converting 

them to partition/distribution coefficients, which were subsequently normalized to 

Gly following eq 37. 

 

logP
N

/D
pH

 
(�''G

transf,AA
�''G

transf,Gly
)

RTln 10
(37) 

 

where ''G
transf,AA

 is the transfer free energy of a given amino acid from the aqueous 

phase to the organic/biological environment, and ''G
transf,Gly

 is the free energy of  

transfer of Gly.               

 

4.5 Determination of the Cumulative Lipophilicity in Peptides. 

Most of the experimental scales present in the literature compute the lipophilicity of 

a given peptide as the sum of individual lipophilicity of the constituent amino acids 

relative to a reference residue, usually Gly or Ala. Since the MST solvation model 

gives atomic contributions to the transfer free energy,245–247 we can separate the 

global lipophilicity in contributions corresponding to the backbone (bb), side-chain 

(sc), and the capping groups (cg). Combination of the bb and sc contributions yields 

the amino acid lipophilicity (reported in Table 1 in the manuscript), whereas the 

contribution of the capping groups has been estimated to be (N-terminus) CH3CO– 

(logPN = 0.20), NH3
+– (logD7.4 = -2.99), and (C-terminus) NH2– (log PN = -1.08), NMe– 

(logPN = 0.35), COO-– (logD7.4  = -4.89). 

 

The cumulative lipophilicity of a peptide with Nres residues may be estimated by 

using eq 38. 

 

(38) log(PN /DpH )peptide  log(PiN /DpH
i )bb�sc

i 1

Nres

¦ � log(PiN /DpH
i )cg

i 1

Ncg

¦

/ 
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where  stands for the fragment (bb+sc or cg) partition/distribution 

coefficient, Nres and Ncg  being the total number of residues and capping groups in the 

peptide.  

 

For practical applications, this simple expression is convenient when there is no 

explicit knowledge about the 3D structure of peptides, as may occur in structureless 

peptides. For our purposes here, this is the expression adopted to evaluate the 

lipophilicity of small, flexible peptides in solution. 

 

On the other hand, if the 3D structure of the peptide is known from experimental (X-

ray, NMR) or computational (Molecular Dynamics) approaches, then the cumulative 

lipohilicity may be estimated taking into account the specific structural features of 

peptides/proteins, as noted in eq 39. 

 

log(PN / DpH )peptide  O i � log(PiN / Di
pH )bb�sc �O i � log(PiN / Di

pH )cg �D i �E i� �
i 1

Nres

¦ (39)

 

In eq 39,  stands for the fraction of solvent-exposed surface area (SASA) of the 

amino acid (bb+sc) or capping group (cg) according to the local structural 

environment of in a peptide/protein. For our purposes, the SASA was determined 

using NACCESS.202 

 

In addition, two correction factors were also introduced. The parameter  

introduces a correction to the hydrophobic contribution when the backbone 

participates in a hydrogen bond (HB). This contribution can be estimated to amount, 

on average, to 0.73 (log P units) per HB.248 The occurrence of this kind of HBs in a 

given 3D structural model was determined with the DSSP program.213 Finally, the  

factor accounts for a correction due to the burial of the side chain of hydrophobic 

residues (Ala, Leu, Ile, Val, Pro, Phe, Trp, Met and Tyr) from water to a lipophilic 

environment. This contribution has been estimated to be 0.023 kcal mol−1 Å−2 

according to the studies reported by Moon-Fleming for the transfer of nonpolar side 

PiN /DpH
i

O i

D i

E i
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chains from water into a lipid bilayer.167 Therefore, the  term has been estimated 

from the fraction of the buried side chain with respect to the fully buried side chain, 

as noted in eq 40. 

                           

E i  Hres
i �(1�O i )sc (40) 

 
  

where Hres
i  stands for the hydrophobic contribution (in log P units) of a specific 

apolar residue, which was estimated as noted in eq 41 

                          

Hres
i  

0.023 �SASAres
sc

2.303RT
(41) 

 

where SASAres
sc  is the average SASA of a given residue type, R is the gas constant, 

and T is the temperature in the Kelvin scale. 

 

TheHres
i  values for nonpolar residues are given in Table 23. 

 

Table 23. Average Solvent Accessible Surface Area (SASA) for the Side Chain of the 

Hydrophobic Residues and the Hydrophobic Effect Contribution Value when the 

Side Chain is Fully Buried. 

Residue 
Average SASA 

(Å2) 

Hres
i

 

(log P units) 

Ala 69 1.2 

Val 130 2.2 

Leu 158 2.7 

 Ile 157 2.6 

Met 166 2.8 

Pro 115 1.9 

Phe 188 3.2 

Trp 232 3.9 

Tyr 201 3.4 

 

 

E i
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4.6 Analysis of AE42 Peptides Involved in the Alzheimer`s Disease. 

Understanding the effect of mutations on the segment hydrophobicity and 

amphipacity of a series of AE42 mutant monomers, whose toxicity are known, could 

shed some light on the geometrical and property factors that confers toxicity to the 

peptides. To this end, the global and segment lipophilicity of the AE42 mutant 

monomers (E22Q, E22G, E22K, D23N, D7N, A2V, D7H, H6R, WT, K16N, A21G) was 

computed from the corresponding conformational ensembles (8000 conformers for 

each mutant) generated from multi-seeded molecular dynamics simulations233 and 

confronted with the corresponding experimental toxicity in search of the highest and 

significant correlation coefficients.  Global and fragment lipophilicity was measured 

as an averague of log D7.4 according eq 39. The functional segments employed here 

(NT 1-16, CHC 17-21, Loop 22-30, CT 31-42, body of the peptide 17-42) are those 

already identified in literature according to the secondary structure. Averague 

amphipathicity, Amp
7.4

peptide
,
 
for the AE42 mutant monomers was computed from the 

difference between the averague lipophilicity of a hydrophobic fragment,
 

logD
7.4

F ,hpho , versus the averague lipophilicity of a hydrophilic fragment,
 

logD
7.4

F ,hphi

according to eq 42. 

 

Amp
7.4

peptide  logD
7.4

F ,hpho � logD
7.4

F ,hphi  (42)

 

 

where Amp refers to amphipathicity descriptor. 

 

 

 
 

 

  

( 

( 
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5. CONCLUSIONS 

a. The refinements made in the IEFPCM/MST method for the treatment of solutes in 

n-octanol improve the ability of the model for predicting both partitioning of neutral 

and ionic compounds. Although the balance between accuracy and computational 

cost is more favourable for empirical methods, the availability of refined versions of 

QM-based continuum solvation methods opens the way to the analysis of factors 

implicated in the partition of (bio)organic molecules in complex chemical systems. 

b. For the set of 35 compounds used in the determination of log D7.4, there are little 

differences between the calculated values determined at physiological pH with the 

three formalisms examined here. However, eq 6 is the minimal scheme required to 

rationalize the pH-dependent distribution profiles of ionizable compounds. The role 

of the Galvani potential difference (eq 30) between the two phases, however, may be 

relevant at higher concentrations of the background salt. 

c. The refined lipophilicity models (Schemes 6 and 7), in conjunction with the general 

model of lipophilicity developed (Scheme 8) in this thesis, can be useful to explain 

the effect of the background salt used in experiments. However, these must be tested 

experimentally (work underway). 

d. Accounting for pH conditions and structural preferences are necessary for 

improving the quantitative description of the lipophilicity of amino acids. The 

computation of log DpH using the Boltzmann`s weighting scheme (Solvent-like) led to 

a close agreement not only with Fauchère-Pliska scale, but also to high correlation 

with bulk-solvent scales. Furthermore, it also lead to significant correlations with the 

retention time of a wide variety of short peptides.  
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e. ProtL scale works in an efficient way to describe the local-context dependet 

lipophilicity, which was supported through of the differentiation of lipophilic 

profiles between the same peptides whose structure was reported using different 

structural methods in variate chemical environments. Also, this approach was able to 

describe the lipophilic complementarity in protein-protein complexes represented by 

MHC complex. 

 

f. The amphipathicity, derived from the lipohilic descriptors developed in this work, 

between the NT and CHC region and the Loop of the peptide in AE42 peptides 

emerges as a key factor for the aggregation propensity and its associated toxicity. 

Mutations that reinforce the hydrophilic character of the NT and CHC regions and 

the hydrophobic character of the main body of the peptide will cause an increment of 

aggregation propensity and toxicity. 

 

g. Present results pave the way to explore the application of this methodology to the 

calculation of hydrophobic parameters for other species of native residues (proline 

cis) or non-proteogenic amino acids, as well as to other fragments relevant to 

proteins. On the other hand, the applicability possibilities of the present versatile 

scale are vast, such as the development of scoring functions for peptide-protein or 

protein-protein docking protocols, among others. 
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ABSTRACT: Hydrophobicity is a key physicochemical
descriptor used to understand the biological profile of (bio)-
organic compounds as well as a broad variety of biochemical,
pharmacological, and toxicological processes. This property is
estimated from the partition coefficient between aqueous and
nonaqueous environments for neutral compounds (PN) and
corrected for the pH-dependence of ionizable compounds as
the distribution coefficient (D). Here, we have extended the
parametrization of the Miertus−Scrocco−Tomasi continuum
solvation model in n-octanol to nitrogen-containing hetero-
cyclic compounds, as they are present in many biologically
relevant molecules (e.g., purines and pyrimidines bases, amino acids, and drugs), to obtain accurate log PN values for these
molecules. This refinement also includes solvation calculations for ionic species in n-octanol with the aim of reproducing the
experimental partition of ionic compounds (PI). Finally, the suitability of different formalisms to estimate the distribution
coefficient for a wide range of pH values has been examined for a set of small acidic and basic compounds. The results indicate
that in general the simple pH-dependence model of the ionizable compound in water suffices to predict the partitioning at or
around physiological pH. However, at extreme pH values, where ionic species are predominant, more elaborate models provide a
better prediction of the n-octanol/water distribution coefficient, especially for amino acid analogues. Finally, the results also show
that these formalisms are better suited to reproduce the experimental pH-dependent distribution curves of logD for both acidic
and basic compounds as well as for amino acid analogues.

■ INTRODUCTION

The differential solubility of solutes in aqueous and nonaqueous
(organic) environments is a fundamental physicochemical property
for understanding a wide range of biochemical, pharmacological,

and toxicological processes of bioactive compounds.1−8 These
studies have primarily relied on molecular hydrophobicity, a
property that can be quantified by the partition coefficient (PN)
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Scheme 1. Thermodynamic Cycle Used to Determine the
Transfer Free Energy of a Compound (X) between Two
Immiscible Solvents

Scheme 2. Mechanism of n-Octanol/Water Partition for an
Ionizable Neutral Compound (HX)
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of a neutral molecule (X) between water and an organic phase,
typically n-octanol (eq 1).

=P
[X]
[X]N

o

w (1)

The transfer free energy of the solute between water and
n-octanol (ΔGo/w) can be related to the difference in the solvation
free energy upon transfer from the gas phase to the two solvents
(ΔGsol

w and ΔGsol
o ; Scheme 1). From a computational point of

view, quantum mechanical (QM) self-consistent continuum
solvation methods have proved to be a cost-effective approach
for the calculation of solvation free energies.9−13 Indeed, these
methods have been carefully parametrized to predict the sol-
vation free energies of neutral compounds in a wide variety of
solvents, typically with an uncertainty less than 1 kcal/mol.14,15

For an ionizable compound (HX), it is generally assumed that
only the neutral species can partition between water and
n-octanol, whereas both neutral and ionized species may exist at a
given pH in aqueous solution (Scheme 2). Under these cir-
cumstances, the total partitioning of the compound between
aqueous and organic phases is better described by the dis-
tribution coefficient (D), which depends on the pH of the
aqueous solution (eq 2).7,16

= − + δD Plog log log(1 10 )N (2)

where δ = pH − pKa for acids and δ = pKa − pH for bases.
Most druglike compounds included in chemical libraries

contain ionizable groups;16−20 therefore, distinct neutral and
ionized species may exist at a given pH. For an acidic compound,
the distribution coefficient will be close to the partition coeffi-
cient at low pH, but the hydrophobicity profile will be affected by
the partitioning of the ionized compound at high pH.21 At this
point, it is well-known that the absorption of bioactive com-
pounds is influenced by the pH changes along the human
gastrointestinal tract, with a maximal absorption of weak acids
in the jejunum (pH ≈ 4.5) and weak bases in the ileum
(pH ≈ 8.0).22 Furthermore, it has been noticed that the
pH-dependent hydrophobicity profile may be influenced not
only by the partition of distinct neutral and ionic species but also
by the potential contribution due to the formation of ion pairs
formed with counterions.23−25

Predicting the hydrophobicity profile of ionizable compounds
challenges the suitability of continuum solvation models for
estimating the differential solvation of ionic species with chemical
accuracy. This can be justified by the larger experimental uncer-
tainties associated with experimental values of the solvation free
energies of charged species compared to neutral ones.26−28 Thus,
the solvation free energy of neutral solutes is generally deter-
mined from partition coefficients between the gas phase and
aqueous solutions, and the experimental uncertainty increases
with the solvation free energy, limiting the applicability of this
technique to solutes with solvation free energy (in absolute
terms) less than ∼12 kcal/mol.29 Accordingly, ionic compounds
require the use of indirect approaches based on the use of suitable
thermodynamic cycles.26−28,30,31 On the other hand, the strong
solute−solvent interactions existing between ionic species and
polar solvent molecules in the first solvation shells may hardly be
captured from the crude representation of a polarizable con-
tinuum, which is better suited to account for bulk solvent elec-
trostatic effects, making it necessary to carry out a careful adjust-
ment of electrostatic and nonelectrostatic contributions to the
solvation free energy.

The aim of this study is twofold. First, we report the refine-
ment of the Miertus−Scrocco−Tomasi (MST) continuum sol-
vation model,10,32 which relies on the integral equation for-
malism of the polarizable continuum model (IEFPCM),33 to
account for the solvation free energy of nitrogen-containing
heterocyclic molecules, as well as ionic compounds, in n-octanol.
This is accomplished within the framework of the B3LYP/
6-31G(d) version of the integral IEFPCM/MST model,34 taking
advantage of the experimental data compiled for a variety of
neutral and ionic species in this solvent. Second, the MST model
is used to determine the pH-dependent hydrophobicity pro-
file taking into account different physicochemical models for the
partition of ionizable compounds. In particular, attention will be
paid to the experimental distribution curves of logD of acidic
compounds that have already been reported in previous
studies,16,35,36 but also for basic compounds and for amino acid
analogues, which have been scarcely examined in the lit-
erature.37,38

■ THEORY AND COMPUTATIONAL DETAILS
Physicochemical Models of Hydrophobicity Profile.

Scheme 2 shows the simplest and most widely used model to
account for the pH dependence on the partition of ionizable
compounds. Nevertheless, more elaborate models have been
proposed to refine the distribution model of these compounds.
The most straightforward correction comes from the assumption
that a certain amount of the ionic species may also partition
between water and n-octanol (Scheme 3). In this context, for a

monoprotic acid (HX) the total partition of the solute can be
expressed in terms of the partition constant of the neutral com-
pound (PN; eq 1) and of the ionic species (PI; eq 3), as noted in
eq 4.39

=
−

−P
[X ]
[X ]I

o

w (3)

= + · − +δ δD P Plog log( 10 ) log(1 10 )N I (4)

More elaborate models take into account the fact that the
distribution of an ionizable compound may be also influenced by
the electric potential created at the water−organic interphase
(Δo

wϕ), which would affect the partition of the ionic species (X−)
and other counterions (CI

+) present in solution (Scheme 4).
At equilibrium, the ion distribution is determined by the equality of
the electrochemical potential between two immiscible electrolyte
solutions, and the apparent partition coefficient of X− (log PI,X−)
can be determined from eq 5.40,41

ϕ= ° + Δ− −P P
z F

RT
log log

ln 10I,X I,X
X

o
w

(5)

where log PI,X−° represents the partition coefficient for a non-
polarized interface and depends only on the chemical structure

Scheme 3. Mechanism of n-Octanol/Water Partition for Both
Neutral (HX) and Ionic (X−) Species
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of X−; Δo
wϕ is the Galvani potential difference between the two

phases, R the gas constant, T the absolute temperature, and F the
Faraday constant; zX stands for the formal charge of X−.
Assuming that the two immiscible electrolyte solutions are

dilute, and that all ionic species are fully dissociated in both
phases (i.e., no ion pair formation), it has been shown that for a
generic electrolyte (C+A−) the Galvani potential difference can
be rewritten as42,43

ϕ
ϕ ϕ

Δ =
Δ + Δ+ −⎛

⎝⎜
⎞
⎠⎟2o

w o
w

C
o

o
w

A
o

(6)

Because the standard partition coefficient of a given ionic
species i is given by40

ϕ= − ΔP
z F

RT
log

ln 10i
i

iI,
o

o
w o

(7)

it can be deduced that the apparent partition of X− can be
expressed as

=− − +P P PX
app

X
o

C
o

I (8)

where CI
+ denotes the corresponding counterion of species X−.

The distribution coefficient is given by

= + · − +δ δ+ −D P P Plog log( 10 ) log(1 10 )N I,C
o

I,X
o

I (9)

which explains why the distribution coefficient increases in the
presence of a more hydrophobic counterion.41

As a final remark, let us note that partitioning of a cationic
species, X+, would give rise to distribution coefficients formally
analogous to eqs 4 and 9, which are omitted here for the sake of
brevity. It is also worth noting that the preceding formalisms
limit the distribution coefficient to the partition of both neutral
and ionic species of an ionizable compound. However, it is con-
ceivable that partitioning may also involve other chemical
entities, especially for nondilute solutions, such as ionic pairs with
counterions present in solution30,44,45 and formation of molec-
ular aggregates.46,47 This represents an additional level of com-
plexity to the partitioning scheme, making it necessary to account
for thermodynamic data regarding association equilibria and
partitioning of the ion pair and other aggregated species, which is
beyond the scope of this study.
MST Model. In the Miertus−Scrocco−Tomasi model, the

solvation free energy (ΔGsol) is calculated by adding nonelec-
trostatic (ΔGn‑ele) and electrostatic (ΔGele) contributions, which
are calculated using a double molecule-shaped cavity for the
solute embedded in the polarizable continuum medium.10 The
nonelectrostatic component is determined by combining cavita-
tion (ΔGcav) and van der Waals (ΔGvW) contributions; ΔGcav
is determined by following Pierotti’s scaled particle theory48

adapted to molecule-shaped cavities using the procedure

proposed by Claverie (eq 10).49 In turn, ΔGvW is computed
using a linear relationship to the solvent-exposed surface of each
atom (eq 11). Both cavitation and van der Waals terms are
estimated by using the van der Waals surface of the solute.

∑ ∑Δ = Δ = Δ
= =

G G
S
S

G
i

N

i
i

N
i

icav
1

cav,
1 T

P,
(10)

where ΔGP,i is the cavitation free energy of atom i determined
using Pierotti’s formalism, whose contribution is weighted by the
contribution of the solvent-exposed surface (Si) of atom i to the
total surface (ST).

∑ ∑ ξΔ = Δ =
= =

G G S
i

N

i
i

N

i ivW
1

vW,
1 (11)

where ξi denotes the atomic surface tension of atom i, which is
determined by fitting the experimental free energy of solvation.
The electrostatic term (ΔGele) measures the work needed to

build up the solute charge distribution in the solvent. To this end,
a solvent-excluded surface is obtained by scaling the atomic radii
by a factor (λ) of 1.25 for solvation in water and 1.50 for solvation
in n-octanol.32,34 These scaling factors were derived from a
systematic analysis that included the comparison between the
electrostatic component obtained from MST calculations and
the work required to annihilate the solute charge in solution as
determined from classical free-energy calculations. However,
while this strategy is valuable for describing the solvation of
neutral solutes, accounting for the strong electrostatic response
of the solvent induced by ionic species, and the structural
perturbation of the solvent molecules in the first hydration shell
relative to the bulk solvent,50−52 was treated by reducing the
solvent-excluded surface in the IEFPCM/MST model.53 Thus,
the optimum cavity for the hydration of charged compounds was
defined by scaling the atomic radii of the groups bearing the
formal charge by a factor of ∼1.13, which implies a reduction of
ca. 10% relative to neutral solutes.
Besides retaining the simplicity of the original MST formalism,

this strategy introduces a minimum number of parameters to
describe the hydration of ionic species. However, it is unclear to
what extent the reduction in the solvent-excluded surface is well-
suited to the calculation of the electrostatic component of the
solvation free energy in nonaqueous solvents. In particular, one
of our aims here is to check the suitability of this strategy for
describing the partition of ionic species between water and
n-octanol, taking advantage of the availability of PI values for a
representative number of druglike compounds.

Computational Details. For the purpose of this study,
several sets of molecules were used to refine the MST model.
First, a set of 19 small nitrogen-containing aromatic compounds
was used to calibrate the parametrization of pyridine-type and
pirrole-type nitrogen atoms. This data set includes 6-methyl-
uracil, 9-methyladenine, adenine, albendazole, caffeine, cloni-
dine, cytosine, diphenylamine, fluconazole, fluorouracil, guanine,
imidazole, metronidazole, phenytoin, pyridine, pyridimidine,
pyrrole, thymine, and uracil (Figure S1).
Next, a set of 27 compounds was used to calibrate the suitability

of the MST model to compute log PI values. This set included 18
cations [2-(2-pyridyl)-ethylammonium, 2-phenylethylammonium,
3-carboxyanilinium, 4-carboxyanilinium, 4-methyl-N-ethylbenzy-
lammonium, 4-methyl-N-heptylbenzylammonium, 4-methyl-N-
pentylbenzylammonium, 4-phenylbutylammonium, N-acetyl-L-
histidine amide,N-acetyl-L-lysine amide, amitriptyline, desipramine,

Scheme 4. Mechanism of n-Octanol/Water Partition for
Neutral (HX) and Ionic Species (X− and CI

+) Influenced by
the Electric Potential at the Interphase (Δo

wϕ)
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imipramine, lidocaine, tetrabutylammonium, tetraethylammonium,
tetramethylammonium, tetrapentylammonium] and 9 anions (2-4-
dichlorophenoxyacetate, 5-phenylvalerate, N-acetyl-L-aspartic acid
amide,N-acetyl-L-glutamic acid amide, diclofenac, ibuprofen, indo-
methacin, naproxen, and pentachlorophenolate; see Figure S2).
Finally, a set of 35 compounds was used to calibrate the

behavior of the refined MST model for predicting the partition
coefficient of the neutral compound (PN), and the distribution
coefficient at pH 7.4 (D7.4), taking advantage of the available
experimental data for pKa, log PN, and logD7.4. This data set

includes 31 drugs (albendazole, amitriptyline, antipyrine, bume-
tanide, caffeine, clormipramine, clonidine, clozapine, cyclo-
benzaprine, desipramine, diazepam, diclofenac, diphenylamine,
estradiol, fluconazole, flurbiprofen, ibuprofen, imipramine,
indomethacin, lidocaine, loratadine, maleic acid, metoclopro-
maide, metronidazole, mezoridazine, naproxen, paracetamol,
pentachlorophenol, pentoxifylline, phenytoin, and trifluproma-
zine; see Figure S3) and 4 amino acids (aspartic acid, glutamic
acid, histidine, and lysine, capped with acetyl and amide groups at
the N- and C-terminus). Table S1 reports the experimental
values for pKa, log PN, and logD7.4 for all these molecules.

39,54,55

Finally, the refined model was checked by computing the
pH-dependent distribution profiles in the framework of the dif-
ferent partitioning schemes discussed above. To this end, several
drugs (ibuprofen, imipramine, desipramine, pentachlorophenol,

Table 2. Experimental and Computed log PI Values for the Set
of 27 Ionic Compounds Used in the Refinement of the MST
Method

compounda
computed log PI

(original)
computed log PI

(refined) exptl

2-2-pyridyl
-ethylammonium

−1.7 −0.4 −2.3b

2-phenethylammonium −7.1 0.4 −1.6b

2-4
-dichlorophenoxyacetate

−5.5 −0.7 −0.9c

3-carboxyanilinium −9.2 −1.6 −0.9c

4-carboxyanilinium −9.4 −1.6 −0.4c

4-methyl-N
-ethylbenzylammonium

−6.4 −1.9 −0.8d

4-methyl-N
-heptylbenzylammonium

−3.6 0.1 2.1d

4-methyl-N
-pentylbenzylammonium

−4.7 −0.9 0.8d

4-phenylbutylammonium −6.1 1.5 0.7e

5-phenylvalerate −6.1 −0.4 −1.0c

N-acetyl-L-aspartic amidef −6.8 −2.8 −2.6g

N-acetyl-L-glutamic
amidef

−6.2 −3.4 −2.5g

N-acetyl-L-histidine amideh −7.9 −1.7 −3.4g

N-acetyl-L-lysine amidef −7.7 −1.8 −2.8g

amitriptyline −1.1 1.3 0.2c

desipramine −2.7 0.0 0.3c

diclofenac −4.3 0.7 0.7c

ibuprofen −5.9 −0.7 −0.2c

imipramine −0.6 1.8 0.5c

indomethacin −2.7 2.1 0.6c

lidocaine −2.6 −0.7 −0.5c

naproxen −5.5 −0.6 −0.2c

pentachlorophenol −1.9 1.8 1.3i

tetrabutylammonium 1.2 3.3 2.3j

tetraethylammonium −2.8 −0.8 −0.9j

tetramethylammonium −5.6 −2.7 −2.0j

tetrapentylammonium 3.0 5.1 3.8j

msek 4.1 −0.2
muek 4.1 0.9
rmsdk 4.7 1.1

aSee Figure S2. bRef 63. cRef 39. dRef 25. eRef 64. fValues derived
from logD7.4 data reported in ref66, assuming full ionization of the
compounds at physiological pH. gRefs 65. and66. hEstimated from
additive scheme (see Supporting Information). iRef 24. jRef 67.
kMean signed error (mse), mean unsigned error (mue), and root-
mean square deviation (rmsd) calculated relative to the experimental
values are given in log P units.

Table 1. Calculated and Experimental n-Octanol/Water
Partition Coefficient (log PN) for the Series of Neutral
Nitrogen-Containing Aromatic Compounds Used in the
Refinement of ξN and ξNH Atomic Surface Tensions for
n-Octanol

compounda
computed log PN

(original)
computed log PN

(refined) exptlb

6-methyluracil (1) −1.7 −0.5 −1.2
9-methyladenine (2) −2.9 −0.3 0.0
adenine (3) −4.1 −1.1 −0.1
albendazole (4) 2.0 3.7 2.7
caffeine (5) −0.2 0.9 −0.1
clonidine (6) 1.1 2.8 1.6
cytosine (7) −4.3 −2.2 −1.7
diphenylamine (8) 3.1 3.7 3.5
fluconazole (9) −1.2 1.1 0.4
fluorouracil (10) −2.2 −0.9 −0.9
guanine (11) −5.9 −2.7 −0.9
imidazole (12) −2.2 −1.1 −0.1
metronidazole (13) −0.9 0.0 0.0
phenytoin (14) 2.0 3.2 2.5
pyridine (15) 0.4 0.9 0.7
pyrimidine (16) −0.8 0.1 −0.4
pyrrole (17) −0.2 0.5 0.8
thymine (18) −1.8 −0.5 −0.6
uracil (19) −2.3 −1.1 −1.1

msec 1.4 −0.1
muec 1.4 0.6
rmsdc 1.9 0.8

aSee Figure S1. bRef 62. cMean signed error (mse), mean unsigned
error (mue), and root-mean square deviation (rmsd) calculated
relative to the experimental values are given in log P units.

Figure 1. Comparison between experimental and calculated n-octanol/
water log PN for the series of neutral nitrogen-containing aromatic
compounds. Calculated values determined from IEFPCM/MST
calculations using the original parametrization of the IEF-MST method
(green) and the refined atomic surface tension for N- and NH atom
types (blue).
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lidocaine, amitriptyline, and warfarin) and four amino acid ana-
logues (N-acetyl-L-aspartic acid amide, N-acetyl-L-lysine amide,
N-acetyl-L-glutamic acid amide, andN-acetyl-L-histidine amide)
were considered taking advantage of the available experimental
data for these compounds.
The molecular geometries of the compounds were fully

optimized at the B3LYP/6-31G(d) level of theory in the cor-
responding solvent phase, water or n-octanol, using the IEFPCM
version of the MST model. Then, single-point calculations in the
gas phase and in solution were performed in order to estimate the
free energy of solvation in water and n-octanol. All calculations
were performed in Gaussian 09.56 For the set of ionizable com-
pounds, computations were performed for the minimum struc-
ture obtained after geometry optimization of an extended con-
formation of the molecule. This strategy was motivated by the
generally low number of rotatable bonds present in these
compounds (see Figures S2 and S3), as well as by the similar
n-octanol/water transfer free energies obtained from a single-
conformation approach and from conformational ensembles for
druglike compounds in a previous study.57 Nevertheless, for the
subset of N-acetyl-L-amino acid amides, calculations were per-
formed taking into account all possible rotamers with a prob-
ability contribution higher than 5% to the total conformational
space as given by the backbone-dependent conformational
library reported by Dunbrack and Karplus.58,59

Calculation of logD was accomplished using eqs 2, 4, and 9
using experimental pKa values (Table S1). Application of eq 9
was performed paying particular attention to the counterion used
for computation of the distribution coefficient, maintaining con-
sistency with the experimental procedure reported in the original
works (see below). Specifically, data for the partition of inorganic
ions (log PI,Cl−° = −4.5, log PI,Na+° = −2.5 and log PI,K+° = −2.6)
required for the application of eq 9 to acidic and basic com-
pounds were taken from the literature.25,60,61

■ RESULTS
Refinement of the MST Model for Solvation in

n-Octanol. One of the initial aims of this study was to refine
the parametrization of the MST model for nitrogen-containing
aromatic compounds (Figure S1), as they are key structural
elements in many biologically relevant molecules and drugs but
were poorly represented in the data set of compounds considered
in the original B3LYP/6-31G(d) parametrization of the IEFPCM/
MST model. Indeed, preliminary calculations performed for a
subset of 12 heterocyclic organic compounds (2−7, 9, 11−13,
15, and 16; see Table 1 and Figure S1) revealed the need to
adjust the surface tension of the pyridine-like nitrogen atom for
solvation in n-octanol. Thus, the original atomic surface tension
assigned to the N-type atom (ξN = −0.115 kcal mol−1 Å−2) was
found to underestimate the solvation free energy in n-octanol,
and a better agreement with experimental data was achieved
upon adjustment to a surface tension of −0.161 kcal mol−1 Å−2,
which was therefore adopted in the refined version. Additional
analyses were performed to check the surface tension for the pyrrole-
like nitrogen atom (NH-type), even though in this case adjustment
of the original surface tension (ξNH = −0.234 kcal mol−1 Å−2) to
−0.295 kcal mol−1 Å−2 was found to have a lower effect on the
solvation free energy in n-octanol.
The effect of these refinements is shown in Table 1, which

reports the solvation free energies determined with the original
and refined parameters, as well as the experimental data62 for the
set of compounds. The adjustment of the surface tension of these
two atoms types sufficed to improve significantly the ability of
the IEFPCM/MSTmodel for predicting the log PN values of these
compounds. This is noted in the reduction of the root-mean
square deviation (rmsd) from 1.9 (log P units) in the original
parametrization to 0.8 for the refined version (Table 1), as well as
in the comparison between experimental and calculated log PN
values, as the refined surface tensions (ξN and ξNH) improve the

Figure 2.Comparison between experimental and calculated log PI values for the series of 27 ionic compounds. Acidic and basic compounds are shown in
blue and green, respectively. Calculated values were determined from IEFPCM/MST computations using the original (top left) and refined (top right)
parameters, as well as ACD/I-Lab (bottom left) and ChemAxon (bottom right).
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regression correlation with the experimental values from 0.85 to
0.93 (see Figure 1).
Calibration of the MST Model for Ionic Compounds in

n-Octanol. In the MST model the electrostatic contribution to
the hydration free energy of charged species is determined by
reducing the solvent-exposed cavity of the charged atoms by a
factor close to 10%.53 While this strategy proved to be valuable
for calculating the solvation of univalent ionic species in water, its
suitability in other solvents has never been checked. Therefore,
for our purposes here, it is necessary to calibrate the suitability of
this strategy for the solvation of ionic compounds in n-octanol.
To this end, calculations were performed for a set of 27 com-
pounds (see Table 2 and Figure S2), including 9 anions and
18 cations, taking advantage of the availability of partition
coefficients for these charged species.23,24,38,63−67

Comparison of the calculated and experimental log PI values
determined for these compounds suggested that the optimal
scaling factor, λ, for solvation in n-octanol must be reduced by
around 19%, which implies that the scaling factor used for neutral
compounds (λ = 1.50) must be close to 1.20 for charged chemical
groups. This adjustment enhances the contribution of the elec-
trostatic component to the solvation free energy for charged
compouds, following the trends reported for the hydration
of monovalent ions,53 an effect interpreted from the balance
between the gain in solvent−solute stabilization energy triggered
by the solute’s electron density redistribution upon solvation and
the energy cost associated with distortion of the electron density
by the solvent reaction field.50−52 Because of the formal
simplicity of this correction, the suitability of the atomic surface
tension was further checked. In the case of cations with a
localized charge on the sp3 nitrogen atom, it was necessary to
enlarge the surface tension of the nitrogen atom (NH atom type)
by a factor of 17% (ξNH = −0.274 kcal mol−1 Å−2). This enlarge-
ment was also extended to themethylene/methyl groups bound to
the protonated nitrogen atom (ξCHx = −0.227 kcal mol−1 Å−2),
which may be related to the inductive effect noted in the increased

Table 3. Calculated and Experimental n-Octanol/Water
Partition Coefficient (log PN) for the Set of 35 Small
Molecules

compound computed exptla

albendazole 3.7 2.7
amitriptyline 6.5 4.9
antipyrine 2.0 0.4
bumetanide 2.6 2.6
caffeine 0.9 −0.1
clomipramine 6.7 5.2
clonidine 2.8 1.6
clozapine 5.5 3.2
cyclobenzaprine 6.3 5.2
desipramine 5.7 4.9
diazepam 4.5 2.8
diclofenac 5.6 4.5
diphenylamine 3.7 3.5
estradiol 4.2 3.7
fluconazole 1.1 0.4
fulbipronen 4.2 4.2
ibuprofen 3.2 4.0
imipramine 5.9 4.8
indomethacin 4.9 4.3
lidocaine 2.8 2.4
loratadine 7.4 5.2
maleic acid −1.5 −0.5
metoclopramide 2.2 2.6
metronidazole 0.0 0.0
mezoridazine 6.5 3.9
N-acetyl-L-aspartic amideb −2.3 −2.0
N-acetyl-L-glutamic amideb −1.5 −1.9
N-acetyl-L-histidine amideb −0.9 −1.9
N-acetyl-L-lysine amideb −0.4 −0.8
naproxen 2.7 3.2
paracetamol −0.1 0.5
pentachlorophenol 3.8 5.0
pentoxifylline 1.6 0.3
phenytoin 2.0 2.5
triflupromazine 6.6 5.5

msec −0.6
muec 0.9
rmsdc 1.1

aSee Table S1. bEstimated from additive scheme (see the Supporting
Information). cMean signed error (mse), mean unsigned error (mue),
and root-mean square deviation (rmsd) calculated relative to the
experimental values are given in log P units.

Figure 3.Comparison between experimental and calculated log PN for a
set of 35 small molecules. Computed values were determined by using
the refined IEFPCM/MST calculations (top) and by using ACD/I-Lab
logD (middle) and ChemAxon (bottom).
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chemical shift observed in 1H NMR studies (see Table S2).68

This effect is known to be less important for the carbon atoms
bound to the groups with delocalized charges (i.e., carboxylate
anions; see Table S2), where no further adjustment was needed.
The log PI values calculated for the whole set of ionic organic

compounds using the new parameters are presented in Table 2,
which also collects the experimental data. The mean signed error
was reduced from 4.1 to −0.2 (log PI units), and the rmsd was
decreased from 4.7 to 1.1 (log PI units) after implementation of
the preceding adjustments in the MST model. The difference
between calculated and experimental values may, at least in
part, reflect the variance in the experimental data, as noted for
diclofenac, because the experimental data may vary between
0.45 and 0.8 depending on the experimental conditions used to
estimate the partition coefficient.36 Furthermore, Figure 2 shows
the improved correlation between the refined log PI values and

the experimental ones, which corrected the systematic tendency
to overestimate the hydrophilicity of the charged compounds
in the original parametrization of the IEFPCM/MST method.
For the sake of comparison, it is worth noting that the refined
log PI values are in agreement with the behavior observed for
the values estimated by using empirical methods, such as ACD/
I-Lab69 and ChemAxon70 methods (see Figure 2).

Table 4. Experimental and Calculated Distribution
Coefficients (logD7.4) Determined for the Set of 35 Ionizable
Compounds Used to Calibrate the IEFPCM/MST Modela

compound eq 2 eq 4 eq 9 exptlb

albendazole 3.7 3.7 3.7 3.3
amitriptyline 4.5 4.5 4.5 2.8
antipyrine 2.0 2.0 2.0 0.2
bumetanide −1.2 −0.2 −1.0 −0.1
caffeine 0.8 0.8 0.8 0.0
clomipramine 4.7 4.7 4.7 3.3
clonidine 2.1 2.1 2.1 0.6
clozapine 5.1 5.1 5.1 3.0
cyclobenzaprine 5.2 5.2 5.2 2.9
desipramine 2.7 2.7 2.7 1.4
diazepam 4.5 4.5 4.5 2.7
diclofenac 2.3 2.4 2.3 1.1
diphenylamine 3.7 3.7 3.7 3.4
estradiol 4.2 4.2 4.2 4.0
fluconazole 1.1 1.1 1.1 0.5
fulbipronen 1.0 2.2 1.0 0.9
ibuprofen 0.7 0.7 0.7 1.3
imipramine 3.9 3.9 3.9 2.5
indomethacin 2.0 2.4 2.0 0.8
lidocaine 2.1 2.1 2.1 1.6
loratadine 7.4 7.4 7.4 4.4
maleic acid −7.1 −4.5 −3.5 −5.0
metoclopramide 0.3 0.3 0.3 0.5
metronidazole 0.0 0.0 0.0 −0.1
mezoridazine 5.0 5.0 5.0 1.8
N-acetyl-L-aspartic amide −5.8 −2.8 −2.6 −2.6
N-acetyl-L-glutamic amide −4.7 −3.4 −2.9 −2.5
N-acetyl-L-histidine amide −1.0 −0.9 −1.0 −3.5
N-acetyl-L-lysine amide −1.8 −1.8 −3.1 −2.8
naproxen −0.6 −0.3 −0.5 0.3
paracetamol −0.1 −0.1 −0.1 0.3
pentachlorophenol 1.2 1.9 1.2 2.5
pentoxifylline 1.6 1.6 1.6 0.3
phenytoin 1.9 1.9 1.9 2.2
triflupromazine 4.6 4.6 4.6 3.4

msec −0.6 −0.9 −0.8
muec 1.3 1.1 1.1
rmsdc 1.6 1.4 1.4

aCalculated values were obtained by combining log PN and log PI
values using eqs 2, 4, and 9. bSee Table S1. cMean signed error (mse),
mean unsigned error (mue), and root-mean square deviation (rmsd)
calculated relative to the experimental values are given in log P units.

Figure 4.Comparison between experimental (determined by the shake-
flask method) and calculated logD7.4 for 35 ionizable small molecules.
Computed values were derived from IEFPCM/MST (blue) calculations
using eqs 2 (top), 4 (middle), and 9 (bottom).

Table 5. Statistical Parameters of the Comparison between
Experimental and Calculated logD7.4 Values for the Series of
35 Small Molecules

method mse mue rmsd r

ACD/I-Lab 0.0 0.5 0.8 0.95
ChemAxon 0.2 0.5 0.8 0.95
IEFPCM/MST, eq 2 −0.6 1.3 1.6 0.91
IEFPCM/MST, eq 2 (exptl log PN) 0.1 0.5 0.8 0.96
IEFPCM/MST, eq 4 −0.9 1.1 1.4 0.92
IEFPCM/MST, eq 4 (exptl log PN) −0.3 0.4 0.6 0.96
IEFPCM/MST, eq 9 −0.8 1.1 1.4 0.91
IEFPCM/MST, eq 9 (exptl log PN) −0.2 0.4 0.5 0.97
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Estimation of log D7.4. The logD7.4 values compiled for a set
of 35 ionizable small molecules (see Figure S3 and Table S1)
were used as a test set to calibrate the suitability of the adjust-
ments introduced in the refined IEFPCM/MST model. These
compounds encompass a broad range of chemical diversity in
selected physicochemical properties (see Figure S4), such as
molecular weight (up to 400 Da), number of rotatable bonds
(up to 8), number of aromatic rings (up to 3), and number of
hydrogen bond donors (up to 5) and acceptors (up to 7).
In order to reproduce the experimental distribution coefficients
within the framework of the partition formalisms represented by
eqs 2, 4, and 9, log PN and log PI values were estimated fromMST
calculations, whereas the pKa of these compounds and the parti-
tion coefficient of the counterion were taken from experimental
data (see Theory and Computational Details and Table S1).
We first evaluated the capacity of the refined MST model for

predicting the experimental log PN of these compounds. This
comparison is shown in Table 3 and Figure 3. The rmsd between
experimental and calculated values is 1.1 (log PN units), and the
calculated values exhibit a good correlation with the experimental
ones (r = 0.94). Furthermore, these trends compare well with the
values predicted by using empirical methods (ACD/I-lab or
ChemAxon; Figure 3), although they exhibit a slightly better
correlation with the experimental data, which likely reflects the
most extensive parametrization of fragmental contributions that
lies behind these methods.71,72

Because the distribution coefficient takes into account the
partition of both neutral and ionic species of ionizable com-
pounds, it provides an indirect approach to test the reliability of
the calculated PI values. This is more challenging, because the
measured logD may be affected by the experimental conditions,
such as the nature of the background salt and the concentration
of the solution, which would influence the potential difference
between the two phases.73 Moreover, different formalisms have
been proposed to combine log PN, log PI, and pKa to estimate
logD. Accordingly, logD7.4 was determined using the log PN and
log PI values determined from IEFPCM/MST computations and
was combined with experimental pKa values reported for the
set of compounds (see Table S1) following Schemes 2 (eq 2),
3 (eq 4), and 4 (eq 9).
Table 4 reports the logD7.4 values obtained from IEFPCM/

MST calculations. In general, there is a slight tendency to over-
estimate the hydrophobicity of the compounds, as noted in
the mean signed error (mse) of ∼−0.7 (logD units) found for
eqs 2, 4, and 9, while the rmsd amounts to ∼1.5 (logD units).
The performance of the IEFPCM/MST model is similar for the
three formalisms examined in this study, with a slightly larger
rmsd when eq 2 is used. Similar regression equations between

calculated and experimental logD7.4 values are also found
(r≈ 0.92), although Figure 4 shows a slightly larger deviation from
the perfect linear regression for the values obtained with eq 2. For
this latter formalism the largest errors (given in logD units in
parentheses) are found for the subset of amino acid analogues
N-acetyl-L-aspartic acid amide (+3.2), N-acetyl-L-glutamic acid
amide (+2.2), and N-acetyl-L-histidine amide (+2.5), as well as
for mesoridazine (−3.1), loratadine (−3.0), cyclobenzaprine
(−2.3), clozapine (−2.1), and maleic acid (+2.1). Nevertheless,
when the partition of the ionic species is taken into account
(eqs 4 and 9), the deviation found for aspartic and glutamic
analogues and for maleic acid is largely reduced, whereas the
value predicted for acetyl-L-histidine amide remains unaffected.
To further check the reliability of the log PI values, the

calculated log PN values were replaced by the experimental ones,
and logD7.4 was determined using eqs 2, 4, and 9. The dis-
tribution coefficients obtained by limiting the IEFPCM/MST
calculation to the partition coefficient of the ionized species
(log PI) reduces the rmsd between predicted and experimental
data to ∼−0.8 (logD units), and the correlation coefficient is
increased to 0.96 (Table 5). Note that these statistical parameters
compare well with the values estimated using empirical methods
(ACD/I-Lab, ChemAxon), as noted in Table 5 and Figure 5.
Overall, these results give confidence to the partition values
of ionic species determined with the refined IEFPCM/MST
method, especially taking into account the limited extension of
the model refinement, and the single-conformation approach
adopted in present calculations. Nevertheless, the use of repre-
sentative conformational ensembles may be required to obtain
more accurate estimates of logD7.4 in flexible molecules able to
form distinct patterns of intramolecular interactions.74−76

pH-Dependent Hydrophobicity Profiles.While the preceding
results support the refined IEFPCM/MST method, there is
generally little difference between the distinct formalisms
(eqs 2, 4, and 9) followed for calculation of logD7.4. This may
reflect the fact that all molecules are approved drugs with high
log PN values and that logD was calculated at physiological pH,
while the contribution of ionic species may be expected to
be more relevant at extreme pH values. Hence, we decided to
determine the lipophilicity profile of seven drugs and four amino
acid analogues between pH 2 and 12, taking advantage of the
experimental data about the pH-dependent partitioning of these
compounds.23,24,39,65,66

For ibuprofen, warfarin, and pentachlorophenol, the three for-
malisms give similar log PN values at low pH, where the neutral
species predominates (Figure 6). However, the profiles diverge
at intermediate pH values (between 6 and 8), following the
increased population of the anionic species. Equation 2, which

Figure 5.Comparison between experimental and calculated logD7.4 for the set of 35 small molecules. Values were obtained using (left) ACD/I-Lab and
(right) ChemAxon. N-Acetyl-L-aspartic acid amide, N-acetyl-L-glutamic acid amide, and N-acetyl-L-histidine amide are shown as red dots.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.7b08311
J. Phys. Chem. B 2017, 121, 9868−9880

9875

174

4 • , , 
" éi 

2 C) 

.ll 
]! o e: 

" E 
-2 "i¡i •• • c. , 

X , , • y= 0.81x + 0.20 w -4 , ,. 
r= 0.95 , 

-6 -4 -2 o 2 4 

Calculated log 0 7_4 

4 

éi 2 
C) 

.ll 
]! o e: 

" E 
-~ -2 
c. -X w 

-4 , ,. 
6 

, , , 

-4 

, 

• 

-2 

y = 0.84x + 0.29 
r = 0.95 

o 4 

Calculated log o,_. 



does not take into account the partition of the ionic species,
gives rise to a profile that decreases steadily with increasing pH.
In contrast, eqs 4 and 9 show an asymptotic behavior at basic
pH. For imipramine, amitriptyline, desipramine, and lidocaine
all the methods exhibit the same logD at pH ∼ 10, which arises
from the partition of the neutral species. The pH-dependence
of the profiles is similar up to acidic solutions (pH < 5), where
the contribution of the cationic species is more important.
Again, eq 2 shows a continuous decrease in logDwith decreasing

pH, whereas the profiles obtained from eqs 4 and 9 show the
appearance of an asymptotic behavior at low pH. Note, how-
ever, that the appearance of this asymptotic value occurs at lower
pH values for eq 9, leading generally to a larger deviation with
regard to the experimental profile compared with the results
obtained from eq 4, which reproduces well the general trends
of the experimental sigmoidal profile. On the other hand, it
is worth noting that the IEFPC/MST profiles obtained with
eq 4 compare well with the pH-dependent profiles obtained

Figure 6.Comparison of n-octanol/water distribution coefficient profiles of selected drugs using eqs 2 (red), 4 (blue), and 9 (green). The experimental
data are shown in black.
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from empirical methods (ACD/I-Lab and ChemAxon; see
Figure S5).
The pH-dependent hydrophobicity profile determined for the

set of amino acid analogues is shown in Figure 7. As noted above,
eq 2 works worse at extreme pH, as expected because of the
neglect of the contribution arising from the partition of ionic
species. On the other hand, eqs 4 and 9 give similar profiles that
reproduce the experimental values for the whole range of pH
values. Furthermore, for the analogues of aspartic and glutamic
acids, and to less extent for lysine, the IEFPCM/MST results
derived by using eqs 4 and 9 improve the pH-dependent profiles
obtained from empirical methods, which predict a much higher
hydrophilic behavior for pH values larger than 5 and lower than
9 for aspartic/glutamic acid and lysine, respectively (compare
Figures 7 and S6).
Overall, the results support the suitability of eq 4 for estimating

the pH-dependence of the distribution profiles of ionizable
compounds. The limited success found for eq 9 is surprising,
especially when one takes into account the results obtained for
amino acid analogues, but it may reflect the marked influence of
inorganic ions on the experimental measurements of the
distribution coefficient of ionized compounds.36,44,59,61,77 In gen-
eral, shake-flask experiments are performed in wet n-octanol/
water systems using 0.15 M KCl or NaCl, and reliable values
for the inorganic standard partition coefficients have been
reported.25,60,61 However, it is also known that the distribution
coefficient can be expected to increase substantially when a more
hydrophobic cation is added in excess to the system, as has been
reported for both ibuprofen and pentachlorophenol.23,24,39

Finally, the potential contribution due to the formation of ion
pairs may also have a significant effect on the distribution coeffi-
cient of ionized compounds, especially when the salt concentra-
tion is large enough relative to the ionized compound.35,36

■ CONCLUSION
Predicting the pH dependence of the partition of organic
compounds between n-octanol and water is extremely important
for gaining insight into the behavior of bioactive compounds.
A fundamental property to attain this goal is the distribution
coefficient D, which encompasses the differential partition of
both neutral and ionic species present in the two solvents. This
makes it necessary to resort to physicochemical formalisms that
take into account species-specific lipophilicities.73 In this context,
this study has examined the refinement of the IEFPCM/MST
model, with special emphasis on the adjustment of specific
parameters required for the solvation of ionic compounds in
n-octanol, following the previous implementation reported for
aqueous solution.32,34,53

The results point out that reduction of the solvent-excluded
cavity used for the electrostatic term affords the major correction
to the calculation of the solvation free energy in n-octanol.
In conjunction with adjustments in specific atomic surface tensions,
the refined IEFPCM/MST permits us to quantitate the con-
tribution of the neutral and ionic forms of ionizable compounds
and to estimate distribution coefficients that compare well with
experimental values. For the set of compounds used in this study,
the results also show that there are little differences between the
distribution coefficients at physiological pH (logD7.4) determined

Figure 7. Comparison of n-octanol/water distribution coefficient profiles of selected amino acid analogues using eqs 2 (red), 4 (blue), and 9 (green).
The experimental data are shown in black.
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 S2

Figure S1. Data set of 19 neutral nitrogen-containing aromatic compounds used to 
refine the MST model for solvation in n-octanol. Nitrogen atoms subjected to 
reparametrization are shown in blue.  
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 S3

Figure S2. Data set of 27 ionizable compounds used to refine the MST solvation model 
for solvation in n-octanol. Atoms subjected to reparametrization are shown in blue and 
red for cations and anions, respectively. 
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Figure S3. Data set of 35 ionizable compounds used to calibrate the MST solvation 
model for estimating the distribution coefficient. 
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Figure S4. Histograms of molecular properties (molecular weight, number of rotatable 
bonds, number of aromatic rings and hydrogen bond acceptors and donors) for the set of 
35 small molecules. 
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Figure S5. Comparison of n-octanol/water distribution coefficient profiles of selected 
drugs using ACD/I-Lab (cyan), ChemAxon (purple) and experimental data (black). 
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Figure S6. Comparison of n-octanol/water distribution coefficient profiles of selected 
amino acid analogues using ACD/I-Lab (cyan), ChemAxon (purple) and experimental 
data (black). 
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Table S1. Experimental data for the set of 35 ionizable compounds used to calibrate the 
MST solvation model for estimating the distribution coefficient (Data taken from refs. 
1-3). 
 

Species Experimental 
pKa 

Experimental 
log PN 

Experimental 
log D7.4 

albendazole 4.21 2.70 3.29 
amitriptiline 9.40 4.92 2.79 
antipyrine 1.40 0.38 0.24 

bumetanide 3.60 2.60 -0.11 
caffeine -0.92 -0.07 -0.04 

clomipramine 9.40 5.19 3.28 
clonidine 8.05 1.59 0.62 
clozapine 7.50 3.23 2.99 

cyclobenzaprine 8.47 5.20 2.90 
desipramine 10.40 4.90 1.41 

diazepam 3.30 2.82 2.74 
diclofenac 4.15 4.51 1.14 

diphenylamine 1.03 3.50 3.36 
estradiol 10.71 3.67 4.01 

fluconazole 2.94 0.40 0.50 
fulbiprofen 4.22 4.16 0.91 
ibuprofen 4.91 3.97 1.27 

imipramine 9.40 4.80 2.51 
indomethacin 4.50 4.27 0.76 

lidocaine 8.01 2.44 1.61 
loratadine 4.58 5.20 4.40 

maleic acid 1.83 -0.48 -5.00 
metoclopramide 9.27 2.62 0.53 
metronidazole 2.60 -0.02 -0.07 
mesoridazine 8.89 3.90 1.81 

N-acetyl-L-aspartic amide 3.90 -2.03 -2.60 
N-acetyl-L-glutamic amide 4.20 -1.86 -2.50 
N-acetyl-L-histidine amide 7.00 -1.91 -3.53 

N-acetyl-L-lysine amide 11.10 -0.80 -2.80 
naproxen 4.15 3.18 0.32 

paracetamol 9.38 0.46 0.30 
pentachlorophenol 4.83 5.01 2.50 

pentoxifylline 0.28 0.32 0.29 
phenytoin 8.33 2.47 2.23 

triflupromazine 9.40 5.54 3.39 
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Table S2. The substituent α-effect in 1H-NMR for anionic and cationic organic 
compounds. 
 

Neutral species 

δH (ppm) in α 

Charged species 

δH (ppm) in α 

diff (ppm) 

δH,charged - δH,neutral 
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Additive scheme for acetyl-L-amino acid amide  
 
log PI of histidine. The partition coefficient for the ionic species of histidine (log PI ) 
was derived using the following additivity scheme: 
 

Log PI (N-acetyl-L-histidine amide) = (log D1 (Ac-WLHLL)  – log D1 (Ac-
WLGLL))side chain +  

(log PN (N-acetyl-L-glycine amide))backbone+capping groups 
 
where log D1 (Ac-WLHLL) and log D1 (Ac-WLGLL) are the n-octanol/water 
distribution coefficient at pH = 1 for a pentapeptide model containing at the center of 
the amino acid sequence the amino acid histidine (note that the imidazole ring will be 
doubly protonated at this pH) and glycine, respectively, and log PN (N-acetyl-L-glycine 
amide) is the partition coefficient for the glycine amino acid analogue 
(AcNHCOCH2CONH2) at pH ≈ 7. 
 
Experimental data for the ionizable side chains were taken from the scale at extreme pH 
reported by Wimley and White.4 The value for the neutral backbone was taken from the 
scale at physiological pH reported by Fauchère.5 
 
log PI of acetyl-L-amino acid amides. The partition coefficient for the neutral species of 
ionizable amino acids was calculated by using the following expression: 
 
 Log PN Ac-X amide  = (log DpH (Ac-WLXLL)  – log DpH (Ac-WLGLL)) side chain +                                   
                                        (log PN (N-acetyl-L-glycine amide)) backbone+capping groups 
 
where log DpH (Ac-WLXLL) and log DpH (Ac-WLGLL) denote the n-octanol/water 
distribution coefficient at pH = 1 (for X = D and E) or 9 (for X= H and K) according to 
the scale by Wimley and White.  
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Development of a Structure-Based, pH-Dependent Lipophilicity
Scale of Amino Acids from Continuum Solvation Calculations
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ABSTRACT: Lipophilicity is a fundamental property to characterize the structure and
function of proteins, motivating the development of lipophilicity scales. We report a
versatile strategy to derive a pH-adapted scale that relies on theoretical estimates of
distribution coefficients from conformational ensembles of amino acids. This is
accomplished by using an accurately parametrized version of the IEFPCM/MST
continuum solvation model as an effective way to describe the partitioning between n-
octanol and water, in conjunction with a formalism that combines partition coefficients of
neutral and ionic species of residues and the corresponding pKa values of ionizable
groups. Two weighting schemes are considered to derive solvent-like and protein-like
scales, which have been calibrated by comparison with other experimental scales
developed in different chemical/biological environments and pH conditions as well as by
examining properties such as the retention time of small peptides and the recognition of
antigenic peptides. A straightforward extension to nonstandard residues is enabled by this
efficient methodological strategy.

Lipophilicity is a cornerstone concept in chemistry and
biology, as this property is crucial to understanding a

variety of processes, such as the partitioning of molecules into
immiscible solvents, the formation of host−guest complexes,
the folding of proteins, and the stability of supramolecular
aggregates.1,2 In proteins, lipophilicity is mainly determined by
the side chains of amino acids, and obtaining quantitative
lipophilicity profiles of peptides and proteins is key to examine
their structural and functional properties in biological environ-
ments. Accordingly, several strategies have been proposed to
quantify the lipophilicity of amino acids, leading to lipophilicity
scales that exploit the partitioning of small molecules between
bulk solvents, the application of knowledge-based techniques
to structural data, or experimental information derived from
biological assays. (For comprehensive reviews, see refs 3−5.)
Using these scales, lipophilicity profiles of peptides or proteins
can be derived from the lipophilicity of single residues,
generally assuming an additivity principle. Nevertheless, there
are differences not only in the absolute magnitude of the
residue lipophilicities but also in the relative values, giving rise
to a variable degree of correlation between scales that reflects
the differences between the material systems, methods, and
experimental conditions that underlie the definition of each
scale.
In this study, our aim is to develop a lipophilicity scale from

theoretical computations that takes into account the structural
dependence of the conformational preferences of amino acids
as well as the influence of pH to provide a consistent
description of pH-adapted lipophilicity profiles in peptides and
proteins. Here attention is focused on the set of natural amino

acids, but the methodological strategy is intended to be easily
adapted to nonstandard residues, such as nonproteinogenic
residues, or to chemical modifications, such as phosphor-
ylation, sulphonation, and nitrosation, which regulate enzyme
activity and signaling processes. To achieve this goal, each
residue has been characterized by its distribution coefficient
(DpH) using as a model system the corresponding N-acetyl-L-
amino acid amides, taking into account the potential
contribution of ionizable species at a given pH, as noted in
eq 1, which has recently been shown to reproduce the pH-
dependent lipophilicity profiles of amino acid analogues.6

= + · − +δ δD P Plog log( 10 ) log(1 10 )pH N I (1)

where PN and PI denote the partition coefficients of neutral and
ionized species of an ionizable amino acid and δ is the
difference between the pKa of the ionizable group and the pH
of the environment.
Let us note that the choice of N-acetyl-L-amino acid amides

in this study enables a direct comparison with the experimental
results reported by Faucher̀e and Pliska7 because their
experimental lipophilicity scaled was determined using these
model systems in their study. The partition coefficients PN and
PI were determined from theoretical computations using the
B3LYP/6-31G(d) version of the quantum-mechanical
IEFPCM-MST continuum solvation method,8 which relies
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on the integral equation formalism (IEF) of the polarizable
continuum model (PCM).9,10 Following our previous study of
the hydration free energy of the natural amino acids,11 the
backbone-dependent conformational library compiled by
Drunback and coworkers12−14 (http://dunbrack.fccc.edu)
was used to extract the conformational preferences of residues,
which defined the ensemble of structures used to estimate the
log DpH values from IEFPCM-MST calculations in n-octanol
and water. (See the SI for a detailed description of the
computational methods.)
Two schemes were explored for weighting the contribution

of each conformational state to the differential solvation in the
two solvents. In one case, PN and PI were determined using a
Boltzmann’s weighting scheme to the relative stabilities of the
conformational species of a given residue in the two solvents,
leading to the solvent-like scale (SolvL). In the second scheme,
named protein-like scale (ProtL), the contribution of each

conformation was directly taken from the population
distribution reported in the backbone-dependent conforma-
tional library. Therefore, these weighting schemes are expected
to yield scales better suited for reflecting the lipophilic balance
of amino acids well exposed to bulk solvent or in a protein-like
environment, respectively. Finally, the effect of pH on the log
DpH values was introduced from the experimental pKa values of
ionizable residues in peptide models in aqueous solution15,16

and in folded proteins17,18 for the SolvL and ProtL scales,
respectively.
The values of these lipophilicity scales for the amino acids at

physiological pH are shown in Table 1. (ProtL data are
averages of the log D7.4 values determined separately for α-helix
and β-sheet structures, which are reported in Table S1.)
Taking Gly as reference, the ProtL scale comprises log D7.4
values ranging from −3.91 (Arg) to 3.99 (Phe), reflecting the
extreme values of hydrophilic residues (Arg, Asp, Glu, and

Table 1. Solvent-Like (SolvL) and Protein-Like (ProtL) Lipophilicity Scales Based on the log DpH Values Determined for N-
Acetyl-L-amino Acid Amides at Physiological pHa

exp. pKa log PN log PI log D7.4
b

residue SolvL ProtL SolvL ProtL SolvL ProtL SolvL ProtL

Ala −1.16 −2.47 −1.16 (0.85) −2.47 (0.66)
Arg 12.5c 12.5c −2.86 −3.66 −2.99 −7.38 −2.99 (−0.98) −7.04 (−3.91)
Asn −2.98 −3.97 −2.98 (−0.97) −3.97 (−0.84)
Asp 3.90d 3.50e −2.26 −3.18 −2.80 −8.54 −2.80 (−0.79) −5.87 (−2.74)
Cys 9.83f 6.80e −0.16 −1.47 −4.19 −5.78 −0.16 (1.85) −2.17 (0.96)
Gln −2.22 −4.00 −2.22 (−0.21) −4.00 (−0.87)
Glu 4.20d 4.20e −1.49 −3.79 −3.38 −6.20 −3.36 (−1.35) −5.96 (−2.83)
Gly −2.01 −3.13 −2.01 (0.00) −3.13 (0.00)
His (δ) 7.00d 6.60e −1.20 −4.67 −4.06 −5.97 −1.35 (0.66) −4.56 (−1.43)
His (ε) 7.00d 6.60e −0.72 −4.98 −4.06 −5.97 −0.87 (1.14) −4.97 (−1.84)
Ile −0.50 −0.38 −0.50 (1.51) −0.38 (2.75)
Leu 0.05 −1.36 0.05 (2.06) −1.36 (1.77)
Lys 11.1d 10.5e −0.40 −2.19 −3.24 −6.81 −3.18 (−1.17) −5.08 (−1.95)
Met −0.51 −1.83 −0.51 (1.50) −1.83 (1.30)
Phe 0.61 0.86 0.61 (2.62) 0.86 (3.99)
Pro −0.77 −1.44 −0.77 (1.24) −1.44 (1.69)
Ser −2.04 −4.12 −2.04 (−0.03) −4.12 (−0.99)
Thr −1.22 −3.01 −1.22 (0.79) −3.01 (0.12)
Trp 0.33 0.16 0.33 (2.34) 0.16 (3.29)
Tyr 10.3d 10.3e −0.49 −1.80 −4.21 −9.59 −0.49 (1.52) −1.80 (1.33)
Val −0.93 −1.68 −0.93 (1.08) −1.68 (1.45)

aExperimental pKa of side-chain ionizable groups and calculated partition coefficients of neutral (log PN) and ionized (log PI) residues are also
given. bValues for ionizable residues are shown in bold. Log D7.4 values relative to glycine are given in parentheses. cRef 14. dRef 15. eRef 16. fRef
17.

Figure 1. Representation of the pH dependence of the SolvL (left) and ProtL (right) lipophilicity scales for ionizable amino acids (values relative
to Gly). Values determined at pH of 2.1, 7.4, and 9.0 are shown in orange, green, and blue, respectively, and the values of the neutral species (log
PN) are shown in black.
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Lys) and hydrophobic ones (Trp, Phe). (See also Figure S1.)
These trends are also found in the SolvL scale, although the
distribution of log D7.4 values varies from −1.35 (Glu) to 2.62
(Phe). This trait is also found in other scales, as knowledge-
based methods generally give rise to a narrower range of
lipophilicites compared with other experimental scales.19 In
our case, this arises from the distinct weighting factors used in
ProtL and SolvL scales, leading to larger differences in the log
D7.4 values of polar and ionizable amino acids, which show a

preference for extended conformations (Figure S2), likely
reflecting the formation of stabilizing interactions (e.g., salt
bridges) or the solvent exposure to bulk water in proteins.20,21

The sensitivity of the lipophilicity of ionizable residues to
pH changes is shown in Figure 1, which compares the log DpH

values at pH 2.1, 7.4, and 9.0, chosen as representative values
of the pH changes along the gastrointestinal tract. The
hydrophilicity of acid/basic amino acids is enhanced at basic/
acidic pH values, as expected from the predominance of the

Figure 2. Comparison between (left) SolvL and (right) ProtL lipophilicity scales derived from the IEF/MST solvation model (expressed as log
D7.4) and Faucher̀e−Pliska experimental values for the 20 N-acetyl-L-amino acid amides (r, Pearson correlation coefficient; mse, mean signed error;
mue, mean unsigned error; rmsd, root-mean-square deviation). Regression equations are shown in Table S8.

Table 2. Statistical Parameters of the Comparison of the SolvL and ProtL Scales with Other Lipophilicity Scalesa

SolvL ProtL

scaleb msec mue rsmd r/p value mse mue rsmd r/p value

Bulk-Solvent-Adapted Scale
Faucher̀e−Pliska −0.20 0.36 0.46 0.94 0.36 0.98 1.28 0.92

2 × 10−10 6 × 10−9

Eisenberg−McLachlan −0.20 0.44 0.57 0.90 0.36 1.08 1.35 0.91
3 × 10−8 2 × 10−8

Hopp−Woods −0.49 0.60 0.74 0.91 0.07 0.84 1.08 0.89
2 × 10−8 9 × 10−8

Wimley et al. −0.60 1.02 1.16 0.59 0.04 1.24 1.64 0.61
0.006 0.004

−0.87d 0.92 1.03 0.87 −0.30 1.03 1.25 0.87
2 × 10−6 2 × 10−6

Biological-Based Scale
Moon−Fleming −0.12 0.57 0.67 0.94 0.24 0.72 0.93 0.91

4 × 10−10 7 × 10−9

Hessa et al. −0.92 0.93 1.18 0.79 −0.36 1.08 1.46 0.82
3 × 10−5 6 × 10−6

Knowledge-Based Scale
Koehler et al. −0.91 1.10 1.33 0.78 −0.35 1.55 1.87 0.80

4 × 10−5 2 × 10−5

Janin et al. −1.06 1.11 1.32 0.78 −0.51 1.36 1.71 0.74
3 × 10−5 2 × 10−4

Consensus Scale
Kyte−Doolittle −0.81 1.43 1.71 0.72 −0.25 1.13 1.41 0.78

3 × 10−4 3 × 10−5

aComparison was made using the values adapted to the specific pH of each scale and relative to Gly. bPhysiological pH was considered in all cases
except for Wimley at al. and Moon−Fleming because the corresponding pH was fixed at 9.0 and 3.8 following the specific experimental conditions.
cmse, mean signed error; mue, mean unsigned error; rmsd, root-mean-square deviation; r, Pearson correlation coefficient; p, statistical p value. mse,
mue, and rmsd are given in log PN/D units. dValues in this row were obtained upon the exclusion of Arg and Lys. Because this scale was built up
using model pentapeptides (AcWL-X-LL) at pH 9.0, Arg and Lys formed a salt bridge with the terminal carboxyl group in n-octanol, as noted by
13C NMR studies.34
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ionic species. On the SolvL scale, it is worth noting the
hydrophilic nature of protonated His at acidic pH and the
slight hydrophobicity of protonated Glu. In contrast, the ProtL
scale exhibits a higher sensitivity to pH, as noted in the large
changes in the log DpH values of Asp and Glu, which are
decreased 2 to 3 log DpH units upon deprotonation, the
reduced hydrophilicity of Lys at basic pH, and the change from
hydrophobic (at acid and physiological pH) to hydrophilic (at
basic pH) Cys. This reflects the ability of these scales to
present the pH influence on the lipophilicity of ionizable
residues, which may be affected by the local environment in
proteins.22,23

To calibrate the suitability of these scales, a comparison was
made with the log D7.4 values reported by Faucher̀e and
Pliska,7 which were experimentally determined from the
partitioning of N-acetyl-L-amino acid amides between n-
octanol and water at physiological pH (Figure 2). A
comparison with the SolvL values gives satisfactory results, as
noted in a correlation coefficient (r) of 0.96 and a mean
unsigned error (mue) of 0.33 log D7.4 units for a set of
experimental values ranging from −3.36 to 0.61. The
correlation coefficient is slightly worse (r = 0.92), and the
mue increases to 1.68 for the ProtL scale. For the sake of
comparison, the same analysis was performed by using log D7.4
values obtained from computations with the SMD solvation
model,24 in conjunction with the two weighting schemes, and
the results also revealed a better performance for the solvent-
adapted scheme (r = 0.85, mue = 0.83; Figure S3). On the
contrary, the SolvL scale also performed better than the
empirical estimates of log D7.4 obtained from ACD/ILab25 (r =
0.88, mue = 0.60) and ChemAxon26 (r = 0.92, mue = 0.65)
when compared with the experimental values reported by
Faucher̀e and Pliska (Figure S4).
Table 2 shows the comparison of the SolvL and ProtL

lipophilicities with experimental scales, including four bulk
-solvent-based scales (Faucher̀e−Pliska,7 Eisenberg−McLa-
chlan,27 Hopp−Woods,28 and Wimley et al.29), two bio-
logical-derived (Moon−Fleming30 and Hessa et al.31) and two
knowledge-based (Koehler et al.19 and Janin et al.32) scales,
and a consensus (Kyte−Doolittle33) scale. The bulk-solvent-
based scales rely on experimental measurements of the transfer
between n-octanol and water (Faucher̀e−Pliska, Eisenberg−
McLachlan) at physiological pH or under basic conditions (pH
9.0; Wimley et al.) and between ethanol and the vapor phase
(Hopp−Woods). Excellent correlations are found with
Faucher̀e−Pliska, Eisenberg−McLachlan, and Hopp−Woods
scales (0.89 < r < 0.92). A worse correlation (r ≈ 0.60) is
found in the comparison with Wimley et al. scale, but to large
extent this can be attributed to the formation of salt bridges
between Arg/Lys residues with the terminal carboxyl group in
n-octanol for the AcWL-X-LL pentapeptides used as model
systems, as noted by 13C NMR studies.34 The exclusion of Arg
and Lys enhances the correlation coefficient to 0.87. On the
contrary, the bulk-solvent-based lipophilicities are consistently
closer to the values collected in the SolvL scale (mue of 0.36 to
0.92 log P/D units) than to the ProtL ones (mue of 0.84 to
1.24 log P/D units).
The correlation coefficients obtained with biological-,

knowledge-based, and consensus scales are satisfactory (0.74
< r < 0.94; Table 2) but tend to be lower than the values
obtained with the bulk-solvent-based transfer scales. This is not
unexpected keeping in mind that the lipophilicites are derived
from the statistical analysis of topological distributions of

residues in proteins (Koehler et al., Janin et al.) or from
complex biochemically adapted assays, such as the transfer of
amino acids from water to a phospholipid bilayer (Moon−
Fleming), the recognition of artificial helices by the Sec61
translocon (Hessa et al.), or the combination of water-vapor
transfer free energies with the interior−exterior distribution of
amino acids in the consensus (Kyle−Doolittle) scale. Keeping
in mind the notable differences in the material systems and
protocols used to derive these experimental scales, the
correlation coefficients obtained from the comparison with
the SolvL scale are still remarkable.
The sensitivity of the results to the pH was examined by

extending the comparison to the lipophilicities determined for
the SolvL and ProtL scales at pH values of 3.8, 7.4, and 9.0.
(Note that the acidic and basic pH values were chosen in the
studies reported by Moon and Fleming and Wimley et al.,
respectively.) In general, there is little difference between the
correlation coefficients obtained at pH 7.4 and 9.0 (Figure 3).

However, a larger effect is found in the comparison of the log
D3.8, as there is a general decrease in the correlation coefficient,
which is remarkable for the bulk-solvent-based transfer scales,
especially in the case of Hoop−Woods and Wimley et al. The
only exception is found in the comparison with the Moon−
Fleming scale, as the highest correlation coefficient is found for
the ProtL values corrected at pH 3.8. These findings support
the suitability of the SolvL/ProtL scales to account for the pH
influence on the lipophilicity of amino acids.
The reliability of the SolvL/ProtL scales has been calibrated

by comparing the cumulative lipophilicity with the (RP-
HPLC) retention time determined for different sets of
peptides.35,36 Given the small size of the peptides (≤13
residues) and the lack of well-defined secondary structures,
nonadditivity effects can be expected to play a minor role.37

Accordingly, the cumulative lipophilicity was determined
assuming an additive scheme (eq S3 in the SI Computational
Methods).
The first test comprises eight 10-mer peptides with equal

charge that differ in the content of hydrophobic residues
(Table S2).38 The SolvL cumulative lipophilicity yields a
correlation coefficient of 0.96 (Figure 4A), which compares

Figure 3. Representation of the Pearson correlation coefficient in the
comparison of the SolvL scale with bulk-solvent-based scales and
ProtL scale with biological-based, knowledge-based, and consensus
lipophilicity scales at pH 3.8, 7.4, and 9.0 (shown as green, red, and
blue lines, respectively).
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with the value estimated from the hydrophobic surfaces of
peptides derived from molecular dynamics simulations (r =
0.97),38 whereas a slightly lower correlation was found for the
ProtL scale (r = 0.91; Table S3). For this simple set of
homogeneous peptides, most of the experimental lipophilicity
scales generally yielded correlations >0.9 (Table S3).
A more challenging test is the set of 248 peptides with equal

length but different net charge under the experimental acidic
conditions (pH 2.1),39,40 comprising 36 peptides with two
charged amino acids (Arg combined with His or Lys), 105
peptides with a single charged residue (Arg, Lys, or His), and
finally 17 neutral peptides. The SolvL cumulative lipophilicity
correlates satisfactorily with the retention time determined for
the whole set of peptides (r = 0.85; Figure 4B). Among bulk-
solvent-based scales, Faucher̀e−Pliska, Eisenberg−McLachlan,
and Hopp−Woods also provided reasonable correlations
coefficients (0.74 < r < 0.85; Table S2 and Figure S6), but a

worse correlation was found for Wimley et al., although this
may be attributed to the different pH used in this latter scale
(pH 9.0) and the experimental assay conditions (pH 2.1). The
performance of biological-based, knowledge-based, and con-
sensus scales was also worse (0.55 < r < 0.64; Table S3 and
Figure S5), but for Moon−Fleming (r = 0.78), it likely
reflected the acidic pH conditions considered in the derivation
of this lipophilicity scale.
Finally, given the relevance of partition (log PN)/distribution

(log D7.4) coefficients for ADME properties of peptides,41 the
suitability of the SolvL scale was further checked for
reproducing the differences in log PN/log D7.4 of a set of
random peptides.42 The SolvL-based additive scheme yielded
promising results, as noted in the r values of 0.93 and 0.83 in
reflecting the experimental range of log PN and log D7.4 for sets
of 118 and 116 peptides, respectively (Figure 4C,D).
Compared with experimental scales, a similar predictive

Figure 4. Relationship between the cumulative lipophilicities determined from the SolvL scale versus (A) the retention time for eight 10-mer
peptides (pH 7.4; ref 38), (B) 248 unique 13-mer peptides (pH 2.1; refs 39 and 40), (C) log PN for 118 random peptides (ref 42), and (D) log D7.4
for 116 random peptides (ref 42). Regression equations are shown in Table S8.

Figure 5. Relationship between the cumulative lipophilicities determined from (left) SolvL and (right) ProtL scales versus experimental binding
affinities of MHC-bound peptides. Cys-containing peptides are indicated as red dots. Regression equations shown in Table S8.
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power was attained for Faucher̀e−Pliska and Eisenberg−
McLachlan scales (r ≈ 0.90) for the set of 118 log PN data and
for Hopp−Woods (r ≈ 0.88) for the set of 116 log D7.4 values
but with a larger mue (∼2.3 versus 0.7 for the SolvL scale;
Tables S4 and S5).
In these test cases, the ProtL scale performed worse (0.60 <

r < 0.91; Figure S6) than the SolvL one, suggesting that the
Boltzmann-weighting scheme is better suited for describing the
lipophilicity of residues in structureless peptides. However, one
might expect an improved performance of the ProtL scale in
the analysis of the lipophilic complementarity in peptide−
protein and protein−protein complexes. To this end, we have
examined the relationship between the ProtL cumulative
lipophilicity and the experimental binding free energies of 19
peptides to MHC (HLA-A*02:01 allele) proteins (Table S6).
These peptides were chosen subject to the availability of (i)
precise structural information on the peptide−protein complex
in the Protein Data Bank43 and (ii) an estimate of the binding
affinity in the Immune Epitope Database and Analysis
Resource44 (Table S6). The cumulative lipophilicity was
determined taking into account the fraction of solvent-exposed
area of the peptide residues in the MHC complex,
supplemented with two correction parameters that account
for the contribution due to the involvement of the backbone in
hydrogen bonds45 and to the burial of apolar residues from
water to hydrophobic environments30 (eq S4 in the SI
Computational Methods).
The results show that the ProtL scale works better than the

SolvL scale (correlation coefficients of 0.58 and 0.42,
respectively; Figure 5) when the whole set of 19 peptides is
considered, yielding correlation coefficients that are compara-
ble to Moon−Fleming and Eisenberg−McLachlan scales (r of
0.61 and 0.51, respectively; Table S7). This correlation is
remarkable keeping in mind the heterogeneity of the peptides
and the uncertainty arising from the combination of data taken
from different studies and determined using distinct exper-
imental approaches. Furthermore, a significant improvement is
observed upon the exclusion of the two Cys-containing
peptides (PDB codes 3MRG and 2PYE), perhaps reflecting a
quenching effect of cysteine in fluorescence assays.46,47 Thus
upon exclusion, the correlation coefficient of ProtL and SolvL
scales increases up to 0.80 and 0.73, respectively, leading to
regression equations with increased statistical significance (p
values of 2 × 10−4 and 2 × 10−3, respectively). Finally, let us
note that this improvement outperforms the results obtained
with the experimental scales (r < 0.67; Table S7).
Overall, the results point out the versatility of the SolvL/

ProtL scales to examine the relationships between the
lipophilicity and physicochemical properties of peptides
under different pH conditions. From a methodological point
of view, the strategy relies on the combination of an accurately
parametrized version of continuum solvation models with an
elaborate formalism to derive distribution coefficients from the
partition of neutral and ionic species, in conjunction with the
pKa of ionizable groups. The simplicity of the computational
strategy and the low cost of the required calculations permit a
straightforward extension to nonstandard residues, such as the
effect of chemical modifications on the lipophilicity maps of
proteins, thus providing valuable information to explore
biomolecular recognition and to modulate the properties of
engineered polymeric materials.
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COMPUTATIONAL METHODS 

 

SolvL and ProtL lipophilicity scales. 

Following a previous study on the hydration free energy of the natural amino acids,S1 the 

N-acetyl-L-amino acid amides (CH3-CO-NH-CHR-CONH2) were chosen as molecular 

models. Using the backbone-dependent conformational library reported by Dunbrack and 

coworkers,S2-S4 a total of 572 rotamers (i.e., conformers with a probability contribution 

higher than 5% to the total conformational space of each residue) were compiled. These 

structures were then used to compute the n-octanol/water transfer free energies, which 

were performed with the B3LYP/6-31G(d) MSTS5 version of the IEF-PCMS6 model. 

Computation of the distribution coefficients at a given pH (log DpH ) was performed by 

combining the partition coefficient of neutral and ionic species (for ionizable residues) 

using Eq. S1. 

 

                               logD = log PN +PI ⋅10
δ( )− log(1+10δ )             (S1) 

where PN and PI  denote the partition coefficient of the neutral and ionized species of the 

amino acid, and δ is the difference between the pKa of the ionizable group and the pH of 

the environment. 

Let us note that Eq. S1 represents one of the formalisms considered to estimate the pH-

dependent lipophilicity profile of small (bio)organic compounds,S7 and was found to 

reproduce satisfactorily the change in pH-dependent distribution coefficients for amino 

acid analogues. 

The contribution of the conformational species in water and n-octanol was accounted for 
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considering two weighting schemes, giving rise to the Solvent-like (SolvL) and Protein-

like (ProtL) lipophilicities scales, respectively.   

(i) In the SolvL scale, the contribution of each conformational state to the partition 

coefficient of the neutral/ionized species was determined using a Boltzmann weighting 

scheme, where the effective free energy was estimated by combining the internal energy of 

the conformer and its solvation free energy in water and n-octanol. To this end, the 

geometry of all rotamers was optimized at the B3LYP/6-31G(d) level of theory while 

keeping the backbone dihedrals fixed to the torsional values of the Dunbrack’s library, and 

subsequently single-point calculations in the gas phase and in solution. The log DpH was 

then computed using Eq. 1, adopting the pKa values reported for ionizable  residues from 

experimental peptide models in aqueous solutions.S8,S9 

(ii) In the ProtL scale, the contribution of each conformation to the partition between the 

two solvents was determined by using the weights reported in the Dunbrack`s library, 

which reflect the rotameric distribution in a protein environment. The pKas of ionizable 

residues were taken from values in folded proteins.S10,S11  

For the sake of comparison, we also computed both approaches with the SMD model 

using the B3LYP/6-31G(d) level of theory.S12 All calculations were performed using a 

locally modified version of Gaussian 09.S13   

  

Comparison with experimental hydrophobicity scales. 

Due to the diversity of experimental lipophilicity scales of amino acids, generally 

expressed in terms of transfer free energies, comparison was made by converting them to 

partition/distribution coefficients, which were subsequently normalized to Gly following 

Eq. S2. 
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logPN /DpH =
(−ΔΔGtransf,AA −ΔΔGtransf,Gly )

RTln10
        (S2) 

where ΔΔGtransf,AA   is the transfer free energy of a given amino acid from the aqueous 

phase to the organic/biological environment, and ΔΔGtransf,Gly  is the transfer free energy of 

Gly. 

 

Determination of the cumulative lipophilicity.  

Most of the experimental scales present in the literature compute the lipophilicity of a 

given peptide as the sum of individual lipophilicity of the constituent amino acids relative 

to a reference residue, usually Gly or Ala. Since the MST solvation model gives atomic 

contributions to the transfer free energy,S14-S16 we can separate the global lipophilicity in 

contributions corresponding to the backbone (bb), side-chain (sc), and the capping groups 

(cg). Combination of the bb and sc contributions yields the amino acid lipophilicity 

(reported in Table 1 in the manuscript), whereas the contribution of the capping groups has 

been estimated to be (N-terminus) CH3CO– (log PN = 0.20), NH3
+– (log D7.4 = -2.99), and 

(C-terminus) NH2– (log PN = -1.08), NMe– (log PN = 0.35), COO-– (log D7.4  = -4.89). 

The cumulative lipophilicity of a peptide with Nres residues may be estimated by using 

Eq. S3. 

                  (S3) 

where Pi
N / DpH

i  stands for the fragment (bb+sc or cg) partition/distribution coefficient, 

Nres and Ncg  being the total number of residues and capping groups in the peptide.  

 For practical applications, this simple expression is convenient when there is no explicit 

knowledge about the 3D structure of peptides, as may occur in structureless peptides. 

log(P
N
/D

pH
)peptide = log(Pi

N
/D

pH
i )bb+sc

i=1

Nres

∑ + log(Pi
N
/D

pH
i )cg

i=1

Ncg

∑
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For our purposes here, this is the expression adopted to evaluate the lipophilicity of small, 

flexible peptides in solution. 

On the other hand, if the 3D structure of the peptide is known from experimental (X-ray, 

NMR) or computational (Molecular Dynamics) approaches, then the cumulative 

lipohilicity may be estimated taking into account the specific structural features of 

peptides/proteins, as noted in Eq. S4.   

 

log(PN /DpH
)peptide = λ i ⋅ log(PiN /D

i
pH
)bb+sc +λ i ⋅ log(PiN /D

i
pH
)cg +α i +β i( )

i=1

Nres

∑  (S4) 

 

In Eq. S4,  stands for the fraction of solvent-exposed surface area (SASA) of the 

amino acid (bb+sc) or capping group (cg) according to the local structural environment of 

in a peptide/protein. For our purposes, the SASA was determined using NACCESS.S17 

In addition, two correction factors were also introduced. The parameter α i  introduces a 

correction to the hydrophobic contribution when the backbone participates in a hydrogen 

bond (HB). This contribution can be estimated to amount, on average, to 0.73 (log P units) 

per HB.S18 The occurrence of this kind of HBs in a given 3D structural model was 

determined with the DSSP program.S19 Finally, the β i  factor accounts for a correction due 

to the burial of the side chain of hydrophobic residues (Ala, Leu, Ile, Val, Pro, Phe, Trp, 

Met and Tyr) from water to a lipophilic environment. This contribution has been estimated 

to be 0.023 kcal mol−1 Å−2 according to the studies reported by Moon and Fleming for the 

transfer of nonpolar side chains from water into a lipid bilayer.S20 Therefore, the β i  term 

has been estimated from the fraction of the buried side chain with respect to the fully 

buried side chain, as noted in Eq. S5. 

λ i
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 β i =Hres
i ⋅(1−λ i )sc          (S5)   

 

where 

€ 

Hres
i

 stands for the hydrophobic contribution (in logP units) of a specific apolar 

residue, which was estimated as noted in Eq. S6. 

 

 Hres
i =

0.023 ⋅SASA
res
sc

2.303RT       (S6)  

 

where SASAres
sc

 is the average SASA of a given residue type, R is the gas constant, and T 

is  temperature. 

The 

€ 

Hres
i

 values for nonpolar residues are given in Table S0.  

  

Table S0. Average solvent accessible surface area for the side-chain of the hydrophobic 
residues and the hydrophobic effect contribution value when the side chain is fully buried. 
 

Residue Average SASA (Å2) 

€ 

Hres
i

 (log P units) 

Ala 69 1.2 

Val 130 2.2 

Leu 158 2.7 

Ile 157 2.6 

Met 166 2.8 

Pro 115 1.9 

Phe 188 3.2 

Trp 232 3.9 

Tyr 201 3.4 
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Table S1. Protein-like (ProtL) Lipophilicity Scale Based on the logDpH Values Determined 
for N-Acetyl-L-Amino Acid Amides at Physiological pH. The Lipophilicity Obtained for 
Conformational Distributions in α-Helix and β-Sheet Structures, the Experimental pKa of 
Side Chain Ionizable Groups, and the Calculated Partition Coefficients of Neutral (log PN) 
and Ionized (log PI) Residues Are Also Given. 
 

Residues Exp. pKa log PN log PI log D7.4 
ALA - -2.47 - -2.47 
α-helix - -2.87 - -2.87 
β-sheet - -2.03 - -2.03 
ARG 

12.51 
-3.66 -7.38 -7.04 

α-helix -3.75 -8.09 -7.59 
β-sheet -3.49 -5.98 -5.98 
ASN - -3.97 - -3.97  
α-helix - -4.09 - -4.09 
β-sheet - -3.39 - -3.39 

ASP 
3.50 

-3.18 -8.54 -5.87  
α-helix -3.26 -7.37 -5.63 
β-sheet -3.07 -10.07 -6.19 
CYS 

6.80 
-1.47 -5.78 -2.17  

α-helix -2.06 -5.75 -2.76 
β-sheet -1.09 -5.81 -1.78 
GLN - -4.00 - -4.00 
α-helix - -5.00 - -5.00 
β-sheet - -1.64 - -1.64 
GLU 

4.20 
-3.79 -6.20 -5.96 

α-helix -3.67 -6.42 -6.14 
β-sheet -4.03 -5.76 -5.58 
GLY - -3.13 - -3.13  
HID 

6.60 
-4.67 -5.97 -4.56 

α-helix -5.12 -6.16 -5.00 
β-sheet -4.26 -5.79 -4.15 

HIE 
6.60 

-4.98 -5.97 -4.97 
α-helix -5.49 -6.16 -5.46 
β-sheet -4.49 -5.79 -4.52 

ILE - -0.38 - -0.38  
α-helix - -0.55 - -0.55 
β-sheet - -0.24 - -0.24 
LEU - -1.36 - -1.36 
α-helix - -1.59 - -1.59 
β-sheet - -1.09 - -1.09 
LYS 

10.53 
-2.19 -6.81 -5.08 

α-helix -2.32 -7.18 -5.29 
β-sheet -1.98 -6.16 -4.73 
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MET - -1.83 - -1.83 
α-helix - -2.06 - -2.06 
β-sheet - -1.56 - -1.56 
PHE - 0.86 - 0.86 
α-helix - 2.23 - 2.23 
β-sheet - -0.18 - -0.18 
PRO - -1.44 - -1.44 
α-helix - -1.42 - -1.42 
β-sheet - -1.45 - -1.45 
SER - -4.12 - -4.12 
α-helix - -3.21 - -3.21 
β-sheet - -4.92 - -4.92 
THR - -3.01 - -3.01  
α-helix - -3.33 - -3.33 
β-sheet - -2.80 - -2.80 
TRP - 0.16 - 0.16 
α-helix - 0.51 - 0.51 
β-sheet - -0.10 - -0.10 
TYR 

10.33 
-1.80 -9.59 -1.80  

α-helix -1.96 -9.65 -1.96 
β-sheet -1.69 -9.55 -1.69 
VAL - -1.68 - -1.68  
α-helix - -2.19 - -2.19 
β-sheet  -1.38 - -1.38 
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Table S2. Experimental RP-HPLC Retention Time for Eight Model Decapeptides and 
Cumulative Hydrophobicity Determined with the SolvL and ProtL Lipophilicity Scales. 
 

Peptide a Sequence 
Retention 
factor k`   

(min) 

log D7.4 

SolvL ProtL 
Pep1Leu DKDKGGGGLG 4.80 -17.09 -34.04 
Pep2Leu DKDKGGGLLG 11.97 -15.03 -32.27 
Pep3Leu DKDKGGLLLG 16.22 -12.97 -30.50 
Pep1Cys DKDKGGGGCG 0.52 -17.30 -34.85 
Pep1Ile     DKDKGGGGIG 4.73 -17.64 -33.06 

Pep1Met DKDKGGGGMG 2.27 -17.65 -34.51 
Pep1Phe DKDKGGGGFG 6.11 -16.53 -31.82 
Pep1Val DKDKGGGLVG 1.86 -18.07 -34.36 

a Ref. 38. 

 
Table S3. Correlation of Retention Time for Eight Model Decapeptides with the Same 
Charge,38 and for 218 Peptides39,40 with Three Different Charge States Using the 
Cumulative Hydrophobicity with Our Adaptive Hydrophobicity Scale and with Others 
Experimental Scales.   

Scale 
r 

p-valuea 
Ref. 38 (pH = 7.4) Refs. 39,40 (pH = 2.1) 

Fauchère-Pliska 0.96 
2 × 10-4 

0.85 
< 1 × 10-16 

Eisenberg-McLachlan 0.95 
3 × 10-4 

0.79 
< 1 × 10-16 

Hopp-Woods 0.99 
 7 × 10-6 

0.74 
< 1 × 10-16 

Wimley et al. 0.99 
 4 × 10-7 

0.36 
 4 × 10-9 

Moon-Fleming 0.99 
 3 × 10-6 

0.78 
< 1 × 10-16 

Hessa et al. 0.96 
 2 × 10-4 

0.61 
< 1 × 10-16 

Koehler et al. 0.76 
 0.03 

0.64 
< 1 × 10-16 

Janin et al. 0.39 
0.3 

0.55 
< 1 × 10-16 

Kyte-Doolittle 0.93 
 8 × 10-4 

0.60 
< 1 × 10-16 

SolvL 0.96 
 2 × 10-4 

0.85 
< 1 × 10-16 

ProtL 0.91 
1.8 

0.80 
< 1 × 10-16 

a r: Pearson correlation coefficient, p: statistical p-value. 
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Table S4. Statistical Parameters of the Comparisona of the SolvL and ProtL Scale with 
Others Hydrophobicity Scales Against log PN Values for 118 Random Peptides. 

Scale r 
p-value mse mue rsmd 

Fauchère-Pliska 0.90 
 < 1 × 10-16 -2.53 2.53 2.64 

Eisenberg-McLachlan 0.89 
< 1 × 10-16 -2.29 2.29 2.38 

Hopp-Woods 0.74 
< 1 × 10-16 -2.07 2.11 2.31 

Wimley et al. 0.70 
< 1 × 10-16 -1.54 1.67 1.81 

Moon-Fleming 0.69 
< 1 × 10-16 -0.80 1.12 1.34 

Hessa et al. 0.22 
0.02 0.29 0.98 1.29 

Koehler et al. 0.45 
3 × 10-7 -0.35 0.87 1.12 

Janin et al. 0.38 
2 × 10-5 -0.65 1.08 1.28 

Kyte-Doolittle 0.50 
6 × 10-9 -2.85 3.00 3.60 

ProtL 0.60 
5 × 10-13 1.35 1.68 2.00 

SolvL 0.93 
< 1.0 × 10-16 -0.55 0.71 0.94 

a mse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson correlation 
coefficient, p: statistical p-value. mse, mue and rmsd are given in log PN/D units.  
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Table S5. Statistical Parameters of the Comparisona of the SolvL and ProtL Scale with 
Others Hydrophobicity Scales Against log D7.4 Values for 116 Random Peptides. 

Scale r 
p-value mse mue rsmd 

Fauchère-Pliska 0.76 
< 1 × 10-16 -2.76 2.76 2.88 

Eisenberg-McLachlan 0.75 
< 1 × 10-16 -2.58 2.58 2.69 

Hopp-Woods 0.88 
< 1 × 10-16 -2.32 2.33 2.43 

Wimley et al. 0.52 
2 × 10-9 -1.94 1.94 2.23 

Moon-Fleming 0.79 
< 1 × 10-16 -1.16 1.24 1.48 

Hessa et al. 0.72 
< 1 × 10-16 -0.22 0.60 0.73 

Koehler et al. 0.76 
< 1 × 10-16 -0.90 1.01 1.19 

Janin et al. 0.61 
4 × 10-13 -1.12 1.21 1.38 

Kyte-Doolittle 0.52 
2 × 10-9 3.04 3.17 3.76 

ProtL 0.79 
< 1 × 10-16 1.46 1.82 2.11 

SolvL 0.83 
< 1 × 10-16 -0.52 0.73 0.95 

 
a mse: mean signed error, mue: mean unsigned error, rmsd: root-mean square deviation, r: Pearson correlation 
coefficient, p: statistical p-value. mse, mue and rmsd are given in log PN/D units.  
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Appendix III. Book Chapter:  

  

Implicit Solvation Methods in the Study of Ligand-Protein Interactions. 

 
Zamora, W. J. Campanera, J. Luque, F. (2015); Implicit Solvation Methods in the 

Study of Ligand-Protein Interactions.  In C. Cavasotto (Ed.), In silico Drug Discovery 

and Design:Theory, Methods, Challenges, and Applications. by CRC Press.  
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9
Implicit Solvation Methods in the Study 
of Ligand–Protein Interactions

William Zamora, Josep M. Campanera, and F. Javier Luque

9.1 Ligand–Receptor Interaction

The affinity between a small compound and its macromolecular target can 
be related to macroscopic observables through the laws of thermodynam-
ics. Thus, the binding affinity can be expressed in terms of the equilibrium 
constant (K) for the formation of the ligand–receptor complex, which can be 
related to the difference in the standard Gibbs free energy between bound 
and unbound states (ΔGo; Equation 9.1).

 ∆G RT Ko = − ln  (9.1)

where R is the gas constant and T is the temperature.
The binding affinity reflects a subtle balance between a number of separate 

enthalpic and entropic contributions (Gohlke and Klebe 2002; Bissantz et al. 
2010). The structural and chemical complementarity between the functional 
groups that are present at the binding interface renders the net stabilizing 
energy that is required to compensate unfavorable contributions to the bind-
ing. Thus, the binding between ligand and receptor is often accompanied by 
conformational changes, which can encompass a range of potential scenarios 
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such as the “induced fit” mechanism, the “conformational selection” pro-
cess, or even more complex models that combine the selection of specific 
conformations with the induction of structural readjustments upon binding 
(Csermely et al. 2010; Spyrakis et al. 2011). Predicting the energy cost associ-
ated with conformational changes in the ligand has proved to be very chal-
lenging, as noted by the uncertainties associated with the choice of the level 
of theory used to determine the cost of selecting the bioactive conformation 
(Tirado-Rives and Jorgensen 2006; Butler et al. 2009).

The energy gain as a result of the seemingly favorable interactions formed 
in the complex must counterbalance the cost due to dehydration of the sepa-
rate partners prior to their mutual interaction. For simple neutral organic 
compounds, the hydration-free energies are generally in a narrow range, as 
noted in the experimental values for the transfer from gas phase to water 
for compounds that mimic the side chain of noncharged amino acids, which 
vary from +2 to −11 kcal/mol (Table 9.1; Wolfenden et al. 1981). However, the 
hydration-free energy of charged compounds is much larger, as expected 
from the strengthening of the interactions with water molecules, leading 
to hydration-free energies of −77 kcal/mol for acetate anion and −71 kcal/
mol for the protonated n-butylamine (Pliego and Riveros 2002). Hence, there 
must be a sizable compensation between the dehydration energy cost and 
binding site residues and the energy gain triggered upon burial of the ligand 
in the binding pocket.

Finally, the ligand–receptor interactions must also compensate for the 
entropy changes arising upon molecular association, such as the loss of 
translational and rotational degrees of freedom, the reduction in the acces-
sible states for internal rotations of both ligand and protein, and the reor-
ganization of water molecules upon formation of the complex. This can be 
illustrated by the fact that binding of amprenavir to HIV protease is accom-
panied by a configurational entropy loss of 26.4 kcal/mol, which primarily 

TABLE 9.1

Experimental Hydration-Free Energies (∆Ghyd; kcal mol−1) of Organic Compounds 
Chosen as Analogs of the Side Chains of Neutral Amino Acids

Residue Side Chain Analog ∆Ghyd Residue Side Chain Analogue ∆Ghyd

Ala Methane 2.0 Leu Isobutane 2.3
Ile Butane 2.1 Met Methyl ethyl sulfide −1.5
Val Propane 2.0 Phe Toluene −0.9
Phe p-Cresol −6.1 Trp Methylindole −5.9
His Methylimidazole −10.3 Ser Methanol −5.1
Thr Ethanol −5.1 Cys Methanethiol −1.2
Asn Acetamide −9.7 Gln Propionamide −9.4
Asp Acetic acid −6.7 Glu Propionic acid −6.5
Lys N-butylamine −4.3 Arg N-propylguanidine −10.9
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arises from narrowness of the energy wells of bound amprenavir relative to 
free ligand (Chang et al. 2007).

The net balance between enthalpic and entropic components leads to 
ligand–protein binding affinities that generally fall between 10−2 and 10−12 M 
(Gohlke and Klebe 2002). Unfortunately, small uncertainties in determining 
the magnitude of the different free energy components may have a drastic 
impact on the accuracy of the binding affinity (Williams et al. 2004; Reynolds 
and Holloway 2011). Thus, an error of 1.36 kcal/mol changes the predicted 
binding constant (at 298 K) by one order of magnitude. Predicting with 
chemical accuracy the binding free energy is a formidable challenge to cur-
rent computational methods due to the magnitude of the separate contribu-
tions to the binding free energy, and the compensation between enthalpic 
and entropic terms. However, this is a fundamental ingredient for the suc-
cess of drug discovery, especially keeping in mind that the maximal free 
energy contribution per non-hydrogen atom in a drug-like ligand amounts 
to ~−1.5 kcal/mol (higher values per atom are found in the case of metals, 
small anions, and ligands that form covalent bonds; Kuntz et al. 1999).

The aim of this chapter is to examine the use of implicit solvation models 
in the calculation of the binding affinity of ligand–receptor complexes. To 
this end, the chapter is divided into two major sections. The first is focused 
on the use of implicit solvation models in the context of classical force field 
methods, dealing specifically with molecular mechanics Poisson–Boltmann 
surface area (MM-PBSA) and its Generalized Born counterpart (MM-GBSA). 
Attention is paid to the details of the underlying formalism and to the differ-
ent strategies undertaken in order to improve the accuracy of the predicted 
binding affinities. In the second section, a brief overview of the application of 
implicit solvation methods in the framework of quantum mechanics is given 
in order to highlight the progressive development of novel implementations 
and their application in drug discovery.

9.2 Molecular Mechanics and Implicit Solvation Models

Free energy perturbation (FEP) and thermodynamic integration (TI) are the 
most valuable computational methods for the prediction of binding affini-
ties of small drug-candidate compounds (Brandsdal et al. 2003; Chipot and 
Pohorille 2007; Jorgensen 2009). These techniques rely on the alchemical 
transformation of ligands (or amino acid residues in the wild-type protein 
and a mutated variant) in two states, which correspond to the ligand free in 
solution, and the ligand bound to the receptor. This transformation is per-
formed by means of a series of simulations carried out at intermediate points 
along the transition path that connects the Hamiltonians of the initial and 
final states. As noted by Michel and Essex (2010), it seems reasonable to expect 
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that free energy calculations cannot predict binding free energies more accu-
rately than solvation-free energies, where the uncertainties obtained for small 
organic compounds are approximately 1 kcal mol−1 (see also Merz 2010).

These calculations can provide the missing links between the experimen-
tal binding affinities and the atomic details of the protein–ligand complexes. 
However, when there are substantial differences in the chemical scaffold of 
the ligands, which differ by large substituents, or even when drastic muta-
tions occur between the native protein and the mutated variant (e.g., trypto-
phan to alanine), the reliability and chemical accuracy of these calculations 
can be affected by convergence problems due to numerical instabilities and 
the limited conformational sampling. Hence, reliable computational schemes 
for the systematic prediction of ligand binding and mutagenesis effects are 
the subject of intense research (Pitera and van Gunsteren 2002; Steinbrecher 
et al. 2007; Lawrenz et al. 2011; Boukharta et al. 2014).

The high computational cost of these techniques is primarily due to the 
large number of intermediate states that must be defined in the alchemical 
transformation, but also to the explicit treatment of the molecular environ-
ment. These factors can be alleviated by treating solvent effects only implic-
itly using continuum solvent methods, and by considering only the endpoint 
states in the free energy calculations. These approximations lead to the so-
called endpoint, implicit solvent-free energy methods, which encompass 
MM-PBSA and MM-GBSA. The main advantage of these methods is the huge 
reduction in the computational cost, which enables the screening of large 
datasets of ligands against a common receptor in a reasonable time span. 
Thus, MM-PB(GB)SA has been widely used in solving a broad range of topics 
valuable in ligand–receptor interactions, and specifically in drug discovery, 
such as determining hot spots in ligand-binding pockets and protein–pro-
tein interfaces, rescoring of docking poses, estimating binding affinities, and 
evaluating the stability of macromolecular assemblies. Nevertheless, the 
simplified description of the molecular system can also affect the chemical 
accuracy in predicting both the binding pose and the binding affinity, which 
makes it necessary to carry out a rigorous calibration of these methods.

9.2.1 Methodological Formalism of MM-PB(GB)SA Methods

In MM-PB(GB)SA, the binding free energy between ligand and receptor 
(ΔGbin) is determined by combining three terms (Figure 9.1): the gas-phase 
free energy (ΔGMM), the solvation-free energy (ΔGsol), and the change in the 
configurational entropy (−TΔS) upon binding (Equation 9.2).

 ∆ ∆ ∆ ∆G G G T Sbin sol= + −MM  (9.2)

The gas-phase component is determined from the molecular mechanics 
energy of the molecule, including bonded and nonbonded terms as imple-
mented in a given force field. If the configurational space of the bound state 
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is assumed to be representative of the configurations sampled by separate 
ligand and receptor, then the ΔGMM term is merely given by the addition of 
Coulomb (ΔGelec) and van der Waals (ΔGvdW) contributions (Equation 9.3).

 ∆ ∆ ∆G G Gelec vdWMM = +  (9.3)

The solvation-free energy is divided into polar (ΔGsol−p) and nonpolar 
(ΔGsol−np) components (Equation 9.4). The polar term reflects the change 
in free energy for the transfer from the gas phase to the aqueous solvent, 
typically modeled as homogeneous medium characterized with dielectric 
constant of 1 and 78.4, respectively. This term is calculated by resorting to 
numerical methods for solving the Poisson–Boltzmann equation through a 
finite-difference approach, or alternatively by means of the GB theory (for a 
review, see Orozco and Luque 2000).

 ∆ ∆ ∆G G Gsol sol p sol np= +− −  (9.4)

In a continuum electrostatics model, a hydrated solute molecule is treated 
as a charge distribution in a low-dielectric cavity, which is embedded in a 
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high-dielectric medium representing water. The dependence between the 
charge distribution and the electric potential is then given by the Poisson 
equation (Equation 9.5).

 ∇ ∇ = −ε ρ( ) ) ( )r r rφ(  (9.5)

where ε(r) denotes the dielectric constant, ϕ(r) is the electric potential, and 
ρ(r) is the charge distribution.

In the presence of an ionic atmosphere, Equation 9.5 adopts the form given 
by the nonlinear Poisson–Boltzmann equation, which under the assump-
tion that φ(r) is small can be linearized (using the approximation that sinh 
φ(r) ≈ φ(r); Equation 9.6).

 ∇ ∇ − = −ε κ ρ( ) ( ) ( ) ( )r r r rφ φ2
 (9.6)

where κ is the Debye–Hückel inverse screening length.
Equations 9.5 and 9.6 must be solved numerically. The finite-difference 

method solves the differential equations by discretizing the region of interest 
into grid points (typically a cubic grid). Accordingly, the solute partial charges 
are fractionally distributed among the nearby grid points, the dielectric con-
stants are assigned to each grid point according to the geometry of the dielec-
tric boundary, and the second derivatives of the potential at each grid point 
can be expressed in terms of the potentials at neighboring points. The coupled 
expressions for the potentials on the grid produce a linear system of equations 
that can be solved to yield the potential at each grid point. It is worth noting, 
however, that estimates of the electrostatic component from grid-based solvers 
of the Poisson equation inevitably contain numerical grid-discretization errors, 
and that a careful assessment of these errors must be performed (Harris et al. 
2013). Other approaches, such as the finite element method or the boundary 
element method, are also available (for details, see Tomasi and Persico 1994).

The GB model offers a simpler, computationally less-expensive approach 
to the electrostatic component of the solvation-free energy (Equation 9.7; Still 
et al. 1990).
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where qi denotes the partial atomic charges of the solute, εout is the dielectric 
constant of the solvent environment, and fGB stands for the screening func-
tion, which is generally expressed as noted in Equation 9.8 (for a review, see 
Bashford and Case 2000).
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where rij is the interatomic distance between particles i and j, αi stands for the 
effective Born radius of particle i.

The use of Equation 9.7 makes the calculation of the electrostatic solva-
tion term to be the sum of pairwise interactions, thus making it suitable for 
implementation in molecular dynamics (MD) programs. Furthermore, the 
pairwise nature of the method also facilitates decomposition of free energies 
into individual atomic contributions (see below).

The nonpolar contribution (ΔGsol−np) is generally estimated by using a linear 
expression with the solvent-accessible surface (SAS; Equation 9.9), which is 
intended to account for the contributions due to the cavity formation within 
the solvent and the change in nonpolar interactions between solute and sol-
vent (Sitkoff et al. 1994).

 ∆G SASsol np− = +γ β  (9.9)

Finally, the change in configurational entropy of the solute is usually esti-
mated by means of a normal mode analysis of harmonic frequencies calcu-
lated at the MM level. This analysis can be performed for simplified structures 
containing the residues within a given sphere centered at the ligand, and the 
energy-minimized structures are obtained by using a distance-dependent 
dielectric, which is introduced to mimic the solvent dielectric (Kongsted and 
Ryde 2009; Genheden and Ryde 2011; Hou et al. 2011). However, this contri-
bution is often neglected when the primary interest is the prediction of rela-
tive binding affinities between structurally similar ligands.

9.2.2 Computational Aspects of MM-PB(GB)SA Calculations

Calculation of the binding affinity between a ligand and its receptor can be 
performed using two computational approaches, which involves a single tra-
jectory of the ligand–receptor complex or separate trajectories of the ligand–
receptor complex, the receptor and the ligand (Figure 9.1; Wang et al. 2006). 
Although this latter approach is formally more rigorous, because it takes 
into account the differences in conformational flexibility of the bound and 
unbound states, the single trajectory strategy is usually adopted because it 
benefits from the cancellation of intramolecular contributions in the predic-
tion of the binding affinity, especially in cases where no large structural dif-
ferences are expected to occur upon binding.

MM-PB(GB)SA calculations are generally performed for ensembles of 
structures sampled along the trajectories obtained from MD simulations. 
Then, a set of representative structures is extracted from the trajectory, water 
molecules and counterions are subsequently removed, and the free energy is 
calculated as noted in Equation 9.2. At this point, it has been pointed out that 
selecting a relatively small number of representative snapshots may suffice 
to obtain an accurate prediction comparable to using the full MD trajectory 
(Lill and Thompson 2011).
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Since a single MD simulation may often not provide a complete description 
of the conformational space available for the ligand–receptor complex (and 
even for the separate receptor), it is then unclear whether the binding affin-
ity estimated from a single trajectory can be representative or not. Adler and 
Beroza (2013) have recently considered this issue. Thus, replicate MM-PBSA 
calculations were performed for four distinct ligand–receptor complexes. 
Separate trajectories were generated using nearly identical starting coordi-
nates (1% randomly perturbed by 0.001 Å), and they were found to lead to 
significantly different calculated binding free energies. Thus, even though 
the binding affinity did converge in each separate run, the variation across 
separate runs implies that a single trajectory may inadequately sample the 
system. Hence, the authors recommend that combining MM-PB(GB)SA with 
multiple samples of the initial starting coordinates will lead to more accurate 
estimates of the binding affinity.

However, it is worth noting that the inclusion of specific structural water 
molecules has been found to be important for the accurate description of 
MM-PB(GB)SA energetics. For instance, it has been reported that the differ-
ence in binding affinity of nevirapine to the wild-type HIV-1 reverse tran-
scriptase and the Y181C mutant was better discriminated upon inclusion 
of key water molecules as part of the protein (Treesuwan and Hannongbua 
2009). Similarly, the protein–protein interaction between the T-cell receptor 
and its staphylococcal enterotoxin 3 (SEC3) binding partner was only effec-
tively discriminated against two mutated SEC3 variants only when key 
explicit water molecules were included in the calculations (Wong et al. 2009). 
On the contrary, a protocol for the inclusion of water molecules that medi-
ate ligand–protein interactions, denoted water-MM-PBSA, has been reported 
(Zhu et al. 2014), leading to improved correlation between the binding affini-
ties estimated for a series of JNK3 kinase inhibitors and the experimental 
IC50 values compared to that obtained from classical MM-PBSA calculations.

The averaged contributions obtained from the whole set of snapshots enable 
to check the time convergence and internal consistency of the binding affin-
ity and its free energy components (Stoica et al. 2008), while they take into 
account the effect due to conformational fluctuations of the molecular sys-
tem. However, it has been advocated that the conformational sampling of the 
simulated system should be performed using simulations with explicit treat-
ment of the solvent molecules, avoiding the use of continuum solvent simula-
tions (Weis et al. 2006). Furthermore, the mixing of force fields for collecting 
the snapshots along the discrete MD simulation and for the MM-PB(GB)SA 
calculation is not recommended, as it may give inaccuracies (Weis et al. 2006).

Even though MM-PB(GB)SA has proven to be successful in various ligand–
protein complexes, the results also demonstrate that the overall performance 
is highly system-dependent. For instance, a systematic analysis of 59 ligands 
interacting with six distinct receptors showed that MM-PBSA gives good pre-
dictions for homologous ligands and has a variable performance for ligands 
with diverse structures (Figure 9.2; Hou et al. 2011). Furthermore, MM-PBSA 
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predictions were found to be very sensitive to the solute dielectric constant, 
which is related to the physicochemical features of the binding interface. In 
fact, Hou et al. (2011) reported that for highly charged binding interfaces, a 
higher solute dielectric constant (εin ~ 4) is preferred, whereas for moderately 
charged or hydrophobic binding interfaces values of εin equal to 2 or 1, respec-
tively, are more adequate. At this point, the authors suggested the change in 
the solvent-accessible surface area (SASA) of the groups involved in strong 
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polar–polar interactions between ligand and receptor as a valuable guide to 
select the dielectric constant of the solute. Moreover, this study also concluded 
that inclusion of conformational entropy is crucial for predicting absolute bind-
ing free energies, but not for ranking the binding affinities of similar ligands.

Similar studies have been performed for MM-PB(GB)SA calculations for 
a total of 46 small molecules targeted to five different protein receptors (Xu 
et al. 2013). Attention was paid to the effect of (i) AMBER force fields (ff99, 
ff99SB, ff99SB-ILDN, ff03, and ff12SB), (ii) the timescale of MD simulations, 
and (iii) the impact of four different charge models (RESP, ESP, AM1-BCC, 
and Gasteiger) for small molecules.

In a separate work, Swanson et al. (2005) also examined the impact of solute 
charge, dielectric coefficient, and atomic radii on the accuracy in predicting 
the solvation-free energies. To this end, a set of 14 polyalanine peptides and 
a series of 20 nonzwitterionic N-acetyl-X-N′-methylamide dipeptides, with 
X representing one of the 20 standard amino acids, were subject to explicit 
solvent simulations, and the charging free energies were determined by 
means of FEP calculations. These data were then utilized for deriving two 
optimized sets of atomic radii, which were chosen to define either abrupt or 
cubic-spline smoother dielectric boundaries, to be used in conjunction with 
AMBER (parm99) charges. The optimized radii were found to offer increased 
accuracy of solvation energies and atomic forces in a test set of four protein-
like polypeptides. The application of these optimized radii to the binding of 
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peptides to human class II MHC molecules was shown to reflect adequately 
the distinction between strong and for binding peptides (Cárdenas et al. 2010).

The aim of deriving parameters for implicit solvent models optimized 
in a system- or atom-specific manner on the basis of experimental data or 
more rigorous explicit solvent simulations has been adopted in other studies. 
For instance, the performance of PB calculations with regard to the TIP3P 
explicit solvent has been examined for a variety of systems of biochemical 
interest (Tan et al. 2006). The results support the transferability of empirically 
optimized parameters for the implicit solvent from small training molecules 
to large testing peptides. However, a computational strategy for optimiz-
ing the solute radii on the basis of forces and energies from explicit solvent 
simulations has been reported in the context of the AMBER partial charges 
and a spline-smoothed solute surface (Swanson et al. 2007). An alternative 
approach for deriving optimized radii for PB calculations has been under-
taken by Yamagishi et al. (2014). The radii were optimized using results from 
explicit solvent simulations of amino acid templates and large peptides in 
the framework of the AMBER protein force field and using a smoothing 
dielectric function. Moreover, discrimination between radii assigned to N- 
and C-terminal residues from nonterminal ones was also considered.

In a different approach, Purisima and coworkers have developed the sol-
vated interaction energy (SIE) method, which is an endpoint MM-PBSA-based 
scoring function that approximates the protein–ligand binding affinity by an 
interaction energy contribution and a desolvation free energy contribution 
(Naïm et al. 2007; Cui et al. 2008). Electrostatic solvation effects are calculated 
with the boundary element solution to the Poisson equation, while nonpolar 
solvation is based on change in the SAS. As in the single-trajectory approach, 
the free state is generally obtained by separation of both ligand and recep-
tor from the ligand–receptor complex sampled along the MD trajectory. The 
SIE method has been carefully calibrated using a diverse set of ligand–pro-
tein complexes, including the calibration of parameters such as the dielectric 
constant, the surface tension coefficient, and the inclusion of an enthalpy–
entropy compensating scaling factor. The SIE scoring function leads to a rea-
sonable agreement between predicted and experimental binding affinities, 
as noted in the external testing against a curated dataset of 343 ligand–pro-
tein complexes, leading to a root-mean square error in the predicted binding 
affinities of 2.5 kcal mol−1 (Sulea et al. 2011).

9.2.3 Large-Scale Application of MM-PB(GB)SA Models

The advent of faster computers and automated procedures for preparation 
of ligands and receptors has promoted the use of MM-PB(GB)SA models in 
medium- and high-throughput screenings, making them valuable for rerank-
ing of docked poses. As an example, Brown and Muchmore (2009) reported a 
large-scale application to a set of 308 small-molecule ligands in complex with 
urokinase, PTP-1B, and Chk-1. Briefly, they use a GB implicit solvation model 
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during the computer-intensive ensemble-generating MD runs, whereas in 
the postproduction process a PB solver that employs a diffuse representation 
of the dielectric boundary (instead of the more common discrete transition 
between solute and solvent). Statistically significant correlations to experi-
mentally measured potencies were found, leading to correlation coefficients 
for the three proteins in the range 0.72–0.83.

Greenidge et  al. (2013) have validated an automated implementation of 
MM-GBSA using a large and diverse selection of 855 protein–ligand com-
plexes. In particular, calculations were performed using the VSGB 2.0 energy 
model, which features an optimized implicit solvent model that includes 
physics-based corrections for hydrogen bonding, pi–pi interactions, self-con-
tact interactions and hydrophobic contacts, and parameters were fit to a crys-
tallographic database of 2239 single side chain and 100 11–13 residue loop 
predictions (Li et al. 2012). Calculations were performed using the KNIME-
automated workflow. After carefully removing flawed structures, compari-
son of calculated and experimental binding affinities showed a significant 
correlation (R2 = 0.63; Figure 9.3). The study also discussed the impact of 
ligand strain and water molecules, revealing that while inclusion of water 
molecules deteriorates the predictive quality, inclusion of ligand strain 
slightly improves the overall accuracy. In an independent study, the accu-
racy of the VSGB 2.0 energy model in predicting binding free energies was 
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also tested for 106 protein–ligand complexes (Mulakala and Viswanadhan 
2013). The results indicate that this method may be approaching the accuracy 
required for absolute binding free energy determination, although through 
linear regression and without any conformational sampling. Furthermore, 
given the modest computational cost of these calculations, the MM-GBSA 
formalism may be poised toward generating physics-based scoring func-
tions for docking.

Very recently, Greenidge et al. (2014) have shown that MM-GBSA can be 
used as an independent scoring function to assess the energetically preferred 
pose as generated with multiple scoring functions, and in multiple protein 
conformations. The results supported the role of MM-GBSA to distinguish 
between true and decoy poses of a ligand in addition to the rescoring of 
data sets.

A last example of the progressive large-scale application of MM-PB(GB)
SA methods is the high-throughput virtual screening pipeline for in silico 
screening of virtual compound databases using high-performance com-
puting (Zhang et  al. 2014). This pipeline involves an automated receptor 
preparation scheme with unsupervised binding site identification, includ-
ing receptor/target preparation, ligand preparation, VinaLC docking calcu-
lation, and MM-GBSA rescoring. The results demonstrate that MM-GBSA 
rescoring has higher average receiver operating characteristic (ROC) 
area under curve (AUC) values and consistently better early recovery of 
actives than Vina docking alone, though the enrichment performance is 
target-dependent.

9.3  Per-Residue Decomposition of the MM-PB(GB)SA 
Free Energy

The decomposition into per-residue and residue-pairwise contributions of 
the MM-PB(GB)SA binding free energy allows to unravel the network of 
energetic interactions that stabilize ligand–protein binding, thus providing 
insight into key features of binding (Gohlke et al. 2003). All the components 
of the binding affinity (Equation 9.2) can be decomposed with certain degree 
of approximation into per-residue and also residue-pairwise contributions 
according to the standard scheme given by Equation 9.10.

 

∆ ∆ ∆G G Gbin
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i j

j i
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= =
= ≠=

∑ ∑∑
1 1
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(9.10)

where n is the total number of residues, ΔGi are the per-residue contributions, 
and ΔGi,j are the residue-pairwise interaction contributions.
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Under this scheme ΔGbin can also be partitioned into the receptor and 
ligand components by summing the corresponding per-residue contribu-
tions of each fragment (Equation 9.11).

 ∆ ∆ ∆G G Gbin
receptor ligand= +  (9.11)

It is worth noting that only the electrostatic (ΔGelec) and van der Waals 
(ΔGvdW) terms are strictly residue-pairwise decomposable, so that one-half 
of the pairwise interaction energy between two residues i and j is attributed 
to both of them. However, the solvation terms are not inherently decompos-
able, since the effective Born radii for GB and dielectric boundaries for PB are 
dependent on the surroundings (Miller et al. 2012).

Regarding the GB polar solvation term, ∆Gsol p
i j

−
, , a pairwise descreening 

approximation was implemented by Onufriev et  al. (Onufriev et  al. 2000; 
Tsui and Case 2001) based on the improvement of the standard GB model 
(Hawkins et al. 1995) as noted in Equation 9.12.
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where εin and εout are the solute and solvent dielectric constants, κ is the 
Debye–Hückel screening parameter to account for salt effects at low salt con-
centrations (Srinivasan et al. 1999).

Since fGB depends on the effective Born radius (Equation 9.8), ∆Gsol p
i j

−
,  is 

inherently nondecomposable, that is, the polar solvation interaction between 
residues i and j is affected by all other atoms in the system. Therefore, the 
binding free energies of receptor and ligand (Equation 9.11) become asym-
metric, since the effective Born radius yields different values depending on 
the overall structure of either complex or receptor/ligand. A similar reason-
ing can be used in relation to the PB dielectric boundary to reach the conclu-
sion that the PB polar solvation energy is neither inherently decomposable 
nor produces symmetric binding free energies. However, the nonpolar solva-
tion term, ΔGsol−np, also contains intrinsic difficulties in its geometry decom-
position due to the nonlocal character of the SASA-dependent term used for 
its calculation (Gohlke et al. 2003), introducing asymmetry in the binding 
free energy between the protein and the ligand.

Regarding the configurational entropy, the decomposition at residue or 
residue-pairwise level remains still to be solved, though attempts to decom-
pose the normal modes that contribute to the vibrational entropy into atomic 
contributions have been reported (Zoete and Michielin 2007). Generally, the 
configurational entropy decomposed at the residue level due to the loss of 
torsional freedom can be computed using the computational scheme adopted 
by Honig and coworkers (Froloff et al. 1997), which is based on the empirical 
scale of Pickett and Stemberg (1993). This procedure separates backbone and 
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side-chain components. For the backbone, an entropic penalty of 2 kcal mol−1 
per residue is considered, whereas a variable value is computed for side-
chain component depending on the solvent-exposed surface area (Doig and 
Sternberg 1995).

The MM-PB(GB)SA fragmental decomposition yields a high number of 
components that, combined with the systematic application to a set of pro-
tein–ligand complexes either from MD simulations or other sampling meth-
ods, can form voluminous energy matrices. The amount of data generated 
for this decomposition is vast and thus impedes univariate exploration. 
Alternatively, multivariate data analysis techniques such as partial least 
squares (PLS) or principal component analysis (PCA) have found their appli-
cability to the in-depth exploration of the computed energy matrices in order 
to find significant residues or residue-pairwise contributions that govern the 
binding free energy.

The per-residue decomposition methodology has been widely applied to 
the study of protein–ligand binding free energy (Zoete and Michielin 2007; 
Berhanu and Masunov 2012; Laurini et al. 2013). However, the residue-pair-
wise decomposition has been less used, though recently several works have 
explored its potentiality. For instance, it has been used to elucidate the sig-
nal transmission mechanism in the allosteric regulation of protein kinases 
C by determining the differences in the residue-pairwise interaction pro-
files among six protein states of the mentioned protein (Seco et  al. 2012). 
Furthermore, Pouplana and Campanera (2015) have used it to determine 
the relative importance of the hydrophobic fragments of Aβ oligomers in the 
oligomerization process of such peptides. As shown in the decompostion 
of the intermonomeric van der Waals free energy in Figure 9.4, the hydro-
phobic collapse in the formation of these oligomers is caused by hydro-
phobic interactions between three well-defined hydrophobic fragments: 
31–35 (C-terminal hydrophobic region [CTHR]), 17–20 (central hydrophobic 
region [CHC]), and 12–14 (N-terminal hydrophobic region [NTHR]), ordered 
according to their importance.

9.4 Quantum Mechanics and Implicit Solvation Models

The use of simplified expressions in classical force fields is understand-
able in terms of providing an efficient sampling, as well as in facilitating 
the parametrization of the large number of functional groups that can be 
incorporated into drug-like molecules. However, these approximations also 
limit the accuracy of classical force fields in describing the intermolecular 
interactions that mediate the recognition between ligands and proteins. 
Thus, besides typical interactions such as salt bridges, standard hydrogen 
bonds, and van der Waals forces, a wider number of stabilizing interactions 
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have been characterized in the last decades, including cation-π or anion-π 
complexes (Frontera et al. 2011), nonstandard hydrogen bonds (Hobza and 
Havlas 2000), and halogen bonding (Nguyen et al. 2004; Sarwar et al. 2010).

Quantum mechanical (QM) methods are the most accurate approach 
to the calculations of intermolecular interactions, and they form the basis 
for the parametrization of force fields. The continued increase in accuracy 
achieved by QM methods has also stimulated the implementation and 
usage of QM-based techniques for different applications in the study of 
ligand–protein complexes. Most of these applications follow the hybrid 
QM/MM computational scheme (Warshel 2003; Friesner and Guallar 2005), 
where the Hamiltonian of the whole system can be defined as the sum of 
three terms (Equation 9.13) corresponding to the QM subsystem (ĤQM), the 
MM subsystem (ĤMM), and the coupling between the QM and MM regions 
( ˆ

/HQM MM).

 
ˆ ˆ ˆ ˆ

/H H H H= + +QM MM QM MM  (9.13)
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(See color insert.) Residue decomposition of the intermonomeric total stability free energy 
(kcal mol−1) of different oligomers of β-amyloid peptide. (Reproduced from Pouplana, R. and J. 
M. Campanera. 2015. Phys. Chem. Chem. Phys. 17(4): 2823–2837. With permission from the PCCP 
Owner Societies.)
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Although the major goal of QM/MM methods has been the study of reac-
tive processes in condensed media or in enzymes, a wider range of applica-
tions is being explored in drug discovery, including the calculation of the 
ligand–protein interaction energy and the analysis of the energy components, 
and the rescoring of docking calculations (Hensen et al. 2004; Cho et al. 2005; 
Illingworth et al. 2008; Cho and Rinaldo 2009; Chaskar et al. 2014).

QM-based strategies have also been developed for the prediction of binding 
affinities of ligand–protein complexes. To this end, a variety of methodologi-
cal strategies have been adopted, as will be illustrated by the representative 
cases presented below (Zhou et al. 2010; Barril and Luque 2012; Ilatovskiy 
et al. 2013; Mucs and Bryce 2013).

Balaz and coworkers have proposed a four-step strategy for the study of 
ligand-metalloprotein complexes (Khandelwal et  al. 2005). The procedure 
involves docking of ligands, optimization of the complex, conformational 
sampling with constrained metal bonds, and a single point QM/MM cal-
culation for the time-averaged structure. Finally, the QM/MM interaction 
energy, Δ〈EQM/MM〉, is combined with a desolvation term in order to deter-
mine the binding free energy (Equation 9.14). After suitable parametrization 
against experimental data for a set of 28 hydroxamate inhibitors binding to 
zinc-dependent matrix metalloproteinase 9, Equation 9.14 was able to account 
for 90% of variance in the inhibition constants.

 ∆ ∆ ∆G E SASAbin = + +α γ κQM MM/  (9.14)

where Δ〈SASA〉 denotes the change in SAS upon complexation.
In a distinct study, the ability of QM/MM combined with the PBSA model 

has been utilized for the calculation of binding affinities for flexible ligands 
(Gräter et al. 2005). The method was tested for a set of 47 benzamidine deriv-
atives binding to trypsin. The suitability of the computational strategy for 
automated ligand docking and scoring is supported by the accuracy in pre-
dicting the experimental range of binding energies, with a root-mean square 
error of 1.2 kcal mol−1.

Das et al. (2009) followed a strategy based on the use of protein-polarized 
QM charges in GBSA calculations for nine protease inhibitors. In this work, 
the general expression of a GBSA model was adopted, but the ligand was 
described by assigning either MM charges or the protein-polarized ones as 
derived from QM/MM calculations. Moreover, attention was paid to the effect 
of including bridging water molecules that mediate hydrogen bonding with 
the ligand. The results showed that the binding free energies determined by 
using those polarized charges (and specific water molecules) showed higher 
correlation with antiviral IC50 data. The importance of including polarization 
effects through QM/MM methods, combined with a van der Waals correc-
tion and a term accounting for desolvation, has also been highlighted for 
ligands binding to trypsin and cytochrome c peroxidase (Burger et al. 2011).
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An elaborate scheme was reported by Raha and Merz (2004, 2005) with 
the aim to perform a large-scale validation of a QM-based scoring function 
for predicting the binding affinity of a diverse set of ligands. In this study, 
the binding affinity was determined as noted in Equation 9.15, where it is 
decomposed into the gas-phase interaction energy (∆Gb

gas), and the change 
in solvation-free energy (ΔΔGsolv) of the complex (∆Gsolv

PL ) relative to protein 
(∆Gsolv

P ) and ligand (∆Gsolv
L ).

 ∆ ∆ ∆∆ ∆ ∆ ∆ ∆G G G G G G Gbin b
gas

solv b
gas

solv
PL

solv
P

solv
L= + = + − −  (9.15)

The gas-phase interaction energy was determined as a sum of electro-
static and nonpolar interaction energies. The former was calculated using 
the divide-and-conquer method and the semiempirical AM1 or PM3 
Hamiltonians, and the latter with the classical attractive component of the 
Lennard–Jones interaction potential. Furthermore, the entropic term was 
expressed as the addition of conformational and solvent entropy compo-
nents. The former was estimated by considering a conformational penalty 
of 1 kcal mol−1 for each rotatable bond of the ligand and in the protein side 
chains frozen upon formation of the complex. The solvent entropy term 
accounts for the entropy gained by release of water molecules upon binding, 
and it was calculated from the buried surface area resulting upon complex-
ation. Finally, the solvation-free energy term was determined using a QM 
self-consistent reaction field calculation for the complex, ligand, and protein. 
Finally, the weights of the different components were adjusted by fitting to 
experimental binding free energies. The method was shown to be effective 
as scoring function for predicting ligand poses docked to a protein target 
and for discriminating between native and decoy poses.

A related QM-based scheme based on the semiempirical QM PM6-DH2 
method, which includes corrections dispersion energy and hydrogen bonds, 
has been proposed for the computation of binding affinities (Fanfrlik et al. 
2010; Dobes et al. 2011a). Here, the binding affinity is determined by adding 
the PM6-DH2 interaction enthalpy evaluated in a continuum water environ-
ment using the COSMO model. The desolvation of the ligand was further 
refined by means of solvation model based on density (SMD) continuum 
calculations. Furthermore, the deformation contribution due to changes in 
protein and ligand upon binding was also considered. The method was suc-
cessful in ranking 22 ligands binding to HIV-1 protease, and for the binding 
of 15 structurally diverse inhibitors to CDK2. Recently, the method has been 
extended to treat halogen bonding (Dobes et al. 2011b) as well as to treat non-
covalent binding in protein–ligand complexes (Fanfrlik et al. 2013).

The MM/QM-COSMO strategy has been adopted to evaluate the bind-
ing affinity of phosphopeptide inhibitors of the Lck SH2 domain (Anisimov 
and Cavasotto 2011). Starting from MD trajectories of the complex, a QM 
postprocessing is made for a selection of representative snapshots, which 
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were first refined using the PM3 Hamiltonian and the COSMO continuum 
solvent model. The binding free energy was then determined as noted in 
Equation 9.16, where the first term in the right-hand side was determined 
using Equation 9.17, and the entropic term included changes in translational 
and rotational rigid body component and the change in vibrational entropy.

 
∆ ∆ ∆ ∆G H T S T Sbinding

COSMO RB= − − int

 
(9.16)

 H E GCOSMO COSMO
np
solv= +  (9.17)

where ECOSMO represents the PM3 QM energy (including vacuum and solva-
tion energy components), and the nonpolar contribution (Gnp

solv) is determined 
using a linear relationship with the change in SAS.

The binding affinities derived from MM/QM-COSMO calculations were 
compared with the results determined using MM-PBSA and MM-GBSA, 
as well as the SIE method. The MM/QM-COSMO method showed the best 
agreement both for absolute (average unsigned error of 0.7 kcal mol−1) and 
relative binding free energies.

9.5 Conclusion

Despite substantial progresses made in the last years, predicting the bind-
ing free energy of ligand to their targets still remains a major challenge for 
computational chemistry. This conforms to the involvement of different 
enthalpic and entropic components, each playing a significant contribution, 
and to the important compensation between these thermodynamic quanti-
ties. Furthermore, the need to develop fast, yet accurate estimates of binding 
affinities, which may discriminate between strong and weak binders and 
between distinct poses of a given compound, is required for large-scale appli-
cation in drug discovery. In this context, the use of implicit solvation meth-
ods represents a fundamental tool in the path toward novel computational 
strategies for the high-throughput analysis of ligand–receptor complexes.

In the classical framework, MM-PB(GB)SA methods are a priori well suited 
to attain the preceding goal due to the continuous development of more accu-
rate force fields, and specially to the refinement of the crude approximations 
inherent in the description of solvent effects through implicit continuum 
models. Thus, among the wide range of applications achieved by MM-PB(GB)
SA methods in the study of biomolecular systems, the large-scale application 
to virtual screening appears to be especially promising, as these methods 
are reaching the predictive accuracy that would be required to discriminate 
among large sets of compounds covering a wide range of binding affinities. 
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However, the availability of decomposition schemes permits to disclose the 
contribution of specific molecular determinants (i.e., chemical groups in the 
ligand or residues in the binding pocket) that play a distinctive role in the 
binding affinity, thus providing valuable guidelines to assist the structure-
based drug design.

The investigation of compounds with small differences in the binding 
affinity seems still out of the realm of MM-PB(GB)SA methods, partly due 
to the limitations of the classical force field to account for the interactions 
formed between a ligand and its target, taking a proper accounting of elec-
trostatic, induction, charge transfer, and dispersion effects, as well as from 
the simplified description of environmental effects. At this point, QM-based 
methods used directly for the modeled structures of ligand–protein com-
plexes or in the framework of endpoint sampling techniques represent 
a promising alternative as a tool to develop and calibrate novel computa-
tional strategies designed to provide accurate estimates of binding affinities 
(Yilmazer and Korth 2013). Furthermore, the development of QM-based strat-
egies can give rise to accurate tools for lead optimization, even though this 
option is seriously limited by the huge computational cost of high-level QM 
computations. This explains why most of the QM-based strategies devised 
for the study of ligand–protein complexes rely on semiempirical methods, 
often supplemented by suitable correction terms to assure the description 
of certain types of interactions. On the contrary, current efforts for making 
quantum chemistry codes more efficient and implementing them in power-
ful computational resources can be relevant to alleviate the computational 
requirements of QM-based strategies. Overall, it can be envisaged that 
QM-based approaches will be an increasingly used and valued tool in com-
putational medicinal chemistry and structure-based drug discovery.
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