
THE CHOWLA-SELBERG FORMULA FOR CM FIELDS AND THE COLMEZ

CONJECTURE

A Dissertation

by

ADRIAN ALBERTO BARQUERO-SANCHEZ

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Riad Masri
Committee Members, Matthew Papanikolas

Matthew P. Young
Lan Zhou

Head of Department, Emil Straube

August 2016

Major Subject: Mathematics

Copyright 2016 Adrian Alberto Barquero-Sanchez



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

ProQuest         

Published by ProQuest LLC (    ).  Copyright of the Dissertation is held by the Author.

ProQuest Number:          

10291114

10291114

2016



ABSTRACT

In this thesis we start by giving a quick review of the classical Chowla-Selberg formula. We

then recall a conjecture of Colmez which relates the Faltings height of an abelian variety with

complex multiplication by the ring of integers of a CM field E to logarithmic derivatives of certain

Artin L–functions at s = 0. It turns out that in the case in which the abelian variety is a CM

elliptic curve, the conjecture of Colmez can be seen as a geometric reformulation of the classical

Chowla-Selberg formula.

Then we will focus our attention on establishing a generalization of the classical Chowla-

Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular

function at CM points to values of Euler’s gamma function Γ and an analogous function Γ2 at

rational numbers.

Finally, we will study the above mentioned conjecture of Colmez. We will prove that if F

is any fixed totally real number field of degree [F : Q] ≥ 3, then there are infinitely many CM

extensions E/F such that E/Q is non-abelian and the Colmez conjecture is true for E. Moreover,

these CM extensions are explicitly constructed to be ramified at “arbitrary” prescribed sets of prime

ideals of F . We also prove that the Colmez conjecture is true for a generic class of non-abelian

CM fields called Weyl CM fields, and use this to develop an arithmetic statistics approach to the

Colmez conjecture based on counting CM fields of fixed degree and bounded discriminant. We

illustrate these results by evaluating the Faltings height of the Jacobian of a genus 2 hyperelliptic

curve with complex multiplication by a non-abelian quartic CM field in terms of the Barnes double

Gamma function at algebraic arguments. This can be seen as an explicit non-abelian Chowla-

Selberg formula.
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1. INTRODUCTION

The Chowla-Selberg formula [CS49, CS67] is a remarkable identity which relates values of the

Dedekind eta function at CM points to values of Euler’s gamma function Γ at rational numbers.

This formula arises in connection with many topics in number theory, including elliptic curves,

L–functions, modular forms, and transcendence. For a very nice discussion, see Zagier [Zag08,

Section 6.3]. In the second chapter of this thesis we will establish a Chowla-Selberg formula

for abelian CM fields. This is an identity which relates values of a Hilbert modular function at

CM points to values of Γ and an analogous function Γ2 at rational numbers. The function Γ2

was studied extensively by Deninger [Den84] in his work on the Chowla-Selberg formula for real

quadratic fields. We note that there has recently been a great amount of interest in formulas for

CM values of Hilbert modular functions. Some examples occur in the work of Bruinier-Yang

[BY06, BY07, BY11] and Bruinier-Kudla-Yang [BKY12], which is related to Borcherds products

and the seminal work of Gross-Zagier [GZ85] on factorization of differences of singular moduli.

1.1 The Chowla-Selberg formula

We begin by reviewing the classical Chowla-Selberg formula (see e.g. [Wei76, Chapter IX]).

Let ∆ = f2d be a fundamental discriminant where f > 0 and d is square-free. Let K = Q(
√
d)

be a quadratic field of discriminant ∆, OK be the ring of integers, CL(K) be the ideal class group,

hd be the class number, wd = #O×K be the number of units (for d < 0), εd be the fundamental unit

(for d > 0), and χd(·) =
(

∆
·
)

be the Kronecker symbol associated to K. Assume now that d < 0.

Given an ideal class C ∈ CL(K), one may choose a primitive integral ideal a ∈ C−1 such that

a = Za+ Z

(
−b+

√
∆

2

)
, a, b ∈ Z

where a = NK/Q(a) is the norm of a and b satisfies b2 ≡ ∆ mod 4a. Then

τa =
−b+

√
∆

2a

is a CM point in the complex upper half-plane H which corresponds to the inverse class [a] = C−1.

The Chowla-Selberg formula is obtained by comparing two different expressions for the Dede-
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kind zeta function ζK(s). One has the classical identity

ζK(s) =
2

wd
ζ(2s)

(
2√
|∆|

)s ∑
[a]∈CL(K)

E(τa, s),

where

E(z, s) :=
∑

M∈Γ∞\SL2(Z)

Im(Mz)s, z ∈ H, Re(s) > 1

is the non-holomorphic Eisenstein series for SL2(Z). On the other hand, one has the well-known

factorization

ζK(s) = ζ(s)L(χd, s),

where L(χd, s) is the Dirichlet L-function associated to χd. Comparing these expressions and

making the shift s 7→ (s+ 1)/2 yields

∑
[a]∈CL(K)

E

(
τa,

s+ 1

2

)
=
wd
2

(√
|∆|
2

) s+1
2 ζ( s+1

2 )

ζ(s+ 1)
L

(
χd,

s+ 1

2

)
. (1.1)

Now, one has the “renormalized” Kronecker limit formula

E

(
z,
s+ 1

2

)
= 1 + log(G(z))(s+ 1) +O((s+ 1)2), (1.2)

where

G(z) :=
√

Im(z)|η(z)|2

and

η(z) := q1/24
∞∏
n=1

(1− qn) , q := e2πiz, z ∈ H

is the Dedekind eta function, a weight 1/2 cusp form for SL2(Z). Substitute (1.2) into the left hand

side of (1.1), calculate the Taylor expansion of the right hand side of (1.1) at s = −1, differentiate

both sides of the resulting identity with respect to s, and evaluate at s = −1 to get∑
[a]∈CL(K)

log(G(τa)) =
wd
2
L(χd, 0)

{
log

(√
|∆|
2

)
− ζ ′(0)

ζ(0)
+
L′(χd, 0)

L(χd, 0)

}
. (1.3)

2



Recall the evaluation

−ζ
′(0)

ζ(0)
= − log(2π), (1.4)

and the class number formula

L(χd, 0) =
2hd
wd

. (1.5)

To evaluate L′(χd, 0), one uses the decomposition

L(χd, s) = |∆|−s
|∆|∑
k=1

χd(k)ζ

(
s,

k

|∆|

)
, (1.6)

where

ζ(s, w) :=

∞∑
n=0

1

(n+ w)s
, Re(w) > 0, Re(s) > 1

is the Hurwitz zeta function. Lerch [Ler87] showed that

ζ(s, x) =
1

2
− x+ log

(
Γ(x)√

2π

)
s+O(s2), x > 0 (1.7)

where

Γ(s) :=

∫ ∞
0

ts−1e−tdt

is Euler’s gamma function. Substitute (1.7) into (1.6), then differentiate to get

L′(χd, 0) = − log(|∆|)L(χd, 0) +

|∆|∑
k=1

χd(k) log

{
Γ

(
k

|∆|

)}
. (1.8)

Finally, substitute (1.4), (1.5) and (1.8) into (1.3), then exponentiate to obtain the Chowla-Selberg

formula

∏
[a]∈CL(K)

G(τa) =

(
1

4π
√
|∆|

)hd
2 |∆|∏
k=1

Γ

(
k

|∆|

)wdχd(k)

4

. (1.9)

3



1.2 The Colmez conjecture

In order to state the Colmez conjecture, we start by recalling the definition of the Faltings

height of a CM abelian variety. Let F be a totally real number field of degree n. Let E/F be a

CM extension of F and Φ be a CM type for E. Let XΦ be an abelian variety defined over Q with

complex multiplication byOE and CM type Φ. We call XΦ a CM abelian variety of type (OE ,Φ).

Let K ⊆ Q be a number field over which XΦ has everywhere good reduction, and choose a Néron

differential ω ∈ H0(XΦ,Ω
n
XΦ

). Then the Faltings height of XΦ is defined by

hFal(XΦ) := − 1

2[K : Q]

∑
σ:K↪→C

log

∣∣∣∣∣
∫
Xσ

Φ(C)
ω ∧ ωσ

∣∣∣∣∣ .
The Faltings height does not depend on the choice of K or ω.

Now, let Es denote the Galois closure of E. We define a function AE,Φ : Gal(Es/Q) −→ Z

by

AE,Φ(σ) := |Φ ∩ σΦ|,

where σΦ := {σ ◦ τ | τ ∈ Φ}. We also define a function A0
E,Φ : Gal(Es/Q) −→ Q by

A0
E,Φ(σ) :=

1

|Gal(Es/Q)|
∑

τ∈Gal(Es/Q)

AE,Φ(τστ−1).

Let Irr(Gal(Es/Q)) be the set of irreducible Artin characters of the Galois group Gal(Es/Q).

It can be shown that the function A0
E,Φ is a class function on the group Gal(Es/Q). The set of

class functions f : Gal(Es/Q) −→ C is a finite dimensional inner product vector space, with

inner product given by

〈f1, f2〉 :=
1

|Gal(Es/Q)|
∑

g∈Gal(Es/Q)

f1(g)f2(g).

It is known that the set of irreducible Artin characters Irr(Gal(Es/Q)) forms an orthonormal basis

for this inner product space. Hence by basic linear algebra we know that the function A0
E,Φ can be

expressed as

4



A0
E,Φ =

∑
χ∈Irr(Gal(Es/Q))

〈AE,Φ, χ〉χ.

With all these preliminaries, we can finally state the Colmez conjecture as follows.

Conjecture 1.2.1 (Colmez). The Faltings height of XΦ is given by

hFal(XΦ) = −
∑

χ∈Irr(Gal(Es/Q))

〈AE,Φ, χ〉
(
L′(χ, 0)

L(χ, 0)
+

1

2
log (fχ)

)
,

where L(χ, s) is the Artin L–function associated to the character χ and fχ is the corresponding

analytic Artin conductor of χ.

In the introduction to chapter 3 we will see how the Colmez conjecture can be seen as a geo-

metric reformulation of the classical Chowla-Selberg formula in the case in which the CM abelian

variety is a CM elliptic curve.

Recently there has been increased interest in the Colmez conjecture because of the important

role that it played in Tsimerman’s proof [Tsi15] of the André-Oort conjecture for the moduli space

Ag of principally polarized abelian varieties of dimension g.

In chapter 3, we will study the Colmez conjecture for non-abelian CM fields.

5



2. THE CHOWLA-SELBERG FORMULA FOR ABELIAN CM FIELDS∗

2.1 Introduction

To establish a Chowla-Selberg formula for abelian CM fields, we will follow the basic structure

of the argument described in Chapter 1.

The following facts concerning Hilbert modular varieties and CM points are explained in detail

in Sections 2.3 and 2.4.

Let F/Q be a totally real field of degree n. Let OF be the ring of integers, O×F be the group of

units, dF be the absolute value of the discriminant, and ζF (s) be the Dedekind zeta function. Let

z = (z1, . . . , zn) ∈ Hn. The Hilbert modular group SL2(OF ) acts componentwise on Hn by linear

fractional transformations.

Let E be a CM extension of F and Φ = {σ1, . . . , σn} be a CM type for E. Let hE be the class

number of E, and assume that F has narrow class number 1. Given an ideal class C ∈ CL(E), let

za be a CM point corresponding to the inverse class [a] = C−1. To ease notation, we identify the

CM point za with its image Φ(za) ∈ Hn under the CM type Φ. Let

CM(E,Φ,OF ) := {za : [a] ∈ CL(E)}

be a set of CM points of type (E,Φ). This is a CM zero-cycle on the Hilbert modular variety

SL2(OF )\Hn.

We will establish the following analog of (1.3),∑
[a]∈CL(E)

log (H(za)) =
hE
2

{
log

(√
dE

2ndF

)
− 1

n

ζ
(n)
F (0)

ζ
(n−1)
F (0)

+
L′(χE/F , 0)

L(χE/F , 0)

}
, (2.1)

where H : Hn → R+ is a SL2(OF )-invariant function analogous to G(z) which arises from

a renormalized Kronecker limit formula for the non-holomorphic Hilbert modular Eisenstein se-

ries (see Section 2.3, and in particular, equation (2.10)), and L(χE/F , s) is the L–function of the

∗Sections of this chapter are reprinted with permission from Adrian Barquero-Sanchez and Riad Masri (2016),
The Chowla-Selberg formula for abelian CM fields and Faltings heights. Compositio Mathematica, 152, pp 445–476
doi:10.1112/S0010437X15007629. Published online: 24 September 2015. Copyright 2015 by Adrian Barquero-Sanchez
and Riad Masri.
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quadratic character χE/F associated by class field theory to the CM extension E/F .

Assume now that E is abelian over Q. Then F ⊂ E ⊂ Q(ζN ) for some primitive N -th root of

unity ζN := e2πi/N . Let HE (resp. HF ) be the subgroup of GN := Gal(Q(ζN )/Q) which fixes E

(resp. F ). Using the isomorphism GN ∼= (Z/NZ)×, one defines the group of Dirichlet characters

associated to E (resp. F ) by

XE := {χ ∈ ̂(Z/NZ)× : χ|HE
≡ 1}

(resp. XF ). Clearly, we have HE ≤ HF and XF ≤ XE .

Given a Dirichlet character χ ∈ XE , let L(χ, s) denote the L–function of the primitive Dirich-

let character of conductor cχ which induces χ. The Gauss sum of χ ∈ XE is defined by

τ(χ) :=

cχ∑
k=1

χ(k)ζkcχ , ζcχ := e2πi/cχ .

We will establish the identity

L′(χE/F , s)

L(χE/F , s)
=

∑
χ∈XE\XF

L′(χ, s)

L(χ, s)
,

hence to evaluate the logarithmic derivative of L(χE/F , s) at s = 0, we must evaluate L′(χ, 0) for

χ ∈ XE \XF . We can express L′(χ, 0) in terms of values of log(Γ(s)) at rational numbers as in

(1.8).

On the other hand, we will reduce the evaluation of the logarithmic derivative of ζ(n−1)
F (s) at

s = 0 to the evaluation of L′(χ, 1) for nontrivial χ ∈ XF . Because each χ ∈ XF is even, L′(χ, 1)

cannot be expressed in terms of values of log(Γ(s)) at rational numbers (this is due to the sign of

the functional equation for L(χ, s) when χ is even). However, Deninger [Den84] showed how to

evaluate L′(χ, 1) in terms of values of the function

R(w) := ∂2
sζ(0, w), Re(w) > 0

at rational numbers. The function R(w) is analogous to log(Γ(s)/
√

2π), as we now explain.

Consider the Taylor expansion

ζ(s, x) =
1

2
− x+ log

(
Γ(x)√

2π

)
s+R(x)s2 +O(s3), x > 0.

7



By the Bohr-Mollerup theorem, log(Γ(x)/
√

2π) is the unique function f : R+ → R such that

f(x+ 1)− f(x) = log(x),

f(1) = ζ ′(0) = − log(
√

2π), and f(x) is convex on R+. Using properties of the Hurwitz zeta

function, one can show that ∂sζ(0, x) also satisfies these three conditions, hence by uniqueness,

one recovers Lerch’s identity

∂sζ(0, x) = log

(
Γ(x)√

2π

)
.

Note that using the limit

Γ(x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)
, x > 0

one has

log

(
Γ(x)√

2π

)
= lim

n→∞

(
ζ ′(0) + x log(n)− log(x)−

n−1∑
k=1

(log(x+ k)− log(k))

)
. (2.2)

Deninger [Den84, Theorem 2.2] proved a similar result for the functions ∂αs ζ(0, x), α ∈ Z+,

by modeling the proof of Lerch’s identity just described. In particular, for α = 2 he proved that

R(x) is the unique function R : R+ → R such that

R(x+ 1)−R(x) = log2(x),

R(1) = −ζ ′′(0), and R(x) is convex on (e,∞). He also proved the following analog of (2.2),

R(x) = lim
n→∞

(
−ζ ′′(0) + x log2(n)− log2(x)−

n−1∑
k=1

(
log2(x+ k)− log2(k)

))
.

Define the function

Γ2(w) := exp(R(w)), Re(w) > 0

which is analogous to Γ(s)/
√

2π. Note that Γ2(w) does not extend to a meromorphic function on

C (see e.g. [Den84, Remark (2.4)]).

We can now state our Chowla-Selberg formula for abelian CM fields.

Theorem 2.1.1. Let F/Q be a totally real field of degree n with narrow class number 1. Let E/F

8



be a CM extension with E/Q abelian. Let Φ be a CM type for E and

CM(E,Φ,OF ) = {za : [a] ∈ CL(E)}

be a set of CM points of type (E,Φ). Then

∏
[a]∈CL(E)

H(za) = c1(E,F, n)
∏

χ∈XE\XF

cχ∏
k=1

Γ

(
k

cχ

)hEχ(k)

2L(χ,0) ∏
χ∈XF
χ 6=1

cχ∏
k=1

Γ2

(
k

cχ

)hEτ(χ)χ(k)

2cχL(χ,1)

,

where

c1(E,F, n) :=

(
dF

2n+1π
√
dE

)hE
2

.

Remark 2.1.2. Given a triple (E,F,Φ) satisfying the hypotheses of Theorem 2.1.1, one can obtain

explicit examples by determining the group of characters XE (resp. XF ) and a set of CM points

CM(E,Φ,OF ) of type (E,Φ) (see Section 2.2).

Remark 2.1.3. The narrow class number 1 assumption in Theorem 2.1.1 could be removed by

working adelically. We have worked in the classical language to emphasize parallels with the

original Chowla-Selberg formula.

When E/Q is a multiquadratic extension (equivalently, Gal(E/Q) is an elementary abelian

2-group), one can explicitly determine the group of characters XE (resp. XF ), leading to the

following result.

Theorem 2.1.4. Let d1, . . . , d`+1 be squarefree, pairwise relatively prime integers with di > 0 for

i = 1, . . . , ` and d`+1 < 0 where ` = 1 or 2. Assume that F = Q(
√
d1, . . . ,

√
d`) has narrow

class number 1 and let E = F (
√
d`+1). Let χα (resp. χβ) be the Kronecker symbol associated to

the quadratic field Q(
√
α) (resp. Q(

√
β)), where α = de11 · · · d

e`
` d`+1 (resp. β = de11 · · · d

e`
` ) for

e = (e1, . . . , e`) ∈ {0, 1}`. Then

∏
[a]∈CL(E)

H(za) = c1(E,F, 2`)
∏

e∈{0,1}`

α=d
e1
1 ···d

e`
` d`+1

cα∏
k=1

Γ

(
k

cα

)hEχα(k)wα
4hα ∏

e∈{0,1}`

β=d
e1
1 ···d

e`
` 6=1

cβ∏
k=1

Γ2

(
k

cβ

) hEχβ(k)

4hβ log(εβ)

.

Remark 2.1.5. The restriction to ` = 1 or 2 in Theorem 2.1.4 is made for the following reasons.

By Fröhlich [Fro83, Theorem 5.6], if F is a totally real abelian field in which at least 5 rational

9



primes ramify, then the class number of F is even. If ` ≥ 5, then at least 5 rational primes

ramify in F = Q(
√
d1, . . . ,

√
d`), hence F cannot have narrow class number 1 (since the class

number divides the narrow class number). It is well-known that there exist real quadratic fields

of narrow class number 1, and these must be of the form Q(
√

2) or Q(
√
p) for a prime p ≡ 1

(mod 4) (see e.g. [CH88, Corollary 12.5]). This leaves the possibilities ` = 2, 3 or 4. One

can compute many examples of real biquadratic fields with narrow class number 1. We wrote a

program in SAGE which calculates the narrow class numbers of the real biquadratic fields F =

Q(
√
p,
√
q) for p and q primes with 2 ≤ p < q ≤ n. For example, if n = 30 there are 6 real

biquadratic fields in this list with narrow class number 1, corresponding to the pairs (p, q) given

by {(2, 5), (2, 13), (2, 29), (5, 13), (5, 17), (17, 29)}. On the other hand, for ` = 3 or 4 the class

number of F = Q(
√
d1, . . . ,

√
d`) can be 1 (see e.g. [Mou09]), but we were unable to find any

examples with narrow class number 1.

For CM biquadratic fields of class number 1, we have the following result.

Theorem 2.1.6. Let p = 2 or p ≡ 1 (mod 4) be a prime such that F = Q(
√
p) has narrow class

number 1. Let d < 0 be a squarefree integer relatively prime to p such that E = Q(
√
p,
√
d) has

class number 1. Let ∆p, ∆d and ∆pd be the discriminants of the quadratic fields Q(
√
p), Q(

√
d)

and Q(
√
pd), resp., and assume that ∆p and ∆d are relatively prime. Then

H(zOE ) =
1

2
√

2π|∆d|

|∆d|∏
k=1

Γ

(
k

|∆d|

)χd(k)wd
4hd

|∆pd|∏
k=1

Γ

(
k

|∆pd|

)χpd(k)wpd
4hpd

∆p∏
k=1

Γ2

(
k

∆p

) χp(k)

4 log(εp)

,

where

zOE =


(
√
d,
√
d), d ≡ 2, 3 (mod 4)(

1+
√
d

2 , 1+
√
d

2

)
, d ≡ 1 (mod 4)

is a CM point of type (E,Φ) for Φ = {σ1 = id, σ2 :
√
p 7→ −√p,

√
d 7→

√
d}.

2.1.1 Connection to some existing work

We conclude the introduction by discussing the connection between our results and some exist-

ing work. A version of the Chowla-Selberg formula for CM fields was given by Moreno [Mor83]
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over 30 years ago. The foundation for such a generalization was laid by Asai [Asa70] in the late

1960’s, who established a Kronecker limit formula for Eisenstein series associated to any number

field of class number 1. Following Weil’s [Wei76, Chapter IX] beautiful exposition of the classical

Chowla-Selberg formula (which involves a renormalized Kronecker limit formula for Eisenstein

series over Q), Moreno obtained an expression relating values of a Hilbert modular function at spe-

cial points on a Hilbert-Blumenthal variety to the logarithmic derivative of L(χE/F , s) at s = 0.

Moreno then used Shintani’s [Shi77a, Shi76] remarkable work on special values of L–functions to

express L′(χE/F , 0) in terms of certain Barnes-type multiple gamma functions (formulas of this

type resulting from Shintani’s work can be viewed as “higher” analogs of Lerch’s identity). Putting

things together, he obtained a version of the Chowla-Selberg formula for CM fields (see [Mor83,

Main Theorem, p. 242]). The starting point of the work done in this chapter was that it should

be possible to give a much more explicit version of the Chowla-Selberg formula for abelian CM

fields. The initial structure of the proof is similar to that of Moreno’s, namely to arrive at a version

of the identity (2.1), though there are important differences. For example, we identify the CM

zero-cycles along which we evaluate the Hilbert modular Eisenstein series, which allows us to give

explicit examples of our formula (see Section 2.2).
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2.2 Examples

In this section we give some explicit examples of the Chowla-Selberg formula for abelian CM

fields. Recall that the function H : Hn → R+ appearing in these examples is a SL2(OF )-invariant

function analogous to G(z) :=
√

Im(z)|η(z)|2 which arises from a renormalized Kronecker limit

formula for the non-holomorphic Hilbert modular Eisenstein series. See (2.10) for the definition of

H(z). For background and notation regarding CM points, see Section 2.4.

Example 2.2.1 (Theorem 2.1.6, d1 = 2 and d2 = −3). Let E = Q(
√

2,
√
−3) and F = Q(

√
2).

Then E has class number 1 and F has narrow class number 1. Moreover, ∆2 = 8,∆−3 = −3

and ∆−6 = −24, so that ∆2 and ∆−3 are relatively prime. The hypotheses of Theorem 2.1.6 are

satisfied, so it remains to determine the quantities in the identity stated in Theorem 2.1.6.

Since −3 ≡ 1 mod 4, the CM point of type (E,Φ) corresponding to the class [OE ] is given

by

zOE =

(
1 +
√
−3

2
,
1 +
√
−3

2

)
.

The groups of characters associated to E and F are XE = {χ1, χ−3, χ2, χ−6} and XF =

{χ1, χ2}, resp., hence XE \XF = {χ−3, χ−6}. We have the following correspondence between

subfields and associated character groups:

E = Q(
√

2,
√
−3)

F = Q(
√

2) Q(
√
−3) Q(

√
−6)

Q

XE = 〈χ2, χ−3〉

XF = 〈χ2〉 〈χ−3〉 〈χ−6〉

{χ1}
The characters χ2 =

(
8
·
)
, χ−6 =

(−24
·
)

and χ−3 =
(−3
·
)

have conductors 8, 24 and 3, resp.

(note the character χ2 generates XF and the characters χ−3 and χ2 generate XE).

The following tables list the values of these characters. In particular, Table 2.1 lists the values of

χ2 =
(

8
·
)
, Table 2.2 lists the values of χ−6 =

(−24
·
)
, and Table 2.3 lists the values of χ−3 =

(−3
·
)
.
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Values of χ2 =
(

8
·
)

k 1 3 5 7

χ2(k) 1 −1 −1 1

Table 2.1: Character values χ2(k).

Values of χ−6 =
(−24
·
)

k 1 5 7 11 13 17 19 23

χ−6(k) 1 1 1 1 −1 −1 −1 −1

Table 2.2: Character values χ−6(k).

Values of χ−3 =
(−3
·
)

k 1 2

χ−3(k) 1 −1

Table 2.3: Character values χ−3(k).

The fundamental unit of F is ε2 = 1 +
√

2, and we have h−3 = 1, h−6 = 2, w−3 = 6 and

w−6 = 2.

Substituting these quantities in Theorem 2.1.6 yields

H(zOE ) =
1

2
√

6π

3∏
k=1

Γ

(
k

3

) 3χ−3(k)

2
24∏
k=1

Γ

(
k

24

)χ−6(k)

4
8∏

k=1

Γ2

(
k

8

) χ2(k)

4 log (1+
√

2)

.

After expanding each product on the right hand side, we get

H

(
1 +
√
−3

2
,
1 +
√
−3

2

)
=

1

2
√

6π

(
Γ
(

1
3

)
Γ
(

2
3

))3/2(
Γ
(

1
24

)
Γ
(

5
24

)
Γ
(

7
24

)
Γ
(

11
24

)
Γ
(

13
24

)
Γ
(

17
24

)
Γ
(

19
24

)
Γ
(

23
24

))1/4

×

(
Γ2

(
1
8

)
Γ2

(
7
8

)
Γ2

(
3
8

)
Γ2

(
5
8

)) 1
4 log (1+

√
2)

.

Example 2.2.2 (Theorem 2.1.4, d1 = 2 and d2 = −5). Let E = Q(
√

2,
√
−5) and F = Q(

√
2).

Then E has class number 2 and F has narrow class number 1. Moreover, d1 = 2 and d2 = −5
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are squarefree and relatively prime. The hypotheses of Theorem 2.1.4 are satisfied, so it remains to

determine the quantities in the identity stated in Theorem 2.1.4.

The four embeddings of E are determined by

σ1 :
√

2 7−→
√

2,
√
−5 7−→

√
−5

σ2 :
√

2 7−→ −
√

2,
√
−5 7−→

√
−5

σ3 :
√

2 7−→
√

2,
√
−5 7−→ −

√
−5

σ4 :
√

2 7−→ −
√

2,
√
−5 7−→ −

√
−5.

Fix the choice of CM type Φ = {σ1, σ2}. The class group of E is given by CL(E) = {[OE ], [a]}

where

[OE ] = [OF (10−
√

2) +OF (
√
−5 + 18

√
2− 1)],

[a] = [OF 2 +OF (
√
−5−

√
2 + 1)].

Then

zOE =

√
−5 + 18

√
2− 1

10−
√

2
and za =

√
−5−

√
2− 1

2

are CM points of type (E,Φ) corresponding to the classes [OF ] and [a] resp., since

Φ(zOE ) =

(√
−5 + 18

√
2− 1

10−
√

2
,

√
−5− 18

√
2− 1

10 +
√

2

)
∈ E× ∩H2

and

Φ(za) =

(√
−5−

√
2− 1

2
,

√
−5 +

√
2− 1

2

)
∈ E× ∩H2.

The absolute values of the discriminants of E and F are dE = 6400 and dF = 8, resp., hence

the constant

c1(E,F, 2) =
8

23π
√

6400
=

1

80π
.

The groups of characters associated to E and F are XE = {χ1, χ2, χ−5, χ−10} and XF =

{χ1, χ2}, resp., hence XE \XF = {χ−5, χ−10}. We have the following correspondence between

subfields and associated character groups:
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E = Q(
√

2,
√
−5)

F = Q(
√

2) Q(
√
−5) Q(

√
−10)

Q

XE = 〈χ2, χ−5〉

XF = 〈χ2〉 〈χ−5〉 〈χ−10〉

{χ1}
The characters χ2 =

(
8
·
)
, χ−5 =

(−20
·
)

and χ−10 =
(−40
·
)

have conductors 8, 20 and 40, resp.

(note the character χ2 generates XF and the characters χ2 and χ−5 generate XE). The following

tables give the values of these characters. In particular, Table 2.4 gives the values of χ2 =
(

8
·
)
,

Table 2.5 gives the values of χ−5 =
(−20
·
)
, and Table 2.6 gives the values of χ−10 =

(−40
·
)
.

Values of χ2 =
(

8
·
)

k 1 3 5 7

χ2(k) 1 −1 −1 1

Table 2.4: Values of χ2 =
(

8
·
)
.

Values of χ−5 =
(−20
·
)

k 1 3 7 9 11 13 17 19

χ−5(k) 1 1 1 1 −1 −1 −1 −1

Table 2.5: Values of χ−5 =
(−20
·
)
.

Values of χ−10 =
(−40
·
)

k 1 3 7 9 11 13 17 19 21 23 27 29 31 33 37 39

χ−10(k) 1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 −1

Table 2.6: Values of χ−10 =
(−40
·
)
.

The fundamental unit of F is ε2 = 1 +
√

2, and we have h2 = 1, h−5 = 2, h−10 = 2, w2 = 2,

w−5 = 2 and w−10 = 2.
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Substituting the preceding quantities in Theorem 2.1.4 yields

H(zOE )H(za) =
1

80π

20∏
k=1

Γ

(
k

20

)χ−5(k)

2
40∏
k=1

Γ

(
k

40

)χ−10(k)

2
8∏

k=1

Γ2

(
k

8

) χ2(k)

2 log (1+
√

2)

.

After expanding each product on the right hand side, we get

H

(√
−5 + 18

√
2− 1

10−
√

2
,

√
−5− 18

√
2− 1

10 +
√

2

)
H

(√
−5−

√
2− 1

2
,

√
−5 +

√
2− 1

2

)

=
1

80π

(
Γ
(

1
20

)
Γ
(

3
20

)
Γ
(

7
20

)
Γ
(

9
20

)
Γ
(

11
20

)
Γ
(

13
20

)
Γ
(

17
20

)
Γ
(

19
20

)) 1
2
(

Γ
(

1
40

)
Γ
(

7
40

)
Γ
(

9
40

)
Γ
(

11
40

)
Γ
(

13
40

)
Γ
(

19
40

)
Γ
(

23
40

)
Γ
(

37
40

)
Γ
(

3
40

)
Γ
(

17
40

)
Γ
(

21
40

)
Γ
(

27
40

)
Γ
(

29
40

)
Γ
(

31
40

)
Γ
(

33
40

)
Γ
(

39
40

)) 1
2

×

(
Γ2

(
1
8

)
Γ2

(
7
8

)
Γ2

(
3
8

)
Γ2

(
5
8

)) 1
2 log (1+

√
2)

.

Example 2.2.3 (Theorem 2.1.1, E = Q(ζ5) and F = Q(
√

5)). Let E = Q(ζ5) and F = Q(
√

5).

Then E is a CM extension of the real quadratic field F with E/Q abelian (a cyclic quartic ex-

tension). Moreover, E has class number 1 and F has narrow class number 1. The hypotheses

of Theorem 2.1.1 are satisfied, so it remains to determine the quantities in the identity stated in

Theorem 2.1.1.

The four embeddings of E are determined by σi(ζ5) = ζi5 for i = 1, . . . , 4. Fix the choice of

CM type Φ = {σ1, σ2} for E. We have OE = OF +OF ζ5, thus zOE = ζ5 is a CM point of type

(E,Φ) since Φ(zOE ) = (ζ5, ζ
2
5 ) ∈ E× ∩H2.

The absolute values of the discriminants are dE = 125 and dF = 5, resp., hence the constant

c1(E,F, 2) =

(
1

8π
√

5

)1/2

.

Since E = Q(ζ5) is cyclotomic, we have XE = ̂(Z/5Z)×. The group of Dirichlet characters

modulo 5 is given by the characters listed in Table 2.7.
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Dirichlet characters modulo 5

1 2 3 4

χ1 1 1 1 1

χ 1 i −i −1

χ2 = χ5 =
(

5
·
)

1 −1 −1 1

χ3 = χ 1 −i i −1

Table 2.7: The Dirichlet characters modulo 5.

We have the following correspondence between subfields and associated character groups:
E = Q(ζ5)

F = Q(
√

5)

Q

XE = 〈χ〉

XF = 〈χ5〉

{χ1}
It follows that XF = {χ1, χ

2} = {χ1, χ5} and XE \XF = {χ, χ3} = {χ, χ}.

The L–values corresponding to the characters χ, χ are given in terms of generalized Bernoulli

numbers by

L(χ, 0) = −B1(χ) =
3

5
+

1

5
i and L(χ, 0) = −B1(χ) =

3

5
− 1

5
i.

Moreover, by the class number formula we have

L(χ5, 1) =
2 log(1+

√
5

2 )
√

5
,

the Gauss sum is evaluated as τ(χ5) =
√

5, and the fundamental unit of F is ε5 = 1+
√

5
2 .

Substituting the preceding quantities in Theorem 2.1.1 yields

H(zOE ) =

(
1

8π
√

5

)1/2 5∏
k=1

Γ

(
k

5

) χ(k)

2( 3
5 + 1

5 i)
5∏

k=1

Γ

(
k

5

) χ(k)

2( 3
5−

1
5 i)

5∏
k=1

Γ2

(
k

5

) χ5(k)

4 log

(
1+
√

5
2

)
.

After expanding each product on the right hand side, we get

H(ζ5, ζ
2
5 ) =

(
1

8π
√

5

)1/2
(

Γ
(

1
5

)
Γ
(

4
5

))3/2(
Γ
(

2
5

)
Γ
(

3
5

))1/2(
Γ2

(
1
5

)
Γ2

(
4
5

)
Γ2

(
2
5

)
Γ2

(
3
5

)) 1

4 log

(
1+
√

5
2

)
.
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2.3 Hilbert modular Eisenstein series

In this section we establish a renormalized Kronecker limit formula for the non-holo-morphic

Hilbert modular Eisenstein series. Moreno stated such a formula in [Mor83, Section 3.1], and gave

a very brief explanation as to how it is derived from a Fourier expansion of Asai [Asa70] for the

Eisenstein series. Here we give a similar formula using a slightly different form of the Fourier

expansion (the Fourier expansion we use for the Hilbert modular Eisenstein series goes back to

Hecke).

Let F be a totally real number field of degree n over Q with embeddings τ1, . . . , τn. Let

z = x+ iy = (z1, . . . , zn) ∈ Hn

where H denotes the complex upper half-plane. Let OF be the ring of integers of F and SL2(OF )

be the Hilbert modular group. Then SL2(OF ) acts componentwise on Hn by linear fractional

transformations,

Mz = (τ1(M)z1, . . . , τn(M)zn) , M =

α β

γ δ

 ∈ SL2(OF )

where

τj(M) =

τj(α) τj(β)

τj(γ) τj(δ)

 .

Let

N(y(z)) :=

n∏
j=1

Im(zj) =

n∏
j=1

yj

denote the product of the imaginary parts of the components of z ∈ Hn. Define the non-holomor-

phic Hilbert modular Eisenstein series

E(z, s) :=
∑

M∈Γ∞\SL2(OF )

N(y(Mz))s, z ∈ Hn, Re(s) > 1

18



where

Γ∞ =


∗ ∗

0 ∗

 ∈ SL2(OF )

 .

Furthermore, let

N(a+ bz) :=
n∏
j=1

(σj(a) + σj(b)zj)

for (a, b) ∈ OF ×OF and define the Epstein zeta function

Z(z, s) :=
∑′

(a,b)∈OF×OF /O×F

N(y(z))s

|N(a+ bz)|2s
, z ∈ Hn, Re(s) > 1

where the sum is over a complete set of nonzero, nonassociated representatives ofOF ×OF (recall

that (a, b) and (a′, b′) are said to be associated if there exists a unit ε ∈ O×F such that (a, b) =

(εa′, εb′)). One has the identity

Z(z, s) = ζF (2s)E(z, s), (2.3)

where ζF (s) is the Dedekind zeta function of F .

Define the completed Eisenstein series

E∗(z, s) := ζ∗F (2s)E(z, s) (2.4)

where

ζ∗F (s) := d
s/2
F π−ns/2Γ(s/2)nζF (s),

is the completed Dedekind zeta function of F .

From [vdG88, Proposition 6.9], equation (2.4), and the shift s 7→ (s + 1)/2, we obtain the

renormalized Fourier expansion

E

(
z,
s+ 1

2

)
= N(y)

s+1
2 +

ζ∗F (s)

ζ∗F (s+ 1)
N(y)

1−s
2 (2.5)

+
2nN(y)1/2

ζ∗F (s+ 1)

∑
µ∈∂−1

F /O×F
µ6=0

NF/Q((µ)∂F )
s
2σ−s((µ)∂F )

n∏
j=1

K s
2
(2π|µ(j)|yj)e2πiTr(µx),
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where ∂F is the different of F ,

σν(a) :=
∑
b|a

NF/Q(b)ν

is the divisor function,

Tr(µx) :=
n∑
j=1

µ(j)xj , µ(j) := τj(µ)

is the trace and

Ks(t) :=

∫ ∞
0

e−t coshx cosh (sx)dx

is the K-Bessel function of order s.

LetA(s), B(s) andC(s) denote the first, second, and third terms on the right hand side of (2.5),

respectively. We compute the first two terms in the Taylor expansion of E
(
z, s+1

2

)
at s = −1 by

doing this for each of the functions A(s), B(s) and C(s), in turn.

First, observe that

A(s) = 1 + logN(y)1/2(s+ 1) +O((s+ 1)2).

Second, we calculate the Taylor expansion

B(s) = B(−1) +B′(−1)(s+ 1) +O(s+ 1)2.

Since

1

ζ∗F (s)
= d

−s/2
F

(
πs/2

Γ(s/2)

)n
1

ζF (s)

and ζF (s) has a simple pole at s = 1, the function 1/ζ∗F (s) has a simple zero at s = 1. Using the

functional equation ζ∗F (s) = ζ∗F (1− s), it follows that

(∗) 1/ζ∗F (s) has a simple zero at s = 0.

Now, by (∗) we have

B(−1) =
ζ∗F (−1)

ζ∗F (0)
N(y) = 0.
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Moreover, an application of the product and quotient rules along with two applications of (∗) yields

B′(s) = −N(y)
1−s

2 ζ∗F (s)

(
d
dsζ
∗
F (s+ 1)

ζ∗F (s+ 1)2

)
+O(s+ 1),

so that

B′(−1) = −N(y)ζ∗F (−1)
(ζ∗F )′(0)

ζ∗F (0)2
.

A calculation using the Laurent expansion

ζ∗F (s+ 1) =
rF
s+ 1

+O(s+ 1)

yields

−
d
dsζ
∗
F (s+ 1)

ζ∗F (s+ 1)2
=

rF +O(s+ 1)2

{rF +O(s+ 1)}2
, (2.6)

where rF is the residue of ζ∗F (s+ 1) at s = −1. Hence

B′(−1) =
N(y)ζ∗F (−1)

rF
.

Third, we calculate the Taylor expansion

C(s) = C(−1) + C ′(−1)(s+ 1) +O(s+ 1)2.

For convenience, we write

C(s) = 2nN(y)1/2
∑

µ∈∂−1
F /O×F
µ 6=0

Dµ(s)e2πiTr(µx),

where

Dµ(s) :=
NF/Q((µ)∂F )

s
2

ζ∗F (s+ 1)
σ−s((µ)∂F )

n∏
j=1

K s
2
(2π|µ(j)|yj).

By (∗) we have Dµ(−1) = 0, thus C(−1) = 0.

To compute C ′(−1), it suffices to compute D′µ(−1). Using the product rule, two applications

of (∗), and (2.6) we obtain

D′µ(−1) =
NF/Q((µ)∂F )−

1
2

rF
σ1((µ)∂F )

n∏
j=1

K− 1
2
(2π|µ(j)|yj).
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A calculation using the identities K−s(t) = Ks(t) and K 1
2
(t) =

√
π

2
e−tt−

1
2 for t > 0 gives

D′µ(−1) =
NF/Q((µ)∂F )−

1
2

rF
σ1((µ)∂F )

n∏
j=1

√
π

2
e−2π|µ(j)|yj (2π|µ(j)|yj)−

1
2 . (2.7)

Note also that
n∏
j=1

√
π

2
e−2π|µ(j)|yj (2π|µ(j)|yj)−

1
2

 e2πiTr(µx) = 2−n|NF/Q(µ)|−
1
2N(y)−

1
2 e2πiT (µ,z), (2.8)

where

T (µ, z) := Tr(µx) + i
n∑
j=1

|µ(j)|yj .

Then using (2.7) and (2.8), we get

C ′(−1) =
∑

µ∈∂−1
F /O×F
µ6=0

NF/Q((µ)∂F )−
1
2

rF
σ1((µ)∂F )|NF/Q(µ)|−

1
2 e2πiT (µ,z).

Finally, by combining the Taylor expansions for A(s), B(s) and C(s), we obtain the following

result.

Proposition 2.3.1. We have

E

(
z,
s+ 1

2

)
= 1 + log (H(z)) (s+ 1) +O((s+ 1)2), (2.9)

where

H(z) :=
√
N(y)φ(z) (2.10)

and

log(φ(z)) :=
ζ∗F (−1)N(y)

rF
+

∑
µ∈∂−1

F /O×F
µ6=0

NF/Q((µ)∂F )−
1
2

rF
σ1((µ)∂F )|NF/Q(µ)|−

1
2 e2πiT (µ,z).

Remark 2.3.2. Using (2.9) and the automorphy of E(z, s), we have H(Mz) = H(z) for all

M =

α β

γ δ

 ∈ SL2(OF ). Then a straightforward calculation yields the transformation formula

φ(Mz) = |N(γz + δ)|φ(z).
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2.4 CM zero-cycles on Hilbert modular varieties

In this section we summarize some facts we will need regarding CM zero-cycles on Hilbert

modular varieties. For more details, see [BY06, Section 3]. Let F be a totally real number field

of degree n over Q with embeddings τ1, . . . , τn, and assume that F has narrow class number one.

The quotient X(OF ) = SL2(OF )\Hn is the (open) Hilbert modular variety associated toOF . The

variety X(OF ) parametrizes isomorphism classes of principally polarized abelian varieties (A, i)

with real multiplication i : OF ↪→ End(A).

LetE be a CM extension of F and Φ = (σ1, . . . , σn) be a CM type forE. A point z = (A, i) ∈

X(OF ) is a CM point of type (E,Φ) if one of the following equivalent conditions holds:

(1) As a point z ∈ Hn, there is a point τ ∈ E such that

Φ(τ) = (σ1(τ), . . . , σn(τ)) = z

and

Λτ = OF +OF τ

is a fractional ideal of E.

(2) There exists a pair (A, i′) that is a CM abelian variety of type (E,Φ) with complex multipli-

cation i′ : OE ↪→ End(A) such that i = i′|OF .

By [BY06, Lemma 3.2] and the narrow class number one assumption, there is a bijection

between the ideal class group CL(E) and the CM points of type (E,Φ) defined as follows: given

an ideal class C ∈ CL(E), there exists a fractional ideal a ∈ C−1 and α, β ∈ E× such that

a = OFα+OFβ (2.11)

and

z =
β

α
∈ E× ∩Hn = {z ∈ E× : Φ(z) ∈ Hn}.

Then z represents a CM point in X(OF ) in the sense that Cn/Λz is a principally polarized abelian

variety of type (E,Φ) with complex multiplication byOE . Conversely, every principally polarized

abelian variety of type (E,Φ) with complex multiplication by OE arises from a decomposition as
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in (2.11) for some a in a unique fractional ideal class in CL(E). We denote the CM zero-cycle

consisting of the set of CM points of type (E,Φ) by CM(E,Φ,OF ) and identify it with the set

{za ∈ E× ∩Hn : [a] ∈ CL(E)}

under the bijection just described. The reader should keep in mind that the latter set depends on Φ.

2.5 Periods of Eisenstein series

In this section we evaluate the non-holomorphic Hilbert modular Eisenstein series along a CM

zero-cycle on the Hilbert modular variety X(OF ). Let F be a totally real number field of degree n

over Q with narrow class number 1. Let E be a CM extension of F , and fix a CM type Φ for E. By

the results of Section 3, given an ideal class C ∈ CL(E), there exists a fractional ideal a ∈ C−1

such that

a = OFα+OFβ, α, β ∈ E× (2.12)

where za = β/α ∈ E× ∩Hn is a CM point of type (E,Φ).

By [Mas10, Proposition 4.1], we have the identity

ζE(s, C) =

(
2ndF√
dE

)s 1

[O×E : O×F ]
ζF (2s)E(za, s),

where we have identified za with its image Φ(za) ∈ Hn. Make the shift s 7→ (s + 1)/2 in this

identity and sum over ideal classes C ∈ CL(E) to obtain

∑
[a]∈CL(E)

E

(
za,

s+ 1

2

)
= [O×E : O×F ]

(√
dE

2ndF

) s+1
2 ζE( s+1

2 )

ζF (s+ 1)
.

By class field theory, we have the factorization

ζE(s) = ζF (s)L(χE/F , s), (2.13)

where L(χE/F , s) is the L–function of the quadratic character χE/F associated to the extension

E/F . Using the Taylor expansion (2.9), the factorization (2.13), and the Taylor expansion

ζF
(
s+1

2

)
ζF (s+ 1)

=
1

2n−1

{
1− 1

2n

ζ
(n)
F (0)

ζ
(n−1)
F (0)

(s+ 1) +O((s+ 1)2)

}
,
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we obtain∑
[a]∈CL(E)

{
1 + log (H(za)) (s+ 1) +O(s+ 1)2

}
=

[O×E : O×F ]L(χE/F , 0)

2n
(2.14)

×

{
2 + log

(√
dE

2ndF

)
(s+ 1)− 1

n

ζ
(n)
F (0)

ζ
(n−1)
F (0)

(s+ 1) +
L′(χE/F , 0)

L(χE/F , 0)
(s+ 1) +O((s+ 1)2)

}
.

Let s = −1 in (2.14) to recover the class number formula

L(χE/F , 0) =
2n−1hE

[O×E : O×F ]
.

Then differentiate (2.14) with respect to s and evaluate at s = −1 to get∑
[a]∈CL(E)

log (H(za)) =
hE
2

{
log

(√
dE

2ndF

)
− 1

n

ζ
(n)
F (0)

ζ
(n−1)
F (0)

+
L′(χE/F , 0)

L(χE/F , 0)

}
. (2.15)

2.6 Evaluation of the logarithmic derivative

In this section we evaluate the logarithmic derivative of L(χE/F , s) at s = 0 in terms of values

of the gamma function Γ at rational numbers. Let Q ⊆ F ⊆ E be abelian number fields. By the

Kronecker-Weber theorem, there is a cyclotomic field Q(ζN ) such that F ⊆ E ⊆ Q(ζN ) where

ζN := e2πi/N is a primitive N -th root of unity. Let GN := Gal(Q(ζN )/Q), which we identify

with the group (Z/NZ)× via the isomorphism

sN : GN −→ (Z/NZ)×

σ 7−→ [sN (σ)]N ,

where σ(ζN ) = ζ
sN (σ)
N for some integer sN (σ) modulo N . Let HF and HE be the subgroups of

GN which fix F and E, resp. Since GN is abelian, HF and HE are normal, and by Galois theory

we have Gal(F/Q) ∼= GN/HF and Gal(E/Q) ∼= GN/HE . We also note that HE ≤ HF ≤ GN ,

since the Galois correspondence is inclusion reversing.

Let G be a finite abelian group and Ĝ be its character group. Given a subgroup H ≤ G, we

have Ĝ/H ∼= H⊥ where

H⊥ := {χ ∈ Ĝ | χ|H ≡ 1}.
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Additionally, if H ′ ≤ H ≤ G then H⊥ ≤ H ′⊥.

Given an abelian field K ⊆ Q(ζN ), the group of characters associated to K is defined by

XK := H⊥K = {χ ∈ ̂(Z/NZ)× | χ|HK ≡ 1}.

By our preceding observations, we have ĜN/HE
∼= XE and ĜN/HF

∼= XF , and since HE ≤

HF ≤ GN , we have XF ≤ XE .

We now evaluate the logarithmic derivative of L(χE/F , s) at s = 0. The Dedekind zeta func-

tion ζK(s) of an abelian field K ⊂ Q(ζN ) factors as

ζK(s) =
∏
χ∈XK

L(χ, s),

where L(χ, s) is understood to be the Dirichlet L–function associated to the primitive Dirichlet

character of conductor cχ which induces χ ∈ XK (see [Coh07, Theorem 10.5.25]). Therefore by

(2.13), we have

L′(χE/F , s)

L(χE/F , s)
=

d

ds

(
log

ζE(s)

ζF (s)

)
=

∑
χ∈XE\XF

L′(χ, s)

L(χ, s)
, (2.16)

where

XE \XF = {χ ∈ ̂(Z/NZ)× | χ|HE ≡ 1 and χ|HF \HE 6≡ 1}

is the set of characters in ̂(Z/NZ)× that are trivial on HE but not trivial on HF .

Now, we have

L(χ, s) = c−sχ

cχ∑
k=1

χ(k)ζ

(
s,
k

cχ

)
, (2.17)

where

ζ (s, w) :=

∞∑
n=0

1

(n+ w)s
, Re(w) > 0, Re(s) > 1

is the Hurwitz zeta function. Differentiating (2.17) yields

L′(χ, s) = − log(cχ)L(χ, s) + c−sχ

cχ∑
k=1

χ(k)ζ ′
(
s,
k

cχ

)
.
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The Taylor expansion of the Hurwitz zeta function at s = 0 is given by

ζ(s, x) = ζ(0, x) + ζ ′(0, x)s+O(s2), x > 0

where ζ(0, x) = 1
2 − x and Lerch’s identity [Ler87] gives

ζ ′(0, x) = log

(
Γ(x)√

2π

)
. (2.18)

Using (2.18), we find that

L′(χ, 0) = − log (cχ)L(χ, 0) +

cχ∑
k=1

χ(k) log

Γ
(
k
cχ

)
√

2π

 .

Recall that if χ is even, then L(χ, 0) = 0, while if χ is odd, then L(χ, 0) 6= 0. If we assume

that E is a CM extension of F , then all of the characters χ ∈ XE \XF are odd (see Lemma 2.6.2).

Hence using the orthogonality relations for group characters, we get

L′(χ, 0)

L(χ, 0)
= − log (cχ) +

1

L(χ, 0)

cχ∑
k=1

χ(k) log Γ

(
k

cχ

)
. (2.19)

Finally, substituting (2.19) into (2.16) yields

L′(χE/F , 0)

L(χE/F , 0)
= −

∑
χ∈XE\XF

log (cχ) +
∑

χ∈XE\XF

cχ∑
k=1

χ(k)

L(χ, 0)
log Γ

(
k

cχ

)
. (2.20)

Remark 2.6.1. Since the primitive Dirichlet character χ of conductor cχ which induces a Dirichlet

character χ ∈ XK is also a Dirichlet character modulo N , we have the following analog of (2.17),

L(χ, s) = N−s
N∑
k=1

χ(k)ζ

(
s,
k

N

)
. (2.21)

Then by repeating the preceding calculation with (2.21) instead of (2.17), we get

L′(χE/F , 0)

L(χE/F , 0)
= − log(N)[F : Q] +

∑
χ∈XE\XF

N∑
k=1

χ(k)

L(χ, 0)
log Γ

(
k

N

)
, (2.22)

where we used #(XE \XF ) = [F : Q].

It remains to prove the following

Lemma 2.6.2. If E/F is a CM extension, then all of the characters χ ∈ XE \XF are odd.

Proof. Let E/F be a CM extension. Then the nontrivial automorphism σc ∈ Gal(E/F ) is com-
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plex conjugation, which when viewed as an element ofGN ∼= (Z/NZ)× corresponds to the residue

class [−1]N ∈ (Z/NZ)×. Clearly, [−1]N ∈ HF but [−1]N /∈ HE , and by Galois theory we have

HF = 〈HE ∪ {[−1]N}〉. Let χ ∈ XE \XF . Then χ is trivial on HE but nontrivial on HF , so we

must have χ([−1]N ) = −1, which implies that χ is odd.

2.7 Taylor coefficients of Dedekind zeta functions

In this section we evaluate the logarithmic derivative of ζ(n−1)
F (s) at s = 0 and prove Theorem

2.1.1. The evaluation we obtain is analogous to (2.20), the difference being that log(Γ(x)) is

replaced by Deninger’s R-function R(x). Let F be a totally real field of degree n over Q. Write

the Laurent expansion of ζF (s) at s = 1 as

ζF (s) =
A−1

s− 1
+A0 +O(s− 1).

Lemma 2.7.1. We have the Taylor expansion

ζF (s) = −
√
dFA−1

2n
sn−1 +

√
dF

2n
(A0 +A−1 log(dF )− nA−1{γ + log(2π)})sn +O(sn+1),

where γ is Euler’s constant.

Proof. From the functional equation ζ∗F (s) = ζ∗F (1− s), we have

ζF (s) = d
1
2
−s

F

(
ΓR(1− s)

ΓR(s)

)n
ζF (1− s),

where ΓR(s) := π−s/2Γ(s/2). Then the lemma follows by multiplying the Taylor expansions

d
1
2
−s

F =
√
dF −

√
dF log(dF )s+O(s2),

(
ΓR(1− s)

ΓR(s)

)n
=

(
s

2
+

1

2
(γ + log(2π)) s2 +O(s3)

)n
=
sn

2n
+

n

2n
(γ + log(2π))sn+1 +O(sn+2),

and

ζF (1− s) = −A−1

s
+A0 +O(s).
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From Lemma 2.7.1, we have

ζ
(n−1)
F (0)

(n− 1)!
= −
√
dFA−1

2n

and

ζ
(n)
F (0)

n!
=

√
dF

2n
(A0 +A−1 log(dF )− nA−1{γ + log(2π)}) ,

which gives

ζ
(n)
F (0)

ζ
(n−1)
F (0)

= −n
(
A0

A−1
+ log(dF )− nγ − n log(2π)

)
. (2.23)

Assume now that F is abelian. Then we have the factorization

ζF (s) = ζ(s)
∏
χ∈XF
χ6=1

L(χ, s).

Substituting the Laurent expansions

ζ(s) =
1

s− 1
+ γ +O(s− 1)

and

L(χ, s) = L(χ, 1) + L′(χ, 1)(s− 1) +O((s− 1)2)

into this factorization yields

ζF (s) =

(
1

s− 1
+ γ +O(s− 1)

) ∏
χ∈XF
χ6=1

(
L(χ, 1) + L′(χ, 1)(s− 1) +O((s− 1)2)

)
.

Then expanding the right hand side and comparing coefficients yields

A−1 =
∏
χ∈XF
χ6=1

L(χ, 1)
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and

A0 = γ
∏
χ∈XF
χ 6=1

L(χ, 1) +

 ∏
χ∈XF
χ 6=1

L(χ, 1)

 ∑
χ∈XF
χ 6=1

L′(χ, 1)

L(χ, 1)
= γA−1 +A−1

∑
χ∈XF
χ 6=1

L′(χ, 1)

L(χ, 1)
.

It follows that

A0

A−1
= γ +

∑
χ∈XF
χ 6=1

L′(χ, 1)

L(χ, 1)
. (2.24)

Each of the characters χ ∈ XF is even, since [−1]N ∈ HF and

XF = {χ ∈ ̂(Z/NZ)× | χ|HF ≡ 1}.

Therefore, we must evaluateL′(χ, 1) for χ an even, primitive Dirichlet character. This problem was

solved by Deninger [Den84] in the following way. Let χ be an even, primitive Dirichlet character

of conductor cχ. Then the functional equation for the Dirichlet L–function is

L(χ, 1− s) =
2cs−1
χ Γ(s)

(2π)s
cos
(πs

2

)
τ(χ)L(χ, s),

where

τ(χ) :=

cχ∑
k=1

χ(k)ζkcχ , ζcχ := e2πi/cχ

is the Gauss sum of χ. A calculation with the functional equation yields

L′(χ, 1) =
2τ(χ)

cχ

((
γ − log

( cχ
2π

))
L′(χ, 0)− 1

2
L′′(χ, 0)

)
.

Because

L(χ, s) = c−sχ

cχ∑
k=1

χ(k)ζ

(
s,
k

cχ

)
,

to evaluate L′(χ, 0) and L′′(χ, 0), it suffices to evaluate the coefficients in the Taylor expansion

ζ(s, x) = ζ(0, x) + ζ ′(0, x)s+ ζ ′′(0, x)s2 +O(s3), x > 0.

Recall the logarithmic form of the Bohr-Mollerup theorem.
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Theorem 2.7.2 (Bohr-Mollerup). Let f : R+ → R be a function such that

f(x+ 1)− f(x) = log(x),

f(1) = 0, and f(x) is convex on R+. Then f(x) = log(Γ(x)).

Deninger [Den84, Theorem 2.2] proved the following result.

Theorem 2.7.3 (Deninger). The function

fα(x) := (−1)α+1
(
∂αs ζ(0, x)− ζ(α)(0)

)
, x > 0, α = 0, 1, 2, . . .

is the unique function such that

(1) fα(x+ 1)− fα(x) = logα(x)

(2) fα(1) = 0

(3) fα(x) is convex on (exp(α− 1),∞).

Let α = 1 in Theorem 2.7.3. Then f1(x) is convex on (1,∞) (hence convex on R+ by virtue

of (1)), so by the Bohr-Mollerup theorem, f1(x) = log(Γ(x)), or equivalently

ζ ′(0, x) = log

(
Γ(x)√

2π

)
,

where we used ζ ′(0) = −1
2 log(2π). This gives a conceptual proof of Lerch’s identity (2.18)

(a beautiful account of this approach to Lerch’s identity is given by Weil [Wei76, Chapter VII]).

Moreover, using the limit

Γ(x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)
, x > 0

one has

log

(
Γ(x)√

2π

)
= lim

n→∞

(
ζ ′(0) + x log(n)− log(x)−

n−1∑
k=1

(log(x+ k)− log(k))

)
.

Next, let α = 2 in Theorem 2.7.3 and define R(x) := −ζ ′′(0, x). Then R(x) is the unique

function such that

(1′) R(x+ 1)−R(x) = log2(x), x > 0
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(2′) R(1) = −ζ ′′(0)

(3′) R(x) is convex on (e,∞).

Moreover, by [Den84, Lemma 2.1, eqn. (2.1.2)] one has

R(x) = lim
n→∞

(
−ζ ′′(0) + x log2(n)− log2(x)−

n−1∑
k=1

(
log2(x+ k)− log2(k)

))
. (2.25)

These facts show that R(x) is analogous to log(Γ(x)/
√

2π) (see [Den84, Section 2] for more

details concerning this analogy).

Remark 2.7.4. Alternatively, one could define R(x) by the limit (2.25), then verify directly that

R(x) satisfies conditions (1′)–(3′). Then by uniqueness, one has the identity R(x) = −ζ ′′(0, x).

This is analogous to the conceptual proof of Lerch’s identity just described.

Using the preceding facts, Deninger [Den84, Section 3] established the formula

L′(χ, 1) = (γ + log(2π))L(χ, 1) +
τ(χ)

cχ

cχ∑
k=1

χ(k)R

(
k

cχ

)
. (2.26)

Substituting (2.26) into (2.24) yields

A0

A−1
= γ +

∑
χ∈XF
χ6=1

{
(γ + log(2π)) +

τ(χ)

cχ

cχ∑
k=1

χ(k)

L(χ, 1)
R

(
k

cχ

)}
. (2.27)

Since XF
∼= ĜN/HF

∼= GN/HF
∼= Gal(F/Q), we have #XF = [F : Q] = n. Then substituting

(2.27) into (2.23) and simplifying yields the formula

ζ
(n)
F (0)

ζ
(n−1)
F (0)

= −n

− log(2π) + log(dF ) +
∑
χ∈XF
χ6=1

τ(χ)

cχ

cχ∑
k=1

χ(k)

L(χ, 1)
R

(
k

cχ

) . (2.28)

Proof of Theorem 2.1.1. By combining equations (2.15), (2.20) and (2.28), we obtain Theorem

2.1.1 after a short calculation with the conductor-discriminant formula

dL =
∏
χ∈XL

cχ, (2.29)

where dL denotes the absolute value of the discriminant of a number field L.
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2.8 The group of characters of a multiquadratic extension

In this section we determine the group of characters associated to a multiquadratic extension.

Let d1, . . . , dt be squarefree, pairwise relatively prime integers and define the multiquadratic ex-

tension K = Q(
√
d1, . . . ,

√
dt). The absolute value of the discriminant of the quadratic subfield

Q(
√
di) is given by

Di =


|di| if di ≡ 1 (mod 4)

4|di| if di ≡ 2, 3 (mod 4).

One has Q(
√
di) ⊆ Q(ζDi), so by taking compositums we obtain

K = Q(
√
d1, . . . ,

√
dt) ⊆ Q(ζD1 , . . . , ζDt) ⊆ Q(ζD1···Dt) = Q(ζD)

where D := D1 · · ·Dt.

Recall that the group of characters associated to K is given by

XK = {χ ∈ ̂(Z/DZ)× | χ|HK ≡ 1},

where HK is the subgroup of GD := Gal(Q(ζD)/Q) which fixes K. Let m = de11 · · · d
et
t for

(0, . . . , 0) 6= (e1, . . . , et) ∈ {0, 1}t, and define the quadratic subfield

Q(
√
m) = Q(

√
de11 · · · d

et
t ) ⊂ K.

Let χ1 be the trivial character of (Z/DZ)×, and χ′m be the Dirichlet character of (Z/DZ)× induced

by the Kronecker symbol χm associated to the quadratic field Q(
√
m).

Proposition 2.8.1. The group of characters associated to K is given by

XK = {χ1} ∪
{
χ′m : m = de11 · · · d

et
t for (0, . . . , 0) 6= (e1, . . . , et) ∈ {0, 1}t

}
.

Proof. For notational convenience, let Gm := Gal(Q(
√
m)/Q), and let Hm := HQ(

√
m) be the

subgroup of GD which fixes Q(
√
m). Define the integers

M = Mm :=


|m| if m ≡ 1 (mod 4)

4|m| if m ≡ 2, 3 (mod 4).
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Clearly, the primitive Dirichlet characters χm : (Z/MZ)× → {±1} induce 2` − 1 Dirichlet char-

acters χ′m : (Z/DZ)× → {±1} by composing with the projections π : (Z/DZ)× → (Z/MZ)×.

Thus to show χ′m ∈ XK , it suffices to show χ′m|HK ≡ 1. In fact, because HK ≤ Hm, it suffices to

show χ′m|Hm ≡ 1. We have the diagram

HK ≤ Hm ≤ GD (Z/DZ)×

GM (Z/MZ)×

Gm {±1}

sD

res π

χ′m

res

sM

χm

'

where res is the restriction map, and sD and sM are the canonical isomorphisms. We will prove

that

χ′m([sD(σ)]D) =
σ(
√
m)√
m

for all σ ∈ GD. (2.30)

Then (2.30) implies that χ′m|Hm ≡ 1, since

σ(
√
m)√
m

= 1 for all σ ∈ Hm.

That is, an automorphism σ ∈ Hm restricts to the identity in Gm. Because the following diagram

commutes (see [KKS11, Proposition 5.14])

GM (Z/MZ)×

Gm {±1}

res

sM

χm

'

we have

χm([sM (σ)]M ) =
σ(
√
m)√
m

for σ ∈ GM .

Thus to prove (2.30), it suffices to show that

χ′m([sD(σ)]D) = χm([sM (res(σ))]M ) for σ ∈ GD.

Let σ ∈ GD. Then since χ′m = χm ◦ π, we have χ′m([sD(σ)]D) = χm(π([sD(σ)]D)) =

χm([sD(σ)]M ). Thus it suffices to show [sD(σ)]M = [sM (res(σ))]M , or equivalently, sD(σ) ≡
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sM (res(σ)) (mod M). Since M |D, there is an integer k such that ζM = ζkD. Thus σ(ζM ) =

σ(ζkD) = σ(ζD)k = ζ
ksD(σ)
D = ζ

sD(σ)
M . On the other hand, σ(ζM ) = res(σ)(ζM ) = ζ

sM (res(σ))
M ,

thus sD(σ) ≡ sM (res(σ)) (mod M).

2.9 Proof of Theorem 2.1.4

In this section we will prove Theorem 2.1.4. We first recall the setup in the theorem. Let

d1, . . . , d`+1 be squarefree, pairwise relatively prime integers with di > 0 for i = 1, . . . , ` and

d`+1 < 0, where ` = 1 or 2. Assume that F = Q(
√
d1, . . . ,

√
d`) has narrow class number 1,

and let E = F (
√
d`+1). Let χα (resp. χβ) be the Kronecker symbol associated to the quadratic

field Q(
√
α) (resp. Q(

√
β)), where α = de11 · · · d

e`
` d`+1 (resp. β = de11 · · · d

e`
` ) for (e1, . . . , e`) ∈

{0, 1}`. Now, the field F is totally real of degree n = 2` over Q, and E is a CM extension of F .

We have F ⊂ E ⊂ Q(ζD) where D = D1 · · ·D`+1 (see Section 2.8 for the notation). Then by

Proposition 2.8.1,

XF = {χ1} ∪
{
χ′β ∈ ̂(Z/DZ)× : β = de11 · · · d

e`
` , (0, . . . , 0) 6= (e1, . . . , e`) ∈ {0, 1}`

}
and

XE = {χ1} ∪
{
χ′α ∈ ̂(Z/DZ)× : α = de11 · · · d

e`+1

`+1 , (0, . . . , 0) 6= (e1, . . . , e`+1) ∈ {0, 1}`+1
}
.

It follows that

XE \XF =
{
χ′α ∈ ̂(Z/DZ)× | α = de11 · · · d

e`
` d`+1, (e1, . . . , e`) ∈ {0, 1}`

}
.

Using the class number formulas

L(χα, 0) =
2hα
wα

and L(χβ, 1) =
2hβ log εβ√

cβ
,

along with the evaluation τ(χβ) =
√
cβ , we deduce Theorem 2.1.4 from Theorem 2.1.1.

2.10 Proof of Theorem 2.1.6

In this section we prove Theorem 2.1.6, which amounts to using the assumptions in Theorem

2.1.6 to give an explicit version of the formula appearing in Theorem 2.1.4 for a particular choice

of CM point zOE . We first recall the setup in the theorem. Let p = 2 or p ≡ 1 mod 4 be a prime

such that F = Q(
√
p) has narrow class number 1. Let d < 0 be a squarefree integer relatively
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prime to p such thatE = Q(
√
p,
√
d) has class number 1. Let ∆p,∆d and ∆pd be the discriminants

of Q(
√
p),Q(

√
d) and Q(

√
pd), resp., and assume that ∆p and ∆d are relatively prime. The four

embeddings of E are given by

id :
√
p 7−→ √p,

√
d 7−→

√
d

σ :
√
p 7−→ −√p,

√
d 7−→

√
d

τ :
√
p 7−→ √p,

√
d 7−→ −

√
d

στ :
√
p 7−→ −√p,

√
d 7−→ −

√
d.

These embeddings occur in the complex conjugate pairs {id, τ} and {σ, στ}. Fix the choice of CM

type Φ = {id, σ}. We now determine a CM point of type (E,Φ) associated to the ideal class [OE ].

Define θp and θd by

θp :=


1 +
√
p

2
if p ≡ 1 (mod 4)

√
2 if p = 2

and θd :=


1 +
√
d

2
if d ≡ 1 (mod 4)

√
d if d ≡ 2, 3 (mod 4).

The integer rings OF = OQ(
√
p) and OQ(

√
d) have integral bases {1, θp} and {1, θd}, resp. Since

∆p and ∆d are relatively prime, and E = Q(
√
p,
√
d) is the compositum of Q(

√
p) and Q(

√
d),

it follows that OE has the integral basis {1, θp, θd, θpθd} and dE = ∆2
p∆

2
d (see [Lan94, Chapter 3,

Theorem 17]). Recall from Section 2.4 that to determine a CM point zOE of type (E,Φ) associated

to the ideal class [OE ], we need a decomposition OE = OFα + OFβ for some α, β ∈ OE with

β/α ∈ E× ∩H2 = {z ∈ E× : Φ(z) ∈ H2}. We have

OE = Z + θpZ + θdZ + θpθdZ = (Z + θpZ) + (Z + θpZ)θd = OF +OF θd.

Letting α = 1 and β = θd, we get a CM point zOE = β/α = θd, since Φ(θd) = (id(θd), σ(θd)) =

(θd, θd) ∈ H2. Then with our convention of identifying a CM point with its image under the CM

type Φ, we have

zOE = Φ(θd) =


(
√
d,
√
d), d ≡ 2, 3 (mod 4)(

1+
√
d

2 , 1+
√
d

2

)
, d ≡ 1 (mod 4).
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To determine the constant c1(E,F, 2), recall that dE = ∆2
p∆

2
d, dF = ∆p and hE = 1, thus

c1(E,F, 2) =

 ∆p

8π
√

∆2
p∆

2
d

 1
2

=
1

2
√

2π|∆d|
.

The groups of characters associated to the fields F and E are XF = {χ1, χp} and XE =

{χ1, χp, χd, χpd}, resp., so that XE \XF = {χd, χpd}. The character χp =
(

∆p

·

)
has conductor

∆p, the character χd =
(

∆d
·

)
has conductor |∆d|, and the character χpd =

(
∆pd

·

)
has conductor

|∆pd|. The characters χp and χd generate XE . The following diagrams show the correspondence

between subfields and associated groups of characters:

E = Q(
√
p,
√
d)

F = Q(
√
p) Q(

√
d) Q(

√
pd)

Q

XE = 〈χp, χd〉

XF = 〈χp〉 〈χd〉 〈χpd〉

{χ1}
Since F = Q(

√
p) has narrow class number 1, we have hp = 1. Then recalling that εp denotes

the fundamental unit in F , the result follows by substituting the quantities determined in this section

into the identity in Theorem 2.1.4.
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3. THE COLMEZ CONJECTURE FOR NON-ABELIAN CM FIELDS∗

3.1 Introduction

3.1.1 The Chowla-Selberg formula and the Colmez conjecture

One of the central objects of study in number theory is the Dedekind eta function, which is the

weight 1/2 modular form for SL2(Z) defined by the infinite product

η(z) := q1/24
∞∏
n=1

(1− qn), q := e2πiz.

As was already discussed in the introduction in Chapter 1, a remarkable formula of Chowla and

Selberg [CS67] relates values of η(z) at CM points to values of the Euler Gamma function Γ(s)

at rational numbers. Here we briefly recall this formula again in order to set the discussion in

the proper context. Let E be an imaginary quadratic field of discriminant −D < 0. Let h(−D)

be the class number, w(−D) be the number of units, and χ−D be the Kronecker symbol. Using

Kronecker’s first limit formula, one can prove the identity∑
C

log
(√

Im(τC)|η(τC)|2
)

=
h(−D)

2

(
log

(√
D

2

)
− 1

2
log(2π) +

L′(χ−D, 0)

L(χ−D, 0)

)
, (3.1)

where the sum is over a complete set of CM points τC of discriminant−D on SL2(Z)\H. There are

h(−D) such points, corresponding to the ideal classes C of E. On the other hand, a classical iden-

tity of Lerch [Ler87] evaluates the logarithmic derivative of the Dirichlet L–function L(χ−D, s) at

s = 0 in terms of values of Γ(s) at rational numbers,

L′(χ−D, 0)

L(χ−D, 0)
= − log(D) +

w(−D)

2h(−D)

D∑
k=1

χ−D(k) log

(
Γ

(
k

D

))
. (3.2)

Substituting Lerch’s identity (3.2) into (3.1) then yields the Chowla-Selberg formula

∏
C

√
Im(τC)|η(τC)|2 =

(
1

4π
√
D

)h(−D)
2

D∏
k=1

Γ

(
k

D

)w(−D)χ−D(k)

4

. (3.3)

There is a beautiful geometric reformulation of the Chowla-Selberg formula (3.3) as an identity
∗Sections of this chapter are reprinted with permission from Adrian Barquero-Sanchez and Riad Masri (2016), On

the Colmez conjecture for non-abelian CM fields. arXiv:1604.01057 [math.NT]. Copyright 2016 by Adrian
Barquero-Sanchez and Riad Masri.
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which relates the Faltings height of a CM elliptic curve to the logarithmic derivative of L(χ−D, s)

at s = 0. In order to describe this, we first recall the definition of the (stable) Faltings height of a

CM abelian variety. Let F be a totally real number field of degree n. Let E/F be a CM extension

of F and Φ be a CM type for E. Let XΦ be an abelian variety defined over Q with complex

multiplication by OE and CM type Φ. We call XΦ a CM abelian variety of type (OE ,Φ). Let

K ⊆ Q be a number field over which XΦ has everywhere good reduction, and choose a Néron

differential ω ∈ H0(XΦ,Ω
n
XΦ

). Then the Faltings height of XΦ is defined by

hFal(XΦ) := − 1

2[K : Q]

∑
σ:K↪→C

log

∣∣∣∣∣
∫
Xσ

Φ(C)
ω ∧ ωσ

∣∣∣∣∣ .
The Faltings height does not depend on the choice of K or ω.

Now, if E = Q(
√
−D) is an imaginary quadratic field and XΦ is a CM elliptic curve of type

(OE ,Φ), then one can prove that (see e.g. [Gro80, Sil86])

hFal(XΦ) = − log
(

2
4
√

2π3
)
− 1

h(−D)

∑
C

log
(√

Im(τC)|η(τC)|2
)
.

Combining this identity with (3.1) allows one to express the Chowla-Selberg formula in the equiv-

alent form

hFal(XΦ) = −1

2

L′(χ−D, 0)

L(χ−D, 0)
− 1

4
log (D)− 1

2
log(2π). (3.4)

Colmez [Col93] gave a vast conjectural generalization of the identity (3.4) which relates the

Faltings height of any CM abelian variety XΦ of type (OE ,Φ) to logarithmic derivatives at s = 0

of certain Artin L–functions constructed from the CM pair (E,Φ). See Section 3.3 for the precise

statement of the Colmez conjecture.

3.1.2 Previous work on the Colmez conjecture

There have been many remarkable works on the Colmez conjecture.

Colmez [Col93] proved his conjecture when E/Q is abelian, up to addition of a rational mul-

tiple of log(2) which was recently shown to equal zero by Obus [Obu13].

Yang [Yan10a, Yan10b, Yan13] proved the Colmez conjecture for a large class of non-biquadra-

tic CM fields of degree [E : Q] = 4, thus establishing the only known cases of the Colmez
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conjecture when E/Q is non-abelian.

In his paper, Colmez [Col93] also stated an averaged version of his conjecture, where the

Faltings heights are averaged over the different CM types for the given CM field E. See Section

3.4 for the statement of the average Colmez conjecture. Very recently, Andreatta-Goren-Howard-

Madapusi Pera [AGHM15] and Yuan-Zhang [YZ15] independently proved the average Colmez

conjecture. Interest in the average Colmez conjecture is motivated in part by work of Tsimerman

[Tsi15], who used it to prove the André-Oort conjecture for the moduli space Ag of principally

polarized abelian varieties of dimension g. The average Colmez conjecture will also play a crucial

role in the proofs of the results in this chapter (see e.g. Section 3.1.6).

3.1.3 Statement of the main results

As discussed, the only known cases of the Colmez conjecture for non-abelian CM fields are

due to Yang for a large class of CM fields of degree 4. In our first main result, we will prove that

if F is any fixed totally real number field of degree n ≥ 3, then there are infinitely many CM

extensions E/F such that E/Q is non-abelian and the Colmez conjecture is true for E.

More precisely, let p be a prime number which splits in the Galois closure F s and let p be

a prime ideal of F lying above p. We will prove that if we fix an “arbitrary” finite set R of

prime ideals of F , then we can explicitly construct infinitely many CM extensions E/F which are

ramified only at the primes in the prescribed setR∪ {p} and at exactly one more prime ideal of F

(which is different for each of the extensions E/F ) such that E/Q is non-Galois and the Colmez

conjecture is true for E. Similarly, we can prescribe finite sets U1 (resp. U2) of prime ideals of F

that will be split (resp. remain inert) in the extensions E/F .

Theorem A. Let F be a totally real number field of degree n ≥ 3. Let p ∈ Z be a prime number

which splits in the Galois closure F s and let p be a prime ideal of F lying above p. Let dF s be the

discriminant of F s and R be a finite set of prime ideals of F not dividing pdF s . Let U1 and U2 be

finite sets of prime ideals of F not dividing 2pdF s such that R, U1 and U2 are pairwise disjoint.

Then there is a set SR,p of prime ideals of F which is disjoint from R ∪ U1 ∪ U2 ∪ {p} such that

the following statements are true.
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(i) SR,p has positive natural density.†

(ii) For each prime ideal q ∈ SR,p, there is an element ∆q ∈ OF with prime factorization

∆qOF = pq
∏
r∈R

r.

(iii) The fieldEq := F (
√

∆q) is a CM extension of F which is non-Galois over Q and is ramified

only at the prime ideals of F dividing ∆q. Moreover, each prime ideal in U1 splits in Eq and

each prime ideal in U2 remains inert in Eq.

(iv) The Colmez conjecture is true for Eq.

Remark 3.1.1. We emphasize that Theorem A is effective in the sense that we give an algorithm

to construct the set SR,p and the associated CM fields Eq for q ∈ SR,p. See Section 3.7, and in

particular, Section 3.7.4, Algorithm 1.

Remark 3.1.2. The set of prime numbers p ∈ Z which split in the Galois closure F s has natural

density 1/[F s : Q].

In our second main result, we will prove that the Colmez conjecture is true for a generic class

of non-abelian CM fields called Weyl CM fields (see e.g. [CO12]). As remarked by Oort [Oor12,

p. 5], “most CM fields are Weyl CM fields”. There are (at least) two different ways in which

“most” can be understood. In the context of Oort’s remark, “most” refers to density results for

isogeny classes of abelian varieties over finite fields. In Section 3.1.5 we will give an alternative

point of view based on counting CM fields of fixed degree and bounded discriminant, and use this

to develop a probabilistic approach to the Colmez conjecture.

To define the notion of a Weyl CM field, let E = Q(α) be a CM field of degree 2g. Letmα(X)

be the minimal polynomial of α and denote its roots by α1 = α, α1, . . . , αg, αg. Let a2`−1 := α`

and a2` := α` for ` = 1, . . . , g. Then Es = Q(a1, . . . , a2g) is the Galois closure of E. Let S2g

†The natural density of a set S of prime ideals of a number field L is defined by

d(S) := lim
X→∞

#{q ∈ S | NL/Q(q) ≤ X}
#{q ⊂ OL | q is a prime ideal with NL/Q(q) ≤ X} ,

provided the limit exists.
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be the symmetric group on the letters {a1, . . . , a2g} and W2g be the subgroup of S2g consisting of

permutations which map any pair of the form {a2j−1, a2j} to a pair {a2k−1, a2k}. The group W2g

is called the Weyl group. The Weyl group has order #W2g = 2gg! and fits in the exact sequence

1 −→ (Z/2Z)g −→W2g −→ Sg −→ 1.

Now, it can be shown that the Galois group Gal(Es/Q) is isomorphic to a subgroup of W2g.

If E is a CM field such that Gal(Es/Q) ∼= W2g, then E is called a Weyl CM field. Thus, for a CM

field to be Weyl is analogous to the classical fact that the splitting field of a generic polynomial in

Q[X] of degree g has Galois group isomorphic to Sg (see e.g. [Gal73]).

Theorem B. If E is a Weyl CM field, then the Colmez conjecture is true for E.

Remark 3.1.3. If E is a CM field with [E : Q] = 4, the only possibilities for Gal(Es/Q) are

Z/2Z× Z/2Z, Z/4Z or D4. Therefore, since D4
∼= W4, every non-abelian quartic CM field E is

Weyl. It then follows from Theorem B and the work of Colmez [Col93] and Obus [Obu13] that the

Colmez conjecture is true for every quartic CM field.

Remark 3.1.4. We emphasize that if g ≥ 2 and E is a Weyl CM field of degree 2g, then E/Q

is non-Galois since #Gal(Es/Q) = 2gg! > 2g = [E : Q]. In particular, any Weyl CM field of

degree 2g ≥ 4 is non-abelian.

Remark 3.1.5. In Section 3.7 (see e.g. Remark 3.7.12), we will prove that the CM fields Eq

which appear in Theorem A are Weyl CM fields if and only if [F s : Q] = n!. In particular, if

[F s : Q] < n!, then the fields Eq are not Weyl CM fields, so that Theorems A and B can be viewed

as complementary to one another.

3.1.4 Explicit non-abelian Chowla-Selberg formulas

One important feature of the precise form of the Colmez conjecture for the CM fields appearing

in Theorems A and B is that it allows us to give explicit evaluations of Faltings heights of CM

abelian varieties.

Recall that for imaginary quadratic fields, the Colmez conjecture is a geometric reformulation

of the Chowla-Selberg formula which evaluates the Faltings height of a CM elliptic curve in terms
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of values of Γ(s) at rational numbers. More precisely, if E = Q(
√
−D) and XΦ is a CM elliptic

curve of type (OE ,Φ), then substituting (3.2) into (3.4) yields

hFal(XΦ) = − w(−D)

4h(−D)

D∑
k=1

χ−D(k) log

(
Γ

(
k

D

))
+

1

4
log (D)− 1

2
log(2π). (3.5)

Now, if E is a CM field as in Theorem A or Theorem B, and XΦ is a CM abelian variety of

type (OE ,Φ), then the Colmez conjecture takes the form (see Proposition 3.5.1)

hFal(XΦ) = −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log

(
|dE |
dF

)
− n

2
log(2π), (3.6)

where L(χE/F , s) is the (incomplete) L–function of the Hecke character χE/F associated to the

quadratic extension E/F and dE (resp. dF ) is the discriminant of E (resp. F ). In fact, we will

develop a probabilistic framework which predicts that the Colmez conjecture takes this form “most”

of the time (see Section 3.1.5). One reason for interest in this form of the Colmez conjecture is the

appearance of the L–function L(χE/F , s), which allows us to give explicit “non-abelian Chowla-

Selberg formulas” analogous to (3.5) which evaluate the Faltings heights of CM abelian varieties

in terms of values of the Barnes multiple Gamma function at algebraic numbers in F . We will

study this problem extensively in the forthcoming papers [BS-M16a, BS-M16b]. Here we give an

example of such an evaluation for the Faltings height of the Jacobian of a genus 2 hyperelliptic

curve with complex multiplication by a non-abelian quartic CM field.

Example 3.1.6. Let E = Q(
√
−5− 2

√
2). Then E is a non-abelian quartic CM field of discrim-

inant dE = 1088 with real quadratic subfield F = Q(
√

2) of discriminant dF = 8. Moreover, by

Remark 3.1.3 the CM field E is Weyl, hence the Colmez conjecture is true for E.

Now, by [BS15, Theorem 1.1 and Table 2b] with the choice [D,A,B] = [8, 10, 17], the Jaco-

bian JC of the genus 2 hyperelliptic curve C over Q(
√

17) given by the equation

y2 = x6 + (3 +
√

17)x5 +

(
25 + 3

√
17

2

)
x4 + (3 + 5

√
17)x3 (3.7)

+

(
73− 9

√
17

2

)
x2 + (−24 + 8

√
17)x+ 10− 2

√
17

is a CM abelian surface defined over Q with complex multiplication by the ring of integers OE of
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E. The hyperelliptic curve C is shown in Figure 3.1.

-3 -2 -1 1 2 3

-5
-4
-3
-2
-1

1
2
3
4
5

x

y

Figure 3.1: The hyperelliptic curve C.

Since the Colmez conjecture is true for E, it follows from (3.6) that

hFal(JC) = −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log(136)− log(2π). (3.8)

Hence, to complete the evaluation of hFal(JC), we need a two-dimensional analog of Lerch’s iden-

tity for the logarithmic derivative of L(χE/F , s) at s = 0. For this we require the Barnes double

Gamma function (see e.g. [Bar01, Shi77b]).

Let ω = (ω1, ω2) ∈ R2
+ and z ∈ C. Then the Barnes double Gamma function is defined by

Γ2(z, ω) := F (z, ω)−1,

where

F (z, ω) := z exp

(
γ22(ω)z +

z2

2
γ21(ω)

)

×
∏

(m,n)

(
1 +

z

mω1 + nω2

)
exp

(
− z

mω1 + nω2
+

z2

2(mω1 + nω2)2

)
,

the product being over all pairs of integers (m,n) ∈ Z2
≥0 with (m,n) 6= (0, 0). The function

F (z, ω) is entire, and the constants γ22(ω), γ21(ω) are explicit “higher” analogs of Euler’s constant

γ.
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Given an element α ∈ F , let 〈α〉 = αOF and ασ be the image of α under an automorphism

σ ∈ Gal(F/Q). We also let α′ denote the image of α under the nontrivial automorphism in

Gal(F/Q).

Let DE/F be the relative discriminant, hE be the class number ofE, and ε > 1 be the generator

of the groupO×,+F of totally positive units of F . Let B2(t) = t2− t+ 1/6 be the second Bernoulli

polynomial.

In [BS-M16a], we use work of Shintani [Shi77b] to establish the following two dimensional

analog of Lerch’s identity (3.2),

L′(χE/F , 0)

L(χE/F , 0)
= − log(NF/Q(DE/F )) (3.9)

+
[O×E : O×F ]

2hE

∑
z∈R(ε,D−1

E/F
)

χE/F
(
DE/F 〈z〉

)
log

 ∏
σ∈Gal(F/Q)

Γ2

(
zσ, (1, εσ)

)

+
ε− ε′

2
log(ε′)

[O×E : O×F ]

2hE

∑
z∈R(ε,D−1

E/F
)

z=x+yε

χE/F
(
DE/F 〈z〉

)
B2(x),

whereR(ε,D−1
E/F ) is a finite subset of D−1

E/F consisting of the elements z = x+ yε ∈ D−1
E/F such

that

• x, y ∈ Q,

• 0 < x ≤ 1, 0 ≤ y < 1, and

• DE/F 〈z〉 is coprime to DE/F .

Here we have DE/F = 〈−5 − 2
√

2〉 and ε = 3 + 2
√

2. We wrote a program in SageMath

to compute the Shintani set R(ε,D−1
E/F ). This set can be visualized geometrically in R2

+ via the

embedding α 7−→ (α, α′) as a finite subset of the Shintani cone

C(ε) :=
{
t1(1, 1) + t2

(
ε, ε′

) ∣∣ t1 > 0, t2 ≥ 0
}
⊂ R2

+

generated by the vectors (1, 1) and (ε, ε′), as shown in Figure 3.2.‡

‡The shaded parallelogram in Figure 3.2 is the subset of the Shintani cone C(ε) determined by the inequalities
0 < t1 ≤ 1 and 0 ≤ t2 < 1, which correspond to the inequalities appearing in the definition ofR(ε,D−1

E/F ).
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C(ε)

2 4 6 8 10

2

4

6

(1, 1)

(ε, ε′)

Figure 3.2: The embedding ofR(ε,D−1
E/F ) into C(ε).

In order to give a uniform description of the points in R(ε,D−1
E/F ), it is convenient to express

them in terms of a Z-basis for D−1
E/F . In particular, for the Z-basis given by

D−1
E/F = Z · 1 + Z ·

(
6 +
√

2

17

)
,

we find that

R(ε,D−1
E/F ) =

{
zm,n := −m+ (4m+ n− 1)

(
6+
√

2
17

) ∣∣∣ 0 ≤ m ≤ 8, n ∈ S(m)
}
,

where

S(m) :=



{2, 3, 4} if m = 0

{1, 2, 3, 4} if m = 1, 2, 3

{1, 3} if m = 4

{0, 1, 2, 3} if m = 5, 6, 7

{0, 1, 2} if m = 8.
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We also wrote a program in SageMath to compute the character values

cm,n := χE/F (DE/F 〈zm,n〉) ∈ {±1},

which are given in Table 3.1.

Values of cm,n

n
m 0 1 2 3 4 5 6 7 8

0 −1 1 1 1

1 −1 −1 1 −1 1 1 1 −1

2 −1 1 −1 −1 −1 −1 1 −1

3 −1 1 1 1 −1 1 −1 −1

4 1 1 1 −1

Table 3.1: The character values cm,n := χE/F (DE/F 〈zm,n〉).

Since [O×E : O×F ] = 1 and hE = 1, the preceding calculations yield the following explicit

version of (3.9),

L′(χE/F , 0)

L(χE/F , 0)
= − log(17) +

1

2

∑
0≤m≤8
n∈S(m)

cm,n log

 ∏
σ∈Gal(F/Q)

Γ2

(
zσm,n, (1, ε

σ)
) (3.10)

− 4
√

2

17
log(ε).

Finally, by combining (3.8) and (3.10) we get an explicit evaluation of hFal(JC) which is sum-

marized in the following theorem.
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Theorem 3.1.7. Let C be the genus 2 hyperelliptic curve over Q(
√

17) defined by (3.7). The

Jacobian JC is a CM abelian surface defined over Q with complex multiplication by the ring of

integersOE of the non-abelian quartic CM fieldE = Q(
√
−5− 2

√
2) with real quadratic subfield

F = Q(
√

2). The Faltings height of JC is given by

hFal(JC) = −1

4

∑
0≤m≤8
n∈S(m)

cm,n log

 ∏
σ∈Gal(F/Q)

Γ2

(
zσm,n, (1, ε

σ)
)

+
2
√

2

17
log(ε) +

1

4
log

(
17

8

)
− log(2π),

where zm,n = −m+ (4m+n−1)(6+
√

2
17 ), ε = 3 + 2

√
2, and the numbers cm,n ∈ {±1} are given

in Table 3.1.

3.1.5 An arithmetic statistics approach to the Colmez conjecture

In this section we develop an approach to the Colmez conjecture based on the study of certain

problems of arithmetic distribution.

3.1.5.1 The density of Weyl CM fields when ordered by discriminant

A natural way to count number fields K/Q which satisfy some property is to order them by the

absolute value of their discriminant dK . Here we are interested in the problem of counting number

fields (and in particular CM fields) with a given Galois group. This problem has a long history and

has been studied extensively by many authors in recent years. See for example the excellent survey

articles [CDO06, Woo16].

We start by introducing some notation. If K/Q is a number field, we denote its isomorphism

class by [K/Q]. For a permutation group G on n letters, we define the counting function

Nn(G,X) := #{[K/Q] | [K : Q] = n, Gal(Ks/Q) ∼= G and |dK | ≤ X},

which counts the number of isomorphism classes of number fields K/Q of degree [K : Q] = n

such that the Galois group of the Galois closure Ks is Gal(Ks/Q) ∼= G and such that |dK | ≤ X .

Similarly, in order to count isomorphism classes of number fields with a specific signature
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(r1, r2), where n = r1 + 2r2, we define the counting function

Nr1,r2(G,X) := #{[K/Q] ∈ Nn(G,X) | signature(K) = (r1, r2)}.

Now, for CM fields we define the counting functions

CMn(X) := #{[E/Q] | E is a CM field, [E : Q] = n and |dE | ≤ X}

and

CMn(G,X) := #{[E/Q] ∈ CMn(X) | Gal(Es/Q) ∼= G}.

We want to study the density of Weyl CM fields of fixed degree 2n when ordered by discrimi-

nant, i.e., we want to study the limit

ρWeyl(2n) := lim
X→∞

CM2n(W2n, X)

CM2n(X)
,

provided the limit exists. Conjectures of Malle [Mal02, Mal04] and various refinements (see e.g.

[Bha07, Woo16]) concerning asymptotics for the counting functions Nn(G,X) and Nr1,r2(G,X)

suggest that this limit exists and is positive. This is of great interest, for if ρWeyl(2n) > 0 then

Theorem B implies that the Colmez conjecture is true for a positive proportion of CM fields of

fixed degree 2n when ordered by discriminant.

When n = 1, a CM field of degree 2 is just an imaginary quadratic field. In this case the Weyl

group W2
∼= Z/2Z, so trivially every quadratic CM field is Weyl and hence

ρWeyl(2) = lim
X→∞

CM2(W2, X)

CM2(X)
= 1.

When n = 2, the situation is already much more complicated. The following table can be

extracted from [Coh03, p. 376], and strongly suggests that ρWeyl(4) exists and equals 1.
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X CM4(W4, X) CM4(X) CM4(W4,X)
CM4(X)

104 27 72 37.5%

105 395 613 64.4%

106 4512 5384 83.8%

107 47708 51220 93.1%

108 486531 500189 97.3%

109 4904276 4956208 98.9%

1010 49190647 49384381 99.6%

1012 4926673909 4929271179 99.9%

Table 3.2: Density of quartic Weyl CM fields.

In fact, we will appeal to the works of Baily [Bai80], Mäki [Mäk85], and Cohen, Diaz y

Diaz and Olivier [CDO02, CDO05, CDO06] to deduce the following result, which confirms the

computational observations from Table 3.2.

Theorem 3.1.8. The density of quartic Weyl CM fields is

ρWeyl(4) = lim
X→∞

CM4(W4, X)

CM4(X)
= 1.

Remark 3.1.9. It follows from Theorem B and Theorem 3.1.8 that the Colmez conjecture is true

for 100% of quartic CM fields. On the other hand, we have already observed in Remark 3.1.3 that

the Colmez conjecture is true for every quartic CM field. Nonetheless, Theorem 3.1.8 supports our

belief that the probabilistic approach described here can be used to prove (at least in low degree)

that the Colmez conjecture is true for a positive proportion of CM fields of fixed degree. We are

currently investigating this problem for sextic CM fields.

3.1.5.2 Abelian varieties over finite fields and density results

We now explain how to use density results for isogeny classes of abelian varieties over finite

fields to prove probabilistic results about the Colmez conjecture.
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Let Fq be a finite field with q = pn elements. Let αA be a root of the characteristic polynomial

fA of the Frobenius endomorphism πA of an abelian variety A/Fq of dimension g. It is known that

if A/Fq and B/Fq are isogenous abelian varieties, then fA = fB .

Let Ag(q) be the set of isogeny classes of abelian varieties A/Fq of dimension g. Let KfA =

Q(αA)s be the splitting field of fA and Gal(KfA/Q) be the Galois group. Kowalski [Kow06]

proved that the proportion of isogeny classes [A] ∈ Ag(pn) which satisfy Gal(KfA/Q) ∼= W2g

approaches 1 as n → ∞. We will show that if Gal(KfA/Q) ∼= W2g and g ≥ 2, then Q(αA) is a

non-Galois Weyl CM field of degree 2g ≥ 4. By combining these results with Theorem B, we will

establish the following probabilistic result.

Theorem 3.1.10. Suppose that g ≥ 2. Then

lim
n→∞

#{[A] ∈ Ag(pn) | Q(αA) is a non-Galois CM field satisfying the Colmez conjecture}
#Ag(pn)

= 1.

On the other hand, let Asg(q) be the set of isogeny classes of simple abelian varieties A/Fq of

dimension g. We will use work of Greaves-Odoni [GO88] and Honda-Tate (see e.g. [Tat71]) to

prove that given a CM field E of degree 2g and an integer n ≥ 2, there is a set of prime numbers

p ∈ Z with positive natural density such that E ∼= Q(πA) for some simple abelian variety A/Fpn

of dimension g. It seems likely that a modification of the methods in [Kow06] can be used to

prove that the proportion of isogeny classes [A] ∈ Asg(pn) which satisfy Gal(KfA/Q) ∼= W2g

approaches 1 as n→∞. As in Corollary 3.1.10, it would follow that if g ≥ 2, then

lim
n→∞

#{[A] ∈ Asg(pn) | Q(πA) is a non-Galois CM field satisfying the Colmez conjecture}
#Asg(pn)

= 1.

3.1.6 Outline of the proofs of the main results

We now briefly outline the proofs of Theorems A and B.

Let E be a CM field of degree 2n and Φ(E) be the set of CM types for E. Let QCM be the

compositum of all CM fields. Then the Galois group GCM := Gal(QCM/Q) acts on Φ(E) by

composition. By a careful study of the action of GCM on Φ(E) and a theorem of Colmez [Col93,

Théoreme 0.3] which relates the Faltings height of a CM abelian varietyXΦ of type (OE ,Φ) to the

“height” of a certain locally constant function on GCM constructed from the CM pair (E,Φ), we
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will prove that the Faltings height of XΦ depends only on the GCM-orbit of Φ. Given this result,

we will prove that if the action of GCM on Φ(E) is transitive, then an averaged version of the

Colmez conjecture proved recently by Andreatta-Goren-Howard-Madapusi Pera [AGHM15] and

Yuan-Zhang [YZ15] implies the Colmez conjecture for E.

Now, let Φ be a CM type and EΦ be the associated reflex field. The reflex degree satisfies

[EΦ : Q] ≤ 2n. We will prove that the action of GCM on Φ(E) is transitive if and only if

[EΦ : Q] = 2n. In particular, by the results discussed in the previous paragraph, if [EΦ : Q] = 2n

then the Colmez conjecture is true for E. This leads to the problem of constructing CM fields with

reflex fields of maximal degree.

Roughly speaking, Theorems A and B comprise two different ways of constructing infinite fam-

ilies of CM fields with reflex fields of maximal degree. Our approach to Theorem A is as follows.

Let F be a fixed totally real number field of degree n ≥ 3. Based on an idea of Shimura [Shi70],

in Section 3.7 we explicitly construct infinite families of CM extensions E/F such that E/Q is

non-Galois and the reflex fields EΦ have maximal degree. This construction is quite elaborate, and

consists of two main parts. First, in Proposition 3.7.1 we explicitly construct infinite families of

CM extensions E/F with “arbitrary” prescribed ramification. Second, in Theorem 3.7.6 we prove

that ifE/F is a CM extension satisfying a certain mild ramification condition, then the reflex fields

EΦ have maximal degree, and moreover, if n ≥ 3 then E/Q is non-Galois. By combining these

two results, we will obtain Theorem A. For the convenience of the reader, we have summarized

this construction in Section 3.7.4, Algorithm 1. On the other hand, to prove Theorem B, we will

show that the reflex fields of a Weyl CM field have maximal degree.

3.2 CM types and their equivalence

In this section we prove some important facts that we will need regarding CM types and their

equivalence.

Let QCM be the compositum of all CM fields. Then QCM/Q is a Galois extension of infinite

degree, and the Galois group GCM := Gal(QCM/Q) is a profinite group with the Krull topology.

Recall that the open sets of GCM with the Krull topology are the empty set ∅ and the arbitrary
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unions ⋃
i∈I

σi Gal(QCM/Ei),

where for every i ∈ I we have σi ∈ GCM and Q ⊆ Ei ⊆ QCM with [Ei : Q] < ∞ and Ei/Q

a Galois extension. The group GCM is Hausdorff, compact, and totally disconnected (see e.g.

[Mor96, Chapter IV]). A function f : GCM → Q is locally constant if for each g ∈ GCM, there is

a neighborhood Ng of g such that f is constant on Ng.

Let c ∈ GCM denote complex conjugation.

Definition 3.2.1. Let E be a CM field of degree 2n. A CM type for E is a set ΦE consisting of

embeddings E ↪→ Q such that Hom(E,Q) = ΦE
⋃
· cΦE . We denote the set of all CM types for

E by Φ(E). The Galois group GCM acts on Φ(E) as follows. For ΦE := {σ1, . . . , σn} ∈ Φ(E)

and τ ∈ GCM let

τ · ΦE = τΦE := {τσ1, . . . , τσn} ∈ Φ(E).

Two CM types ΦE ,Φ
′
E ∈ Φ(E) are said to be equivalent if they lie in the same orbit under the

action of GCM, i.e., if there is an element τ ∈ GCM such that ΦE = τ · Φ′E .

We also have the following alternative definition.

Definition 3.2.2. A CM type is a locally constant function Φ : GCM −→ Q such that Φ(g) ∈ {0, 1}

and Φ(g) + Φ(cg) = 1 for every g ∈ GCM. We let

CM := {Φ : GCM −→ Q | Φ is a CM type}

be the set of all CM types. The Galois group GCM acts on CM as follows. For Φ ∈ CM and

τ ∈ GCM, let τ · Φ ∈ CM be the CM type defined by

(τ · Φ)(g) := Φ(τ−1g) for every g ∈ GCM.

Two CM types Φ,Φ
′ ∈ CM are said to be equivalent if they lie in the same orbit under the action

of GCM, i.e., if there is an element τ ∈ GCM such that Φ(g) = Φ
′
(τ−1g) for every g ∈ GCM.

The following proposition gives a dictionary relating the two notions of a CM type and their
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equivalence.

Proposition 3.2.3. The following statements are true.

(i) Let E be a CM field and ΦE ∈ Φ(E). Define the function Φ : GCM −→ Q by

Φ(g) := χΦE (g|E), g ∈ GCM

where χΦE denotes the characteristic function of the set ΦE and g|E is the restriction of g to

E. Then Φ ∈ CM. Moreover, if Φ′E ∈ Φ(E) is equivalent to ΦE and τ ∈ GCM is such that

ΦE = τ · Φ′E , then Φ′ is equivalent to Φ with Φ = τ · Φ′.

(ii) Let Φ ∈ CM. Then there exists a Galois CM field E such that for every g ∈ GCM and every

h ∈ Gal(QCM/E), we have Φ(gh) = Φ(g). Moreover, if [g] := gGal(QCM/E) and we

define

ΦE := {σ ∈ Hom(E,Q) | there exists g ∈ GCM with σ = g|E and Φ([g]) = {1}},

then ΦE ∈ Φ(E). Finally, if Φ′ ∈ CM is equivalent to Φ and τ ∈ GCM is such that

Φ = τ ·Φ′, then for every g ∈ GCM and every h ∈ Gal(QCM/E), we have Φ′(gh) = Φ′(g),

and Φ′E is equivalent to ΦE with ΦE = τ · Φ′E .

For clarity we divide the proof of Proposition 3.2.3 into the following two subsections.

3.2.1 Proof of Proposition 3.2.3 (i)

Let E be a CM field and ΦE ∈ Φ(E) be a CM type for E. Define the function Φ : GCM −→

{0, 1} by

Φ(g) := χΦE (g|E), g ∈ GCM

where χΦE is the characteristic function of the set ΦE and g|E ∈ Hom(E,Q) is the restriction of

g to E. We now prove that Φ ∈ CM.

Let g ∈ GCM. Since Hom(E,Q) = ΦE
⋃
· cΦE , we either have g|E ∈ ΦE or g|E ∈ cΦE , or

equivalently, g|E ∈ ΦE or (cg)|E ∈ ΦE . This proves that Φ(g) + Φ(cg) = 1. It remains to prove

that Φ is locally constant. Let Es be the Galois closure of E. Then Es is also a CM field (see e.g.
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[Shi94, Proposition 5.12]), and it follows that gGal(QCM/Es) is an open set containing g. Now,

observe that for any h ∈ Gal(QCM/Es), we have h|E = idE , so that (gh)|E = g|E . Therefore

Φ(gh) = χΦE ((gh)|E) = χΦE (g|E) = Φ(g),

which implies that Φ is constant on gGal(QCM/Es). It follows that Φ is locally constant, and

hence Φ ∈ CM.

Now, suppose that ΦE and Φ
′
E are equivalent CM types for E. Let τ ∈ GCM be such ΦE =

τΦ
′
E . Then for an arbitrary element g ∈ GCM, the corresponding CM types Φ,Φ

′ ∈ CM satisfy

Φ(g) = χΦE (g|E) = χ
τΦ
′
E

(g|E) = χ
Φ
′
E

((τ−1g)|E) = Φ
′
(τ−1g).

Therefore, Φ is equivalent to Φ′ with Φ = τ · Φ′. This completes the proof of Proposition 3.2.3

(i).

3.2.2 Proof of Proposition 3.2.3 (ii)

The first assertion of Proposition 3.2.3 (ii) is proved in the following lemma.

Lemma 3.2.4. Let Φ ∈ CM be a CM type. Then there exists a Galois CM field E such that for

every g ∈ GCM and every h ∈ Gal(QCM/E) we have Φ(gh) = Φ(g).

Proof. Let g ∈ GCM. Since Φ is locally constant, there exists an open set Ug containing g such

that Φ is constant on Ug. Now, by definition of the Krull topology we have

Ug =
⋃
i∈I

gi Gal(QCM/Ei),

where for every i ∈ I we have gi ∈ GCM and Q ⊆ Ei ⊆ QCM with [Ei : Q] < ∞ and Ei/Q a

Galois extension. Since g ∈ Ug, we have g ∈ gi0 Gal(QCM/Ei0) for some i0 ∈ I . It follows that

gGal(QCM/Ei0) ⊆ gi0 Gal(QCM/Ei0). Let Eg be any Galois CM field containing Ei0 . Then

gGal(QCM/Eg) ⊆ gGal(QCM/Ei0) ⊆ gi0 Gal(QCM/Ei0) ⊆ Ug.

From the preceding facts, we conclude that
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{gGal(QCM/Eg) | g ∈ GCM}

is an open cover of GCM such that Φ is constant on each of the sets gGal(QCM/Eg).

Now, since GCM is compact, there exists a finite subcover

{gj Gal(QCM/Egj )}rj=1

for some elements gj ∈ GCM. Let E := Eg1 · · ·Egr be the compositum of the Galois CM fields

Egj . Then E is a Galois CM field (see e.g. [Shi94, Proposition 5.12]). To complete the proof, we

will show that Φ is constant on gGal(QCM/E) for every g ∈ GCM.

Since Φ is constant on each gj Gal(QCM/Egj ), it suffices to show that there exists an integer

j ∈ {1, . . . , r} such that gGal(QCM/E) ⊂ gj Gal(QCM/Egj ). Since

{gj Gal(QCM/Egj )}rj=1

covers GCM, there exists an integer j ∈ {1, . . . , r} such that g ∈ gj Gal(QCM/Egj ). This implies

that g = gjhj for some hj ∈ Gal(QCM/Egj ). Let σ ∈ gGal(QCM/E). Then σ = gh for some

h ∈ Gal(QCM/E), hence σ = gjhjh. Moreover, since Gal(QCM/E) ⊂ Gal(QCM/Egi), we

have hjh ∈ Gal(QCM/Egj ). It follows that σ ∈ gj Gal(QCM/Egj ), and so gGal(QCM/E) ⊂

gj Gal(QCM/Egj ), as desired.

We now prove the second assertion of Proposition 3.2.3 (ii). Let Φ ∈ CM be a CM type. By

Lemma 3.2.4, there exists a Galois CM fieldE such that Φ is constant on gGal(QCM/E) for every

g ∈ GCM. For notational convenience, we define [g] := gGal(QCM/E). Since E/Q is Galois,

we have Hom(E,Q) = Gal(E/Q), and

GCM

Gal(QCM/E)
∼= Hom(E,Q). (3.11)

Define the set

ΦE := {σ ∈ Hom(E,Q) | there exists g ∈ GCM with σ = g|E and Φ([g]) = {1}}.

We now show that ΦE ∈ Φ(E).
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By (3.11), given an element σ ∈ Hom(E,Q), there is a unique coset

[g] ∈ GCM/Gal(QCM/E)

such that σ = g|E . Since Φ is constant on each coset [g], it follows that either Φ([g]) = {0} or

Φ([g]) = {1}. Suppose that σ 6∈ ΦE . Then Φ([g]) = {0}, so that Φ([cg]) = {1}. Moreover, we

have cσ = (cg)|E , and thus cσ ∈ ΦE , or equivalently, σ ∈ cΦE . A short calculation shows that

ΦE ∩ cΦE = ∅. Hence Hom(E,Q) = ΦE
⋃
· cΦE , and we conclude that ΦE ∈ Φ(E).

Finally, we prove the third assertion of Proposition 3.2.3 (ii). Suppose that Φ
′ ∈ CM is

equivalent to Φ. Let τ ∈ GCM be such that Φ = τ · Φ′, i.e. Φ(g) = Φ
′
(τ−1g) for every

g ∈ GCM. Since Φ is constant on τgGal(QCM/E), it follows that for every g ∈ GCM and

every h ∈ Gal(QCM/E), we have

Φ
′
(gh) = Φ(τgh) = Φ(τg) = Φ

′
(g).

Let

Φ
′
E := {σ′ ∈ Hom(E,Q) | there exists g′ ∈ GCM with σ = g′|E and Φ

′
([g′]) = {1}}.

We will prove that ΦE = τΦ
′
E . We need only prove the containment ΦE ⊆ τΦ

′
E , since the reverse

containment can be proved mutatis mutandis. Let σ ∈ ΦE and let g ∈ GCM be such that σ = g|E

and Φ(g) = 1. Then this implies that Φ
′
(τ−1g) = 1. Finally, let σ′ := (τ−1g)|E . Then σ′ ∈ Φ

′
E ,

and moreover σ = τσ′, so that σ ∈ τΦ
′
E . Hence ΦE ⊆ τΦ

′
E . This completes the proof of

Proposition 2.3 (ii).

Important Remark. In light of Proposition 3.2.3, from here forward we will use the two

different notions of CM type and equivalence of CM types interchangeably, leaving it to the reader

to distinguish which notion is being used from the context.

3.3 Faltings heights and the Colmez conjecture

In this section we review the statement of the Colmez conjecture, following closely the discus-

sion in [Col98] and [Yan10b].

We begin by recalling the definition of the Faltings height of a CM abelian variety. Let F be a
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totally real number field of degree n. Let E/F be a CM extension of F and Φ ∈ Φ(E) be a CM

type for E. Let XΦ be an abelian variety defined over Q with complex multiplication by OE and

CM type Φ. We call XΦ a CM abelian variety of type (OE ,Φ). Let K ⊆ Q be a number field over

which XΦ has everywhere good reduction and choose a Néron differential ω ∈ H0(XΦ,Ω
n
XΦ

).

Then the Faltings height of XΦ is defined by

hFal(XΦ) := − 1

2[K : Q]

∑
σ:K↪→C

log

∣∣∣∣∣
∫
Xσ

Φ(C)
ω ∧ ωσ

∣∣∣∣∣ .
The Faltings height does not depend on the choice of K or ω. Moreover, Colmez [Col93] proved

that if XΦ and YΦ are CM abelian varieties of type (OE ,Φ), then hFal(XΦ) = hFal(YΦ), i.e., the

Faltings height depends on the CM type Φ, but does not depend on the choice of CM abelian variety

XΦ.

Let H(GCM,Q) be the Hecke algebra of Schwartz functions on the Galois group GCM which

take values in Q (see e.g. [Win89]). This is the Q-algebra of locally constant, compactly supported

functions f : GCM −→ Q with multiplication of functions f1, f2 ∈ H(GCM,Q) given by the

convolution

(f1 ∗ f2)(g) :=

∫
GCM

f1(h)f2(h−1g) dµ(h).

Here µ is the left-invariant Haar measure on GCM, normalized so that

Vol(GCM) =

∫
GCM

dµ(g) = 1.

The Hecke algebra H(GCM,Q) is an associative algebra with no identity element. For a func-

tion f ∈ H(GCM,Q), the reflex function f∨ ∈ H(GCM,Q) is defined by f∨(g) := f(g−1). We

define a Hermitian inner product on H(GCM,Q) by

〈f1, f2〉 :=

∫
GCM

f1(h)f2(h) dµ(h).

LetH0(GCM,Q) be the Q-subalgebra ofH(GCM,Q) of class functions, i.e., the Q-subalgebra

of functions f ∈ H(GCM,Q) satisfying f(hgh−1) = f(g) for all h, g ∈ GCM. It is known that

an orthonormal basis for H0(GCM,Q) is given by the set

{χπ | π an irreducible representation of GCM}
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of Artin characters χπ associated to the irreducible representations π of GCM.

There is a projection map

H(GCM,Q) −→ H0(GCM,Q)

f 7−→ f0

defined by

f0(g) :=

∫
GCM

f(hgh−1) dµ(h).

As a map of Q-vector spaces, it corresponds to the orthogonal projection of H(GCM,Q) onto

H0(GCM,Q). In particular, one has

f0 =
∑
χπ

〈f, χπ〉χπ.

Define the functions

Z(f0, s) :=
∑
χπ

〈f, χπ〉
L′(χπ, s)

L(χπ, s)
and µArt(f

0) :=
∑
χπ

〈f, χπ〉 log(fχπ),

where L(χπ, s) is the (incomplete) Artin L–function of χπ and fχπ is the analytic Artin conductor

of χπ.

If Φ ∈ CM is a CM type, we define the function AΦ ∈ H(GCM,Q) by

AΦ := Φ ∗ Φ∨.

Colmez [Col93] made the following conjecture.

Conjecture 3.3.1 (Colmez [Col93]). Let E be a CM field, Φ be a CM type for E, and XΦ be a CM

abelian variety of type (OE ,Φ). Let AE,Φ := [E : Q]AΦ. Then

hFal(XΦ) = −Z(A0
E,Φ, 0)− 1

2
µArt(A

0
E,Φ).

Colmez [Col93] proved Conjecture 3.3.1 when E/Q is abelian, up to addition of a rational

multiple of log(2) which was recently shown to equal zero by Obus [Obu13]. Yang [Yan10a,

Yan10b, Yan13] proved Conjecture 3.3.1 for a large class of non-biquadratic quartic CM fields,

thus establishing the only known cases of the Colmez conjecture when E/Q is non-abelian.
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3.4 The average Colmez conjecture

Let F be a totally real number field of degree n. Let E/F be a CM extension of F and Φ(E)

be the set of CM types for E. There are 2n CM types Φ ∈ Φ(E). By averaging both sides of

Conjecture 3.3.1 over Φ(E), one gets the conjectural identity

1

2n

∑
Φ∈Φ(E)

hFal(XΦ) =
1

2n

∑
Φ∈Φ(E)

(−Z(A0
E,Φ, 0)− 1

2
µArt(A

0
E,Φ)). (3.12)

The average on the right hand side of (3.12) can be simplified. Namely, by [AGHM15, Proposition

8.4.1] we have

1

2n

∑
Φ∈Φ(E)

(
−Z(A0

E,Φ, 0)− 1

2
µArt(A

0
E,Φ)

)
= −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log

(
|dE |
dF

)
(3.13)

− n

2
log(2π),

where L(χE/F , s) is the (incomplete) L–function of the Hecke character χE/F associated to the

quadratic extension E/F and dE (resp. dF ) is the discriminant of E (resp. F ).

These identities yield the following averaged version of the Colmez conjecture.

Conjecture 3.4.1 (The Average Colmez Conjecture). Let F be a totally real number field of degree

n. Let E/F be a CM extension of F , and for each CM type Φ ∈ Φ(E), let XΦ be a CM abelian

variety of type (OE ,Φ). Then

1

2n

∑
Φ∈Φ(E)

hFal(XΦ) = −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log

(
|dE |
dF

)
− n

2
log(2π). (3.14)

Conjecture 3.4.1 was recently proved independently by Andreatta, Goren, Howard, Madapusi

Pera [AGHM15] and Yuan-Zhang [YZ15].

Theorem 3.4.2 ([AGHM15], [YZ15]). Conjecture 3.4.1 is true.

3.5 The action of GCM on Φ(E) and the Colmez conjecture

In this section we prove the following result.

Proposition 3.5.1. Let F be a totally real number field of degree n. Let E/F be a CM extension

of F and Φ(E) be the set of CM types for E. If the action of GCM on Φ(E) is transitive, then
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Conjecture 3.3.1 is true. In particular, if Φ ∈ Φ(E) and XΦ is a CM abelian variety of type

(OE ,Φ), then

hFal(XΦ) = −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log

(
|dE |
dF

)
− n

2
log(2π). (3.15)

We will need the following two crucial lemmas.

Lemma 3.5.2. If Φ1,Φ2 ∈ CM are equivalent CM types, then A0
Φ1

= A0
Φ2

.

Proof. Since the CM types Φ1 and Φ2 are equivalent, there is an element τ−1 ∈ GCM such that

Φ1(g) = Φ2(τg) for every g ∈ GCM. Then we have

A0
Φ1

(g) =

∫
GCM

AΦ1(hgh−1) dµ(h)

=

∫
GCM

∫
GCM

Φ1(t)Φ∨1 (t−1hgh−1) dµ(t)dµ(h)

=

∫
GCM

∫
GCM

Φ1(t)Φ1(hg−1h−1t) dµ(h)dµ(t)

=

∫
GCM

∫
GCM

Φ2(τt)Φ2(τhg−1h−1t) dµ(h)dµ(t)

=

∫
GCM

Φ2(τt)

(∫
GCM

Φ2(τhg−1h−1τ−1τt) dµ(h)

)
dµ(t). (3.16)

Now, define the function fg,τ,t(h) := Φ2(hg−1h−1τt). Then the inner integral in (3.16) can be

written as ∫
GCM

Φ2(τhg−1h−1τ−1τt) dµ(h) =

∫
GCM

fg,τ,t(τh) dµ(h)

=

∫
GCM

fg,τ,t(h) dµ(h)

=

∫
GCM

Φ2(hg−1h−1τt) dµ(h), (3.17)

where in the second equality we used the left-invariance of the Haar measure. We substitute the
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identity (3.17) for the inner integral in (3.16) and continue the calculation to get

A0
Φ1

(g) =

∫
GCM

Φ2(τt)

(∫
GCM

Φ2(hg−1h−1τt) dµ(h)

)
dµ(t)

=

∫
GCM

(∫
GCM

Φ2(τt)Φ2(hg−1h−1τt) dµ(t)

)
dµ(h)

=

∫
GCM

(∫
GCM

Φ2(t)Φ2(hg−1h−1t) dµ(t)

)
dµ(h)

=

∫
GCM

(∫
GCM

Φ2(t)Φ∨2 (t−1hgh−1) dµ(t)

)
dµ(h)

=

∫
GCM

AΦ2(hgh−1) dµ(h)

= A0
Φ2

(g),

where in the third equality we again used the left-invariance of the Haar measure.

Lemma 3.5.3. Let E be a CM field, let Φ1 and Φ2 be CM types for E, and let XΦ1 and XΦ2 be

CM abelian varieties of types (OE ,Φ1) and (OE ,Φ2), respectively. If Φ1 and Φ2 are equivalent,

then

hFal(XΦ1) = hFal(XΦ2).

Proof. LetXΦ be a CM abelian variety of type (OE ,Φ). Then by Colmez [Col93, Théore-me 0.3],

there is a unique Q-linear height function ht : H0(GCM,Q)→ R such that

hFal(XΦ) = −ht(A0
E,Φ)− 1

2
µArt(A

0
E,Φ). (3.18)

Since Φ1 and Φ2 are equivalent, by Lemma 3.5.2 we have A0
Φ1

= A0
Φ2

, so that

A0
E,Φ1

= [E : Q]A0
Φ1

= [E : Q]A0
Φ2

= A0
E,Φ2

.

It follows from (3.18) that hFal(XΦ1) = hFal(XΦ2).

Proof of Proposition 3.5.1. Fix a CM type Φ0 ∈ Φ(E), and let XΦ0 be a CM abelian variety
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of type (OE ,Φ0). Since the action of GCM on Φ(E) is transitive, we have

hFal(XΦ0) =
1

2n

∑
Φ∈Φ(E)

hFal(XΦ)

=
1

2n

∑
Φ∈Φ(E)

(−Z(A0
E,Φ, 0)− 1

2
µArt(A

0
E,Φ)) (3.19)

= −Z(A0
E,Φ0

, 0)− 1

2
µArt(A

0
E,Φ0

),

where the first equality follows from Lemma 3.5.3, the second equality is the identity (3.12) (which

is equivalent to Theorem 3.4.2), and the third equality follows from Lemma 3.5.2. Since Φ0 was

arbitrary, this proves Conjecture 3.3.1. The identity (3.15) for the Faltings height then follows from

(3.19) and (3.13).

3.6 The action of GCM on Φ(E) and the reflex degree

In this section we relate the action of GCM on Φ(E) to the degree of the reflex field of a CM

pair (E,Φ).

Let GQ := Gal(Q/Q) be the absolute Galois group. The following result can be found in

[Mil06, Proposition 1.16] and [Shi98, Proposition 28], for example.

Proposition 3.6.1. Let E be a CM field and Φ be a CM type for E. Then the following conditions

on a subfield EΦ of Q are equivalent.

(i) We have

{σ ∈ GQ | σ fixes EΦ} = {σ ∈ GQ | σΦ = Φ},

that is, Gal(Q/EΦ) = StabGQ(Φ).

(ii) EΦ = Q ({TrΦ(a) | a ∈ E}), where TrΦ(a) :=
∑
φ∈Φ

φ(a) is the type trace of a ∈ E.

Definition 3.6.2. The field EΦ satisfying the equivalent conditions in Proposition 3.6.1 is called

the reflex field of the CM pair (E,Φ).

Let Es denote the Galois closure of E.
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Proposition 3.6.3. Let E be a CM field of degree 2n and Φ be a CM type for E. Then

[EΦ : Q] = #(Gal(Es/Q) · Φ).

In particular, [EΦ : Q] ≤ 2n.

Proof. By Proposition 3.6.1 (ii) we have EΦ ⊆ Es, hence one can replace Q with Es and GQ with

Gal(Es/Q) in Proposition 3.6.1 (i) to conclude that

Gal(Es/EΦ) = StabGal(Es/Q)(Φ). (3.20)

Then using the fundamental theorem of Galois theory, identity (3.20), and the orbit-stabilizer the-

orem, we have

[EΦ : Q] = [Gal(Es/Q) : Gal(Es/EΦ)] = [Gal(Es/Q) : StabGal(Es/Q)(Φ)]

= #(Gal(Es/Q) · Φ).

Finally, since Gal(Es/Q) · Φ ⊆ Φ(E) and #Φ(E) = 2n, it follows that [EΦ : Q] ≤ 2n.

Corollary 3.6.4. The action of GCM on Φ(E) is transitive if and only if [EΦ : Q] = 2n for some

CM type Φ ∈ Φ(E).

Proof. Since Es is a CM field, we have

Gal(Es/Q) · Φ = GCM · Φ.

The result now follows from Proposition 3.6.3 and the fact that #Φ(E) = 2n.

3.7 CM fields with reflex fields of maximal degree

Let F be a totally real number field of degree n. In the paragraph following [Shi70, (1.10.1)],

Shimura briefly sketched the construction of a CM extensionE/F with reflex fields of maximal de-

gree. Based on this idea, we undertake an extensive study of the problem of constructing CM fields

with reflex fields of maximal degree and explicitly construct infinite families of CM extensions

E/F with this property. When n ≥ 3 these CM fields E are non-Galois over Q.
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We begin with the following facts and notation which will be needed for the results in this

section.

3.7.1 Multiplicative congruences, ray class groups, and higher unit groups

Let K be a number field. For a prime ideal P of K, let vP : K −→ Z ∪ {∞} be the discrete

valuation defined by vP(x) := ordP(x). Also, let KP be the completion of K with respect to the

P-adic absolute value | · |P induced by the valuation vP. We denote the ring of P-adic integers by

OP. The unique maximal ideal of OP is P̂ := POP.

Let U := O×P be the group of units of OP. For any n ≥ 1, there is a subgroup of U defined by

U (n) := 1 + PnOP,

called the n-th higher unit group. The higher unit groups form a decreasing filtration

U ⊇ U (1) ⊇ U (2) ⊇ · · · ⊇ U (n) ⊇ · · · .

For elements α, β ∈ K×, we define the multiplicative congruence by

α
×≡ β (mod Pn) ⇐⇒ α ∈ β(1 + PnOP).

Thus we see that equivalently

α
×≡ β (mod Pn) ⇐⇒ α

β
∈ U (n) ⇐⇒ vP

(
α

β
− 1

)
≥ n.

Let m0 be an integral ideal of K and m∞ be the formal product of all the real infinite primes

corresponding to the embeddings in Hom(K,R). Define the modulus m := m0m∞. Then we

extend the multiplicative congruence by setting

α
×≡ β (mod m) ⇐⇒


α
×≡ β (mod PvP(m0)) for all P|m0, and

σ(α)

σ(β)
> 0 for all σ ∈ Hom(K,R).

The multiplicative congruence is indeed multiplicative, i.e., if

α1
×≡ β1 (mod m) and α2

×≡ β2 (mod m),
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then

α1α2
×≡ β1β2 (mod m).

Let IK(m0) be the group of all fractional ideals of K that are relatively prime to m0. Let

Km,1 := {x ∈ K× | xOK is relatively prime to m0 and x
×≡ 1 (mod m)}

be the ray modulo m and PK(m) be the subgroup of IK(m0) of principal fractional ideals xOK

generated by elements x ∈ Km,1. Then the ray class group of K modulo m is the quotient group

RK(m) := IK(m0)/PK(m).

A coset in the ray class group is called a ray class modulo m.

3.7.2 Constructing CM extensions with prescribed ramification

In the following proposition we explicitly construct infinite families of CM extensions with

“arbitrary” prescribed ramification. This is a variation on [Shi67, Lemma 1.5], adapted to the

particular setting we will consider.

Proposition 3.7.1. Let F be a totally real number field. Let p ∈ Z be a prime number and m ≥ 1

be a positive integer. Let p be a prime ideal of F lying above p. LetR be a finite set of prime ideals

of F not dividing pm. Let U1 and U2 be finite sets of prime ideals of F not dividing 2pm such that

R,U1 and U2 are pairwise disjoint. Then there is a set SR,p of prime ideals of F which is disjoint

fromR∪ U1 ∪ U2 ∪ {p} such that the following statements are true.

(i) SR,p has positive natural density.

(ii) Each prime ideal q ∈ SR,p is relatively prime to pm.

(iii) For each prime ideal q ∈ SR,p, there is an element ∆q ∈ OF with prime factorization

∆qOF = pq
∏
r∈R

r.

(iv) The field Eq := F (
√

∆q) is a CM extension of F which is ramified only at the prime ideals

of F dividing ∆q. Moreover, each prime ideal in U1 splits in Eq and each prime ideal in U2
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is inert in Eq.

Remark 3.7.2. Note that if q1, q2 ∈ SR,p with q1 6= q2, then the associated CM extensions Eq1/F

and Eq2/F are distinct since they are ramified only at the primes in the sets R ∪ {p, q1} and

R∪ {p, q2}, respectively.

In order to prove Proposition 3.7.1 we will need the following two lemmas.

Lemma 3.7.3. Let S be a set of prime ideals of F and suppose that e ∈ Z satisfies

e ≥ 2 max{vP(2) | P ∈ S}+ 1.

Then for any prime ideal P ∈ S, if α ∈ F× and α
×≡ 1 (mod Pe) then FP(

√
α) = FP.

Proof. Let P ∈ S. Observe that FP(
√
α) = FP if and only if α is a perfect square in FP.

Let OP be the ring of integers of FP and U (n) := 1 + PnOP be the n-th higher unit group.

Let vP : F −→ Z ∪ {∞} be the discrete valuation given by vP(x) := ordP(x). By [Wei98,

Proposition 3-1-6, p. 79], if m, i ∈ Z are integers with m ≥ 1 and i ≥ vP(m) + 1, then the map

φm : U (i) −→ U (i+vP(m)) given by φm(x) := xm is an isomorphism. In particular, when m = 2

the surjectivity of the map φ2 implies that every element of U (i+vP(2)) is a perfect square.

Now, let i := max{vP(2) | P ∈ S} + 1. Then because i ≥ vP(2) + 1, every element of

U (i+vP(2)) is a perfect square. On the other hand, if e ∈ Z satisfies

e ≥ 2 max{vP(2) | P ∈ S}+ 1,

then e ≥ i+ vP(2). Since the higher unit groups form a decreasing filtration, it follows that

U (e) ⊆ U (i+vP(2)).

In particular, every element of U (e) is a perfect square. Finally, since α
×≡ 1 (mod Pe) implies

that α ∈ U (e), the proof is complete.

Lemma 3.7.4. For each prime ideal P of F , there exists an element αP ∈ OF such that FP(
√
αP)

is an unramified quadratic extension of FP.
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Proof. Up to isomorphism, there is a unique unramified quadratic extension of FP, and moreover,

it can be obtained by adjoining to FP a lifting of a primitive element for the unique quadratic

extension of the finite field

OP/POP

(see e.g. [Chi09, Theorem 1.2.2, p. 14] or [KKS11, Proposition 6.54]). Thus, let

f̂(x) := x2 + â1x+ â0 ∈ OP/POP[x]

be an irreducible quadratic polynomial. It is known that the homomorphism

φ : OF −→ OP/POP

α 7−→ α+ POP

has kernel P and is surjective (see e.g. [Neu99, Propositions II.4.3 and II.2.4] or [FT93, Theorem

11(c)]). Thus every coset of OP/POP has a representative in OF . Let a0, a1 ∈ OF be such that

â0 = a0 + POP and â1 = a1 + POP. Then define the polynomial

f(x) := x2 + a1x+ a0 ∈ OF [x] ⊂ FP[x].

It follows that f(x) is irreducible in FP[x], and moreover by the quadratic formula its roots have

the form

−a1 ±
√
a2

1 − 4a0

2
.

Hence by taking αP := a2
1−4a0 ∈ OF , we see that FP(

√
αP) is an unramified quadratic extension

of FP.

Proof of Proposition 3.7.1. Define the following disjoint sets of prime ideals of F .

T1 := (U1 ∪ {P ⊂ OF | P divides pm}) r {p},

T2 := (U2 ∪ {P ⊂ OF | P divides 2}) r (T1 ∪R ∪ {p}).
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Now, fix an integer e ∈ Z satisfying

e ≥ 2 max{vP(2) | P ∈ T1 ∪ T2}+ 1.

Then by Lemma 3.7.3, for any prime ideal P ∈ T1 ∪ T2, if α ∈ F× and α
×≡ 1 (mod Pe) then

FP(
√
α) = FP. Also, as in Lemma 3.7.4, for each prime ideal P ∈ T2, let αP ∈ OF be such that

FP(
√
αP) is an unramified quadratic extension of FP.

Let m∞ be the formal product of all the real infinite primes corresponding to the embeddings

in Hom(F,R). By an application of the Approximation Theorem (see e.g. [Jan96, pp. 137-139]),

there exists an element a ∈ F× satisfying the following congruences.

(1) a
×≡ −1 (mod m∞).

(2) a
×≡ 1 (mod Pe) for every P ∈ T1.

(3) a
×≡ αP (mod Pe) for every P ∈ T2.

Define the integral ideal

m0 :=
∏

P∈T1∪T2

Pe

and the modulus m := m0m∞. Let RF (m) be the ray class group modulo m. Observe that the

fractional ideal

n := ap−1
∏
r∈R

r−1 (3.21)

is relatively prime to m0. Then we can define the set of prime ideals

S(n) := {q ⊂ OF | q is a prime ideal and [q] = [n] inRF (m)}.

Also, define the set of prime ideals

SR,p := S(n) r (T1 ∪ T2 ∪R ∪ {p}).

To prove Proposition 3.7.1 (i), it is known that the set S(n) has natural density

d(S(n)) := lim
X→∞

#{q ∈ S(n) | NF/Q(q) ≤ X}
#{q ⊂ OF | q is a prime ideal with NF/Q(q) ≤ X}

=
1

#RF (m)
.
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Since the set T1 ∪ T2 ∪R ∪ {p} is finite, we also have

d(SR,p) =
1

#RF (m)
.

To prove Proposition 3.7.1 (ii), note that if q ∈ SR,p then q 6∈ T1 ∪ {p}, hence q is relatively

prime to pm.

To prove Proposition 3.7.1 (iii), let q ∈ SR,p. Since [q] = [n] inRF (m), there exists an element

bq ∈ F× such that

(4) bq
×≡ 1 (mod m) and q = bqn.

By (3.21) and (4) we have

q = abqp
−1
∏
r∈R

r−1.

Define ∆q := abq. Then

∆qOF = abqOF = pq
∏
r∈R

r. (3.22)

Note that this also proves that ∆q ∈ OF .

Finally, define the field Eq := F (
√

∆q). Then Proposition 3.7.1 (iv) is a consequence of the

following lemma.

Lemma 3.7.5. Let a ∈ F× be an element satisfying (1)−(3) and bq ∈ F× be an element satisfying

(4). Let ∆q := abq ∈ OF . Then the field Eq := F (
√

∆q) is a CM extension of F which satisfies

the following properties.

(i) Eq is ramified only at the prime ideals of F dividing ∆q.

(ii) Each prime ideal in U1 splits in Eq and each prime ideal in U2 is inert in Eq.

Proof. Since the prime ideals p, q and r ∈ R are all distinct, the identity (3.22) shows that ∆q is not

a perfect square in F . Also, by (1) and (4) we have ∆q = abq
×≡ −1 (mod m∞), or equivalently

∆q � 0. These facts imply that Eq is a totally imaginary quadratic extension of F , hence a CM

field.
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Now, since ∆q ∈ OF we have
√

∆q ∈ OEq . Then by (3.22) we have

pOEqqOEq

∏
r∈R

rOEq = ∆qOEq =
(√

∆qOEq

)2
.

This implies that each of the prime ideals of F dividing ∆q is ramified in Eq. Thus, to prove (i), it

remains to show that if P is a prime ideal of F not dividing ∆q, then P is unramified in Eq.

It is known that if K is a number field and α is a root of the polynomial

f(x) := x2 − β ∈ OK [x],

then any nonzero prime ideal P of K such that P does not divide 2β is unramified in L := K(α)

(see e.g. [KKS11, Example 6.40, p. 59]). Therefore if P is a prime ideal of F such that P does

not divide 2∆q, then P is unramified in Eq. Thus it suffices to prove that if P is a prime ideal of F

such that P divides 2 and P does not divide ∆q, then P is unramified in Eq.

By (3.22) we know that the prime ideals of F that divide ∆q are the primes in the setR∪{p, q}.

Therefore from the definitions of T1 and T2 we see that the set of prime ideals P of F such that P

divides 2 and P 6∈ R ∪ {p, q} is a subset of T1 ∪ T2. Hence, in the remainder of the proof we will

show that the prime ideals in T1 ∪ T2 are unramified in Eq. In fact, we will show that the prime

ideals in T1 split in Eq and the prime ideals in T2 remain inert in Eq. Since U1 ⊂ T1 and U2 ⊂ T2,

this will also complete the proof of (ii).

Thus let P ∈ T1 ∪ T2 and let Q be a prime ideal of Eq lying above P. Also, let P̂ and Q̂

denote the unique prime ideals in the completions FP and Eq,Q, respectively. It is known that the

ramification indices are the same, i.e., we have

e(Q|P) = e(Q̂|P̂).

We will show that e(Q|P) = e(Q̂|P̂) = 1.

The minimal polynomial of the primitive element
√

∆q of Eq over F is

m∆q(x) := x2 −∆q ∈ OF [x].

It is known that the primes of Eq lying above P are in one to one correspondence with the irre-

ducible factors of m∆q(x) when considered as a polynomial in FP[x] and moreover, if Q corre-
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sponds to an irreducible factor mi(x), then the completion of Eq at Q satisfies

Eq,Q
∼=

FP[x]

〈mi(x)〉

(see for example [Jan96, Theorem II.6.1, p. 115]).

We have two cases to consider.

Case 1: P ∈ T1. In this case the congruences (2) and (4) satisfied by a and bq imply that

∆q = abq
×≡ 1 (mod Pe). Hence by Lemma 3.7.3 we conclude that FP(

√
∆q) = FP. This

implies that there is an element c ∈ FP such that ∆q = c2. Therefore the polynomial m∆q(x)

factors as

m∆q(x) = x2 − c2 = (x− c)(x+ c)

in FP[x]. Since the prime ideals of Eq lying over P are in one to one correspondence with the

irreducible factors x − c and x + c, and since Eq/F is a quadratic extension, we see that P splits

in Eq, so that e(Q|P) = 1.

Case 2: P ∈ T2. In this case the congruences (3) and (4) satisfied by a and bq imply that

∆q = abq
×≡ αP (mod Pe), or equivalently,

∆q

αP

×≡ 1 (mod Pe).

Hence by Lemma 3.7.3, we have ∆q = c2αP for some c ∈ F×P , which implies that

FP(
√

∆q) = FP(
√
αP).

On the other hand, by Lemma 3.7.4 we have that FP(
√
αP) is an unramified quadratic extension

of FP. It follows that m∆q(x) is irreducible in FP[x]. Thus Q is the only prime ideal of Eq lying

above P and it corresponds to m∆q(x) = x2 −∆q. Therefore we have

Eq,Q
∼=

FP[x]

〈m∆q(x)〉
∼= FP(

√
∆q).

This implies that Eq,Q is an unramified quadratic extension of FP, hence e(Q̂|P̂) = 1. Therefore

e(Q|P) = 1, and in particular P remains inert in Eq.

This completes the proof of Proposition 3.7.1.
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3.7.3 Constructing non-abelian CM fields with reflex fields of maximal degree

In the following theorem we prove that if E/F is a CM extension satisfying a certain mild

ramification condition, then the reflex fields EΦ have maximal degree, and moreover, if n ≥ 3 then

E/Q is non-Galois.

Theorem 3.7.6. Let F be a totally real number field of degree n. Let p ∈ Z be a prime number

that splits in the Galois closure F s and let p be a prime ideal of F lying above p. Let dF s be the

discriminant of F s and L be a finite set of prime ideals of F not dividing pdF s . Then if E/F is a

CM extension which is ramified only at the prime ideals of F in the set L ∪ {p}, the reflex degree

[EΦ : Q] = 2n for every CM type Φ ∈ Φ(E). Moreover, if n ≥ 3 then E/Q is non-Galois (hence

non-abelian).

We will prove Theorem 3.7.6 using a sequence of five lemmas which are now proved in suc-

cession.

Lemma 3.7.7. Let F be a totally real number field of degree n. Let E/F be a CM extension and

Φ = {σ1, . . . , σn} ∈ Φ(E) be a CM type for E. Let EΦ be the reflex field of the CM pair (E,Φ).

Then

EΦF
s = Eσ1 · · ·Eσn = Es.

Proof. We first prove that

Eσ1 · · ·Eσn ⊆ EΦF
s.

It suffices to show that σj(c) ∈ EΦF
s for all c ∈ E and j = 1, . . . , n. Let α1, . . . , αn be an

integral basis for F . By Proposition 3.6.1 (ii), the reflex field of the CM pair (E,Φ) is given by

EΦ = Q ({TrΦ(a) | a ∈ E}) ,

where TrΦ(a) =
n∑
j=1

σj(a). Then for all c ∈ E and i = 1, . . . , n, we have

TrΦ(cαi) =

n∑
j=1

σj(cαi) =

n∑
j=1

σj(αi)σj(c) ∈ EΦ.
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In particular, there are elements βi ∈ EΦ such that
n∑
j=1

σj(αi)σj(c) = βi

for i = 1, . . . , n. This yields the linear system

σ1(α1) σ2(α1) · · · σn(α1)

σ1(α2) σ2(α2) · · · σn(α2)

...
...

. . .
...

σ1(αn) σ2(αn) · · · σn(αn)





σ1(c)

σ2(c)

...

σn(c)


=



β1

β2

...

βn


.

The matrix [σj(αi)] ∈ Mn×n(F s), and it is invertible since det [σj(αi)]
2 = dF 6= 0. It follows

from Cramer’s rule that

σj(c) =

det


σ1(α1) · · · σj−1(α1) β1 σj+1(α1) · · · σn(α1)

...
...

...
...

...

σ1(αn) · · · σj−1(αn) βn σj+1(αn) · · · σn(αn)



det


σ1(α1) · · · σn(α1)

...
. . .

...

σ1(αn) · · · σn(αn)


(3.23)

for j = 1, . . . , n. Since σj(αi) ∈ F s and βi ∈ EΦ for i, j = 1, . . . , n, the denominator in (3.23)

is in F s and the numerator is in EΦF
s. Therefore, σj(c) ∈ EΦF

s for all c ∈ E and j = 1, . . . , n,

which implies that

Eσ1 · · ·Eσn ⊆ EΦF
s.

On the other hand, since the compositum of all the conjugate fields of a number field is equal to

its Galois closure, and since complex conjugation is an automorphism of E that commutes with

every embedding (see [Shi94, Proposition 5.11]), we have Eσ1 · · ·Eσn = Es. Therefore, since

EΦF
s ⊆ Es, we conclude that

EΦF
s = Eσ1 · · ·Eσn = Es.
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Lemma 3.7.8. Let F be a totally real number field of degree n. Let p ∈ Z be a prime number that

splits in the Galois closure F s and let p be a prime ideal of F lying above p. Let E/F be a CM ex-

tension and Φ = {σ1, . . . , σn} ∈ Φ(E) be a CM type for E. Then the ideals pσ1OF s , . . . , pσnOF s

are pairwise relatively prime.

Proof. Suppose that P is a prime of F s lying above p. Thus P also lies above p ∈ Z. Since F s/Q

is Galois, we have

pOF s =
∏

σ∈Gal(F s/Q)

σ(P). (3.24)

Moreover, since p splits in F s, then σ(P) 6= τ(P) for any σ, τ ∈ Gal(F s/Q) with σ 6= τ .

Now, let Gi := Gal(F s/F σi) for i = 1, . . . , n. For each i = 1, . . . , n we have that pσi is a

prime ideal of F σi lying above p. Hence pσi also splits in F s. Let σ̃i ∈ Gal(F s/Q) be an extension

of the embedding σi|F : F ↪→ F s, i.e. σ̃i|F = σi|F . It follows that σ̃i(P) lies above pσi , and since

the extension F s/F σi is Galois, we have

pσiOF s =
∏
σ∈Gi

σ(σ̃i(P)) =
∏

τ∈Giσ̃i

τ(P).

Since Giσ̃i ⊆ Gal(F s/Q) for i = 1, . . . , n and σ(P) 6= τ(P) for any σ, τ ∈ Gal(F s/Q) with

σ 6= τ , it suffices to prove that Giσ̃i ∩Gj σ̃j = ∅ for i 6= j.

Suppose by contradiction that there exists an element σ ∈ Giσ̃i ∩ Gj σ̃j for i 6= j. Then there

are elements τi ∈ Gi and τj ∈ Gj such that σ = τiσ̃i and σ = τj σ̃j . Since {σ1, . . . , σn} is a CM

type for E, then Hom(F,Q) = {σ1|F , . . . , σn|F } and therefore the embeddings σi|F and σj |F are

different. Hence there is an element x ∈ F such that σi(x) 6= σj(x). Since σi(x) ∈ F σi and

τi|Fσi = idFσi , it follows that

σi(x) = σ̃i(x) = τi(σ̃i(x)) = τj(σ̃j(x)) = σ̃j(x) = σj(x),

which is a contradiction. Thus for i 6= j, we have Giσ̃i ∩Gj σ̃j = ∅, which shows that the ideals

pσiOsF and pσiOsF are relatively prime.

For an extension of number fields L/K, let D(L/K) be the relative different, which is an

integral ideal of L.
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Lemma 3.7.9. Let F be a totally real number field. Let p ∈ Z be a prime number that splits in

the Galois closure F s and let p be a prime ideal of F lying above p. Let L be a finite set of prime

ideals of F not dividing pdF s . Let E/F be a CM extension which is ramified only at the prime

ideals of F in the set L ∪ {p}. Then

D(EF s/F s) = D(E/F )OEF s .

Proof. We have the following towers of fields.

EF s

F s E

F

Since the relative different is multiplicative in towers, we have the identity

D(EF s/F s)D(F s/F ) = D(EF s/E)D(E/F ). (3.25)

We will prove that D(EF s/F s) and D(EF s/E) are relatively prime, and that D(F s/F ) and

D(E/F ) are relatively prime as ideals in OEF s . Then (3.25) would imply that

D(EF s/F s) = D(E/F )OEF s . (3.26)

First, we prove that D(F s/F ) and D(E/F ) are relatively prime as ideals inOEF s . To see this,

suppose by contradiction that there is a prime ideal PEF s of OEF s such that

PEF s |D(F s/F )OEF s and PEF s |D(E/F )OEF s .

Define the prime ideals PF := PEF s ∩OF , PF s := PEF s ∩OF s and PE := PEF s ∩OE . Then

PF s is a prime in F s that divides D(F s/F ) and hence PF = PF s ∩OF ramifies in the extension

F s/F . Similarly, PE is a prime ideal of E that divides D(E/F ) and hence PF = PE ∩ OF

ramifies in the extension E/F .

Now, since the only primes of F that ramify in E are the primes in the set L ∪ {p}, it follows

that PF = p or PF = l for some l ∈ L. We will see now that each of these two possibilities leads

to a contradiction. If PF = p, then p would be ramified in F s. But this would contradict the fact
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that p splits in F s, since p lies above p. On the other hand, if PF = l for some l ∈ L, then l would

be ramified in F s. Hence the rational prime ` such that `Z = l∩Z would be ramified in F s, which

implies that ` divides dF s and hence that l divides dF s . However, this is a contradiction since we

assumed that the prime ideals in the set L do not divide pdF s . Thus D(F s/F ) and D(E/F ) are

relatively prime as ideals in OEF s , as claimed.

Next, we prove that D(EF s/F s) and D(EF s/E) are relatively prime. By [Rib01, Section

13.2, U. (1), p. 253], we have that D(EF s/F s) divides D(E/F )OEF s and D(EF s/E) divides

D(F s/F )OEF s . Since we proved that the ideals D(E/F )OEF s and D(F s/F )OEF s are relatively

prime, it follows that D(EF s/F s) and D(EF s/E) are relatively prime. This completes the proof

of the lemma.

For an extension of number fields L/K, let d(L/K) be the relative discriminant, which is an

integral ideal of K.

Lemma 3.7.10. Let F be a totally real number field of degree n. Let p ∈ Z be a prime number

that splits in the Galois closure F s and let p be a prime ideal of F lying above p. Let L be a finite

set of prime ideals of F not dividing pdF s . Let E/F be a CM extension which is ramified only at

the prime ideals of F in the set L∪ {p}. Let Φ = {σ1, . . . , σn} ∈ Φ(E) be a CM type for E. Then

the relative discriminant d(EσiF s/F s) is divisible by pσiOF s , but relatively prime to pσjOF s for

j 6= i.

Proof. We first prove the following claim.

Claim. The relative different D(E/F )OEF s is divisible by the primes of EF s lying above the

primes in the set L ∪ {p}, and by no other primes of EF s.

Proof of the Claim. Since the primes in the set L∪{p} are the only primes of F which ramify

in E, we have

d(E/F ) = pap
∏
l∈L

lal

for some positive integers ap and al for l ∈ L. Moreover, since E/F is quadratic, there is a prime
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ideal P of E such that pOE = P2 and a set of prime ideals {Pl | l ∈ L} of E such that lOE = P2
l

for each l ∈ L. Therefore, the relative different factors as

D(E/F ) = PuP
∏
l∈L

Pul
l

for some positive integers uP and ul for l ∈ L. By extending the relative different to EF s,

we see that D(E/F )OEF s is divisible by the primes of EF s lying above the primes in the set

{P} ∪ {Pl | l ∈ L}, and by no other primes of EF s. It follows that D(E/F )OEF s is divisible by

the primes of EF s lying above the primes in the set L∪{p}, and by no other primes of EF s. This

completes the proof of the claim.

Now, since p splits in F s, then p splits in F s. Hence

pOF s = p1 · · · pg, (3.27)

where g = [F s : F ] and the pk are distinct prime ideals of F s. For k = 1, . . . , g, we have

pkOEF s =

ak∏
t=1

P
bk,t
k,t

for distinct prime ideals Pk,t of EF s and some positive integers ak and bk,t. Thus

pOEF s =

g∏
k=1

ak∏
t=1

P
bk,t
k,t .

The prime ideals Pk,t are the primes of EF s lying above p. Hence by the Claim, we see that Pk,t

divides D(E/F )OEF s . However, by Lemma 3.7.9,

D(EF s/F s) = D(E/F )OEF s , (3.28)

hence Pk,t divides D(EF s/F s). It follows that pk = Pk,t ∩ OF s divides d(EF s/F s) for k =

1, . . . , g.

Similarly, for a prime ideal l ∈ L, starting with the factorization

lOF s = P
r(l,1)
l,1 · · ·Pr(l,gl)

l,gl

for distinct prime ideals Pl,k of F s and some positive integers r(l, k) for k = 1, . . . , gl, an analo-

gous argument shows that Pl,k divides d(EF s/F s) for k = 1, . . . , gl.
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By the Claim and the identity (3.28), the primes of EF s lying above the primes in the set

{pk | k = 1, . . . , g} ∪
⋃
l∈L
{Pl,k | k = 1, . . . , gl}

are the only primes of EF s which divide D(EF s/F s). Hence, the relative discriminant factors as

d(EF s/F s) = pc11 · · · p
cg
g

∏
l∈L

gl∏
k=1

P
d(l,k)
l,k (3.29)

for some positive integers c1, . . . , cg and d(l, k) for l ∈ L and k = 1, . . . , gl.

Now, for each embedding σi ∈ Φ, let σ̃i be an extension of σi to EF s. Then since F s/Q is

Galois, we have σ̃i(F s) = F s, and therefore conjugating by σ̃i in equation (3.29) yields

d(EσiF s/F s) = σ̃i(p1)c1 · · · σ̃i(pg)cg
∏
l∈L

gl∏
k=1

σ̃i (Pl,k)
d(l,k) . (3.30)

It follows from (3.27) and (3.30) that

pσiOF s = σ̃i(p1) · · · σ̃i(pg) (3.31)

divides d(EσiF s/F s). This proves the first part of the lemma.

It remains to prove that pσjOF s is relatively prime to d(EσiF s/F s) for j 6= i. By Lemma

3.7.8, the ideal pσjOF s is relatively prime to pσiOF s for j 6= i, and hence relatively prime to

σ̃i(p1)c1 · · · σ̃i(pg)cg by equation (3.31). Thus, by (3.30) it suffices to prove that pσjOF s is rela-

tively prime to σ̃i (Pl,k) for each l ∈ L and k = 1, . . . , gl. To see this, recall that the prime ideal

l does not divide pdF s , hence l lies above a rational prime ` ∈ Z with ` 6= p. Since σ̃i (Pl,k) lies

above `, and each of the prime factors of pσjOF s lies above p, it follows that pσjOF s must be

relatively prime to σ̃i (Pl,k). This proves the second part of the lemma.

Lemma 3.7.11. Let F be a totally real number field of degree n. Let p ∈ Z be a prime number

that splits in the Galois closure F s and let p be a prime ideal of F lying above p. Let L be a finite

set of prime ideals of F not dividing pdF s . Let E/F be a CM extension which is ramified only at

the prime ideals of F in the set L ∪ {p}. Let Φ = {σ1, . . . , σn} ∈ Φ(E) be a CM type for E and

EΦ be the reflex field of the CM pair (E,Φ). Then [EΦF
s : F s] = 2n and [Es : Q] = 2n[F s : Q].

Proof. By Lemma 3.7.7 we have EΦF
s = Eσ1 · · ·EσnF s = Es. Hence, to prove that [EΦF

s :
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F s] = 2n, we will show that in the tower of extensions

F s ⊆ Eσ1F s ⊆ Eσ1Eσ2F s ⊆ · · · ⊆ Eσ1 · · ·EσnF s,

each successive extension
Eσ1 · · ·Eσi−1EσiF s

Eσ1 · · ·Eσi−1F s

is quadratic. First, observe that there is an element ∆ ∈ OF with ∆ � 0 and E = F (
√

∆).

Therefore EσiF s = F s(
√
σi(∆)), and hence for each i = 1, . . . , n we have

Eσ1 · · ·EσiF s = F s(
√
σ1(∆), . . . ,

√
σi(∆)).

This implies that

[Eσ1 · · ·Eσi−1EσiF s : Eσ1 · · ·Eσi−1F s] ≤ 2.

Now, for each i = 1, . . . , n, let pi be a prime ideal of F s dividing the ideal pσiOF s . Then for

i 6= j, Lemma 3.7.8 implies that pi 6= pj , and moreover, by Lemma 3.7.10, the relative discriminant

d(EσiF s/F s) is divisible by pi, but not by pj . This implies that pi is ramified in EσiF s, but pj is

unramified in EσiF s.

By the preceding paragraph, for each i = 1, . . . , n, the prime ideal pi is unramified in the

extensions Eσ1F s, . . . , Eσi−1F s. Now, it is known that if a prime ideal of a number field M is

unramified in the extensions K/M and L/M , then it is unramified in their compositum KL/M

(see e.g [Koc00, Proposition 4.9.2]). Therefore, it follows that pi is unramified in the composi-

tum Eσ1 · · ·Eσi−1F s. On the other hand, since pi is ramified in EσiF s/F s, it is ramified in

Eσ1 · · ·Eσi−1EσiF s/F s.

Let P be a ramified prime ideal of Eσ1 · · ·Eσi−1EσiF s lying above pi. Then Q := P ∩

OEσ1 ···Eσi−1F s is an unramified prime ideal of Eσ1 · · ·Eσi−1F s lying above pi. In terms of ramifi-

cation indices, we have e(P|pi) ≥ 2 and e(Q|pi) = 1. Then by multiplicativity of the ramification

index, we have

e(P|pi) = e(P|Q)e(Q|pi) = e(P|Q).
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Hence

[Eσ1 · · ·Eσi−1EσiF s : Eσ1 · · ·Eσi−1F s] ≥ e(P|Q) = e(P|pi) ≥ 2.

We conclude that

[Eσ1 · · ·Eσi−1EσiF s : Eσ1 · · ·Eσi−1F s] = 2.

This completes the proof that [EΦF
s : F s] = 2n.

Finally, since Es = EΦF
s and [EΦF

s : F s] = 2n, it follows that

[Es : Q] = [Es : F s][F s : Q] = 2n[F s : Q].

Proof of Theorem 3.7.6. We have the following towers of fields.

EΦF
s

EΦ F s

Q

Therefore,

[EΦF
s : EΦ][EΦ : Q] = [EΦF

s : F s][F s : Q],

hence by Lemma 3.7.11 we have

[EΦ : Q] = 2n
[F s : Q]

[EΦF s : EΦ]
.

Now, it is known that if K/M is a finite Galois extension and L/M is an arbitrary extension, then

[KL : L] divides [K : M ] (see e.g. [Lan02, Corollary VI.1.13]). Since F s/Q is Galois, we have

that [EΦF
s : EΦ] divides [F s : Q]. This implies that [EΦ : Q] ≥ 2n. On the other hand, by

Proposition 3.6.3, we also know that [EΦ : Q] ≤ 2n, thus we conclude that [EΦ : Q] = 2n, as

desired.

Finally, since Q ⊆ EΦ ⊆ Es, it follows that [EΦ : Q] = 2n divides [Es : Q]. Then if n ≥ 3
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we have [Es : Q] ≥ 2n > 2n = [E : Q], which proves that the field extension E/Q is non-Galois,

therefore non-abelian.

Remark 3.7.12. Let E/F be a CM extension as in Lemma 3.7.11. Then since [Es : Q] = 2n[F s :

Q], the CM field E is a Weyl CM field if and only if [F s : Q] = n!.

3.7.4 Algorithm for constructing CM fields with reflex fields of maximal degree

By combining (the proof of) Proposition 3.7.1 with the choice m = dF s and Theorem 3.7.6

with the choice L = R ∪ {q}, we obtain the following algorithm for constructing infinite families

of CM extensions which are non-Galois over Q and have reflex fields of maximal degree.
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Algorithm 1 CM fields with reflex fields of maximal degree

1: Input: A tuple (F, p, p,R,U1,U2) consisting of a totally real number field F of degree n, a

rational prime p ∈ Z that splits in F s, a prime ideal p of F lying above p, a finite set R of

prime ideals of F not dividing pdF s , and finite sets U1 and U2 of prime ideals of F not dividing

2pdF s such thatR, U1 and U2 are pairwise disjoint.

2: Output: A pair (q,∆q) where q is a prime ideal of F not dividing pdF s , and ∆q is an element

of OF with prime factorization

∆qOF = pq
∏
r∈R

r.

The field Eq := F (
√

∆q) is a CM extension of F ramified only at the prime ideals of F

dividing ∆q with reflex fields of maximal degree 2n. Moreover, each prime ideal in U1 splits

in Eq and each prime ideal in U2 remains inert in Eq. If n ≥ 3 then Eq/Q is non-Galois.

3: Set T1 := (U1 ∪ {P ⊂ OF | P divides pdF s}) r {p}.

4: Set T2 := (U2 ∪ {P ⊂ OF | P divides 2}) r (T1 ∪R ∪ {p}).

5: Choose an integer e ∈ Z satisfying e ≥ 2 max{vP(2) | P ∈ T1 ∪ T2}+ 1.

6: Set m∞ to be the formal product of all the embeddings in Hom(F,R).

7: Set

m0 :=
∏

P∈T1∪T2

Pe

and m := m0m∞.

8: For each P ∈ T2 find an element αP ∈ OF such that FP(
√
αP) is an unramified quadratic

extension of FP.

9: Find an element a ∈ F× satisfying the following congruences.

(i) a
×≡ −1 (mod m∞).

(ii) a
×≡ 1 (mod Pe) for every P ∈ T1.

(iii) a
×≡ αP (mod Pe) for every P ∈ T2.
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10: Set

n := ap−1
∏
r∈R

r−1.

11: Choose a prime ideal q ⊂ OF lying in the ray class of n modulo m such that q 6∈ T1 ∪ T2 ∪

R ∪ {p}.

12: Find an element bq ∈ F× such that bq
×≡ 1 (mod m) and q = bqn.

13: Set ∆q := abq.

14: Return: (q,∆q).

Remark 3.7.13. For steps 5 and 8 in the algorithm, see Lemmas 3.7.3 and 3.7.4, respectively.

Remark 3.7.14. The congruences in steps 9 and 11 of the algorithm are chosen to force the given

prime ideal P ∈ T1 ∪ T2 to be unramified in the extension Eq. In fact, as was shown in the proof

of Lemma 3.7.5, the congruence 9 (ii) forces P to split in Eq, while the congruence 9 (iii) forces

P to remain inert in Eq.

Remark 3.7.15. Recall from the proof of Proposition 3.7.1 that

SR,p := S(n) r (T1 ∪ T2 ∪R ∪ {p}),

where

S(n) := {q ⊂ OF | q is a prime ideal and [q] = [n] inRF (m)}.

Also, as was shown in the proof of Proposition 3.7.1, the set SR,p has natural density d(SR,p) =

1/#RF (m).

3.8 Proof of Theorem A

Let F be a totally real number field of degree n ≥ 3. Let p ∈ Z be a prime number which

splits in the Galois closure F s and let p be a prime ideal of F lying above p. Let R be a finite

set of prime ideals of F not dividing pdF s . Let U1 and U2 be finite sets of prime ideals of F not
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dividing 2pdF s such that R,U1 and U2 are pairwise disjoint. Then by Proposition 3.7.1 with the

choice m = dF s , there is a set SR,p of prime ideals of F which is disjoint fromR∪U1 ∪U2 ∪ {p}

such that the following statements are true.

(i) SR,p has positive natural density.

(ii) Each prime ideal q ∈ SR,p is relatively prime to pdF s .

(iii) For each prime ideal q ∈ SR,p, there is an element ∆q ∈ OF with prime factorization

∆qOF = pq
∏
r∈R

r.

(iv) The field Eq := F (
√

∆q) is a CM extension of F which is ramified only at the prime ideals

of F dividing ∆q. Moreover, each prime ideal in U1 splits in Eq and each prime ideal in U2

is inert in Eq.

It follows from Theorem 3.7.6 with the choice L = R∪{q} that for each prime ideal q ∈ SR,p, the

degree of the reflex field Eq,Φ is [Eq,Φ : Q] = 2n for every CM type Φ ∈ Φ(Eq), and moreover,

since n ≥ 3 then Eq/Q is non-Galois.

Now, by Proposition 3.5.1 and Corollary 3.6.4, if E is a CM field and there exists a CM type

Φ ∈ Φ(E) such that the degree of the reflex field EΦ is [EΦ : Q] = 2n, then Conjecture 3.3.1

is true for E. It then follows from the previous paragraph that for each prime ideal q ∈ SR,p,

Conjecture 3.3.1 is true for Eq.

3.9 Weyl CM fields and the proof of Theorem B

Let E = Q(α) be a CM field of degree 2g. Let mα(X) be the minimal polynomial of α and

denote its roots by α1 = α, α1, . . . , αg, αg. Let

a2`−1 := α` and a2` := α` (3.32)

for ` = 1, . . . , g. Then Es = Q(a1, . . . , a2g) is the Galois closure of E. Let S2g be the symmetric

group on the elements {a1, . . . , a2g} and W2g be the subgroup of S2g consisting of permutations

which map any pair of the form {a2j−1, a2j} to a pair {a2k−1, a2k}. The group W2g is called the
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Weyl group. It can be shown that #W2g = 2gg! and that W2g fits in the exact sequence

1 −→ (Z/2Z)g −→W2g −→ Sg −→ 1.

Proposition 3.9.1. The Galois group Gal(Es/Q) is isomorphic to a subgroup of W2g.

Proof. There is an injective group homomorphism φ : Gal(Es/Q) −→ S2g given by restriction

σ 7−→ σ|{a1,...,a2g}. Hence Gal(Es/Q) ∼= φ(Gal(Es/Q)) < S2g, so it suffices to prove that

φ(Gal(Es/Q)) ⊆ W2g, or equivalently, that given σ ∈ Gal(Es/Q) and a pair {a2j−1, a2j}, we

have σ({a2j−1, a2j}) = {a2k−1, a2k}. Since σ permutes the elements {a1, . . . , a2g}, we have

σ(a2j−1) = a2k−1 or σ(a2j−1) = a2k for some k. Now, since E is a CM field, given any b ∈ E,

we have σ(b) = σ(b) for all σ ∈ Gal(Es/Q). Moreover, from (3.32), we have a2`−1 = a2` and

a2` = a2`−1. Combining these facts yields

σ(a2j) = σ(a2j−1) = a2k−1 = a2k or σ(a2j) = σ(a2j−1) = a2k = a2k−1.

This completes the proof.

Definition 3.9.2. If E is a CM field such that Gal(Es/Q) ∼= W2g, then E is called a Weyl CM

field.

Observe that if g ≥ 2 and E is a Weyl CM field of degree 2g, then E/Q is non-Galois since

#Gal(Es/Q) = 2gg! > 2g = [E : Q]. In particular, any Weyl CM field of degree 2g ≥ 4 is

non-abelian.

Proof of Theorem B. Let E be a Weyl CM field. Then by Proposition 3.5.1 and Corollary

3.6.4, it suffices to prove that there exists a CM type Φ forE such that the reflex fieldEΦ has degree

[EΦ : Q] = 2g. For i = 1, . . . , g let τi : E ↪→ C be the embedding defined by τi(α1) = αi, where

α1 = α. Then Hom(E,C) = {τ1, τ1, . . . , τg, τg}. Note that τi(a1) = a2i−1 for i = 1, . . . , g. Fix

the choice of CM type Φ = {τ1, . . . , τg}. We will prove that [EΦ : Q] = 2g.

Since E is a Weyl CM field, we have Gal(Es/Q) ∼= W2g, and thus #Gal(Es/Q) = 2gg!.

Moreover, the calculations in the proof of Lemma 3.6.3 yield

[EΦ : Q] =
# Gal(Es/Q)

# StabGal(Es/Q)(Φ)
=

2gg!

# StabGal(Es/Q)(Φ)
.
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Hence it suffices to prove that # StabGal(Es/Q)(Φ) = g!.

Let Sodd
2g be the symmetric group on the odd-indexed elements {a1, a3, . . . , a2g−1}. Then

σ ∈ StabGal(Es/Q)(Φ) ⇐⇒ σΦ = Φ

⇐⇒ for all i, there exists a j such that στi(a1) = τj(a1)

⇐⇒ for all i, there exists a j such that σ(a2i−1) = a2j−1

⇐⇒ σ|{a1,a3,...,a2g−1} ∈ S
odd
2g .

Thus we have a map φ̃ : StabGal(Es/Q)(Φ) −→ Sodd
2g given by restriction

σ 7−→ σ|{a1,a3,...,a2g−1}.

We will prove that φ̃ is bijective.

Surjectivity: Let π ∈ Sodd
2g . Then for all i, there exists a j such that π(a2i−1) = a2j−1. There

is a unique lift π̃ of π to W2g given by π̃(a2i−1) = a2j−1 and π̃(a2i) = a2j . Since E is a Weyl CM

field, we have an isomorphism Gal(Es/Q) ∼= φ(Gal(Es/Q)) = W2g, where φ is the restriction

map σ 7−→ σ|{a1,...,a2g} in the proof of Proposition 3.9.1. Hence there exists a unique element

σ ∈ Gal(Es/Q) such that φ(σ) = π̃. Observe that

σ|{a1,a3,...,a2g−1} = π̃|{a1,a3,...,a2g−1} = π ∈ Sodd
2g .

It follows that σ ∈ StabGal(Es/Q)(Φ) with φ̃(σ) = π. This proves that φ̃ is surjective.

Injectivity: Let σ1, σ2 ∈ StabGal(Es/Q)(Φ) with φ̃(σ1) = φ̃(σ2). Then

σ1|{a1,a3,...,a2g−1} = σ2|{a1,a3,...,a2g−1},

i.e., σ1(a2i−1) = σ2(a2i−1) for i = 1, . . . , g. On the other hand, arguing as in the proof of

Proposition 3.9.1, we have

σ1(a2i) = σ1(a2i−1) = σ1(a2i−1) = σ2(a2i−1) = σ2(a2i−1) = σ2(a2i)

for i = 1, . . . , g. Thus, σ1 = σ2. This proves that φ̃ is injective.

Since φ̃ is bijective, we have # StabGal(Es/Q)(Φ) = #Sodd
2g = g!. This completes the proof.
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3.10 Proof of Theorem 3.1.8

As mentioned in Remark 3.1.3, if E is a quartic CM field then the only possible Galois groups

of its Galois closure are C4 := Z/4Z, V4 := Z/2Z × Z/2Z and D4. Moreover, the Weyl group

W4
∼= D4. It is known that if a quartic number field K has Galois group Gal(Ks/Q) ∼= C4 or V4,

thenK contains a unique real quadratic subfield. Hence for the signature (0, 2) (which corresponds

to the quartic totally complex case) we have

CM4(C4, X) = N0,2(C4, X) and CM4(V4, X) = N0,2(V4, X). (3.33)

When Gal(Ks/Q) ∼= D4, then K can either contain a real quadratic subfield or an imaginary

quadratic subfield. Thus in that case one can define a refined counting functionN+
0,2(D4, X) which

counts only isomorphism classes of quartic number fields K/Q with signature (0, 2) containing a

real quadratic subfield, and such that Gal(Ks/Q) ∼= D4 and |dK | ≤ X (see [CDO02]). With this

notation we then have

CM4(W4, X) = CM4(D4, X) = N+
0,2(D4, X). (3.34)

By Cohen, Diaz y Diaz and Olivier [CDO05, Corollary 4.5 (2), p. 501] (which refines earlier

work of Baily [Bai80] and Mäki [Mäk85]) we have

N0,2(C4, X) = c(C4)X
1
2 +O(X

1
3

+ε), (3.35)

for some explicit positive constant c(C4) and any ε > 0. Similarly, in [CDO06, p. 582] we find the

asymptotic formula

N0,2(V4, X) = c(V4)X
1
2 log2X +O(X

1
2 logX), (3.36)

for some explicit positive constant c(V4). Finally, in [CDO02, Proposition 6.2, p. 88] we find the

asymptotic formula

N+
0,2(D4, X) = c(D4)+X +O(X

3
4

+ε), (3.37)

where again c(D4)+ is an explicit positive constant.
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Since

CM4(X) = CM4(D4, X) + CM4(C4, X) + CM4(V4, X),

it follows from equations (3.33)–(3.37) that

CM4(X) = c(D4)+X +O(X
3
4

+ε).

Finally, since this is the same asymptotic formula satisfied by the counting function CM4(W4, X),

we conclude that the density of quartic Weyl CM fields is

ρWeyl(4) = lim
X→∞

CM4(W4, X)

CM4(X)
= 1.

3.11 Abelian varieties over finite fields, Weil q-numbers, and density results

We first review some facts concerning Weil q-numbers and abelian varieties over finite fields.

3.11.1 Weil q-numbers and abelian varieties over Fq

Let q = pn where p is a prime number and n is a positive integer. A Weil q-number is an

algebraic integer π such that for every embedding σ : Q(π) ↪→ C we have |σ(π)| = q1/2. Let

W (q) denote the set of Weil q-numbers. Two Weil q-numbers π1 and π2 are conjugate if there

exists an isomorphism Q(π1)→ Q(π2) which maps π1 to π2. In this case, we write π1 ∼ π2.

We have the following facts about Weil q-numbers (see e.g. [GO88, p. 1 and Corollary 2.1]).

Lemma 3.11.1. Let q = pn and π ∈W (q).

(i) If σ(π) ∈ R for some embedding σ : Q(π) ↪→ C, then Q(π) = Q if n is even and Q(π) =

Q(
√
p) if n is odd.

(ii) If σ(π) ∈ C r R for all embeddings σ : Q(π) ↪→ C, then Q(π) is a CM field with maximal

totally real subfield Q(π + q/π).

Let Fq be a finite field of characteristic p with q = pn elements. Let A/Fq be an abelian variety

of dimension g defined over Fq and let πA ∈ End(A) be the Frobenius endomorphism ofA. Let fA

be the characteristic polynomial of A, which is a monic polynomial of degree 2g with coefficients
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in Z. Let Q[πA] be the Q-subalgebra of End(A)⊗Z Q generated by πA. It is known that Q[πA] is

a field if and only if A/Fq is simple.

Weil proved that the roots of fA are Weil q-numbers. Moreover, if A/Fq is simple, then the

image of πA under any homomorphism φ : Q[πA] → C is a Weil q-number. Any such homo-

morphism φ maps πA to a root αA of fA. From here forward, we identify πA with φ(πA) for

some choice of φ. This choice does not matter, since we will only consider Weil q-numbers up to

conjugacy.

If A/Fq and B/Fq are isogenous simple abelian varieties, then fA = fB . In particular, πA ∼

πB . This gives a well-defined map A 7→ πA between the set of isogeny classes of simple abelian

varieties A/Fq and Weil q-numbers up to conjugacy. A celebrated theorem of Honda and Tate (see

e.g. [Tat71]) asserts that this map is a bijection.

3.11.2 Density results and the proof of Theorem 3.1.10

Let A/Fq be an abelian variety and αA be a root of fA. Let KfA = Q(αA)s be the splitting

field of fA and GfA = Gal(KfA/Q). Define the sets

Ag(q) := {isogeny classes of abelian varieties A/Fq with dim(A) = g},

Bg(q) := {isogeny classes of abelian varieties A/Fq with dim(A) = g and GfA ∼= W2g}.

Kowalski [Kow06, Proposition 8] proved the following density result.

Theorem 3.11.2. With notation as above, one has

lim
n→∞

#Bg(pn)

#Ag(pn)
= 1.

On the other hand, we have the following result.

Proposition 3.11.3. Let A/Fq be an abelian variety of dimension g ≥ 2. If GfA ∼= W2g, then

Q(αA) is a non-Galois Weyl CM field of degree 2g.

Proof. Let m := [Q(αA) : Q]. Since αA is a root of fA and fA ∈ Z[x] is monic of degree 2g,

then αA is an algebraic integer of degree m where m|2g. Suppose by contradiction that m < 2g.
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Since m is a proper divisor of 2g, we have m ≤ g. Hence the Galois closure KfA = Q(αA)s has

degree [KfA : Q] ≤ m! ≤ g!. However, #W2g = 2gg!, which contradicts the assumption that

GfA
∼= W2g. Thus m = 2g ≥ 4, hence it follows from Lemma 3.11.1 that Q(αA) is a CM field.

Finally, since 2g ≥ 4, we conclude that Q(αA) is a non-Galois Weyl CM field of degree 2g.

Proof of Theorem 3.1.10. By Theorem 3.11.2 and Proposition 3.11.3, if g ≥ 2 then the

proportion of isogeny classes [A] ∈ Ag(p
n) for which Q(αA) is a non-Galois Weyl CM field

approaches 1 as n→∞. Theorem 3.1.10 now follows from Theorem B.

We next show that any CM field E is isomorphic to a CM field of the form Q(πA) for a simple

abelian variety A/Fq.

The following result is a consequence of [GO88, Theorems 1 and 2 (i)].

Theorem 3.11.4. Let E be a CM field. Then for each integer n ≥ 2, there exists a prime number

p = p(E,n) such that E = Q(πp) for some Weil pn-number πp ∈W (pn).

Greaves and Odoni used the Chebotarev density theorem to deduce the following corollary.

Corollary 3.11.5. There exists an integer a(E,n) ≥ 1 such that

#{p = p(E,n) : 2 ≤ p ≤ X, E = Q(πp), πp ∈W (pn)} =

a(E,n)

[H(Es) : Q]
Li(X) +OE,n

(
X exp

(
−c(E,n)

√
log(X)

))
as X → ∞, where H(Es) denotes the Hilbert class field of Es, Li(X) :=

∫ X
2 dt/ log(t), and

c(E,n) > 0.

We have the following corollary.

Corollary 3.11.6. Let E be a CM field. Then for each integer n ≥ 2, there is a set of prime

numbers p = p(E,n) with positive natural density such that E ∼= Q(πA) for some simple abelian

variety A/Fpn .

Proof. LetE be a CM field. Then by Corollary 3.11.5, for each integer n ≥ 2 there is a set of prime

numbers p = p(E,n) with positive natural density such that E = Q(πp) for some πp ∈ W (pn).
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On the other hand, by the Honda-Tate theorem, for each such prime number p, there exists a simple

abelian variety A/Fpn such that πA ∼ πp. Therefore, Q(πA) ∼= Q(πp) = E.

Given Corollary 3.11.6, it is natural to ask whether a density result analogous to Theorem

3.11.2 holds for simple abelian varieties. Define the sets

Asg(q) := {isogeny classes of simple abelian varieties A/Fq with dim(A) = g},

Bsg(q) := {[A/Fq] ∈ Asg(q) | GfA ∼= W2g}.

It seems likely that a modification of the methods in [Kow06] can be used to prove that

lim
n→∞

#Bsg(pn)

#Asg(pn)
= 1.

If true, then arguing as in the proof of Theorem 3.1.10, it would follow that if g ≥ 2, then the

proportion of isogeny classes [A] ∈ Asg(pn) for which Q(πA) is a CM field that satisfies the

Colmez conjecture approaches 1 as n→∞.
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4. CONCLUSIONS

The two main topics treated in this thesis were the establishment of a Chowla-Selberg formula

for abelian CM-fields, which was done in chapter 2, and the proof of infinitely many new cases of

the Colmez conjecture for non-abelian CM fields, which was done in chapter 3.

Both topics still merit further investigation, and in what follows we briefly indicate how we

attempt to study this in future joint work with Riad Masri.

In the case of the Chowla-Selberg formula, the non-abelian case still remains to be studied in

detail. We plan to prove non-abelian Chowla-Selberg formulas by using the non-abelian cases of

the Colmez conjecture that we proved, in combination with a very detailed study and refinement of

Shintani’s work on the evaluation of L-functions.

On the other hand, as was indicated in the introduction of chapter 3, we plan to attack the

Colmez conjecture in low degree for non-abelian CM fields by using methods from arithmetic

statistics to study the density of Weyl CM fields of a fixed degree, when ordered by the absolute

value of their discriminant.
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