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ABSTRACT

In this thesis we start by giving a quick review of the classical Chowla-Selberg formula. We
then recall a conjecture of Colmez which relates the Faltings height of an abelian variety with
complex multiplication by the ring of integers of a CM field E to logarithmic derivatives of certain
Artin L—functions at s = (. It turns out that in the case in which the abelian variety is a CM
elliptic curve, the conjecture of Colmez can be seen as a geometric reformulation of the classical
Chowla-Selberg formula.

Then we will focus our attention on establishing a generalization of the classical Chowla-
Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular
function at CM points to values of Euler’s gamma function I' and an analogous function I'y at
rational numbers.

Finally, we will study the above mentioned conjecture of Colmez. We will prove that if F'
is any fixed totally real number field of degree [F' : Q] > 3, then there are infinitely many CM
extensions £/ F such that E/Q is non-abelian and the Colmez conjecture is true for £. Moreover,
these CM extensions are explicitly constructed to be ramified at “arbitrary” prescribed sets of prime
ideals of F'. We also prove that the Colmez conjecture is true for a generic class of non-abelian
CM fields called Weyl CM fields, and use this to develop an arithmetic statistics approach to the
Colmez conjecture based on counting CM fields of fixed degree and bounded discriminant. We
illustrate these results by evaluating the Faltings height of the Jacobian of a genus 2 hyperelliptic
curve with complex multiplication by a non-abelian quartic CM field in terms of the Barnes double
Gamma function at algebraic arguments. This can be seen as an explicit non-abelian Chowla-

Selberg formula.
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1. INTRODUCTION

The Chowla-Selberg formula [CS49, CS67] is a remarkable identity which relates values of the
Dedekind eta function at CM points to values of Euler’s gamma function I' at rational numbers.
This formula arises in connection with many topics in number theory, including elliptic curves,
L—functions, modular forms, and transcendence. For a very nice discussion, see Zagier [Zag08,
Section 6.3]. In the second chapter of this thesis we will establish a Chowla-Selberg formula
for abelian CM fields. This is an identity which relates values of a Hilbert modular function at
CM points to values of I'" and an analogous function I'y at rational numbers. The function I'g
was studied extensively by Deninger [Den84] in his work on the Chowla-Selberg formula for real
quadratic fields. We note that there has recently been a great amount of interest in formulas for
CM values of Hilbert modular functions. Some examples occur in the work of Bruinier-Yang
[BY06, BY07, BY11] and Bruinier-Kudla-Yang [BKY12], which is related to Borcherds products
and the seminal work of Gross-Zagier [GZ85] on factorization of differences of singular moduli.

1.1 The Chowla-Selberg formula

We begin by reviewing the classical Chowla-Selberg formula (see e.g. [Wei76, Chapter 1X]).
Let A = f2d be a fundamental discriminant where f > 0 and d is square-free. Let K = Q(+/d)
be a quadratic field of discriminant A, O be the ring of integers, CL(K ) be the ideal class group,
hg be the class number, wy = #(’)[X( be the number of units (for d < 0), £4 be the fundamental unit
(for d > 0), and x4() = ( é) be the Kronecker symbol associated to /. Assume now that d < 0.

Given an ideal class C' € CL(K), one may choose a primitive integral ideal a € C'~! such that

—b A
M>7 (I,bGZ

=7 7
a a + ( 5

where a = N g(a) is the norm of a and b satisfies b = A mod 4a. Then

b+ VA
B 2a

Ta

is a CM point in the complex upper half-plane H which corresponds to the inverse class [a] = C 1.

The Chowla-Selberg formula is obtained by comparing two different expressions for the Dede-



kind zeta function (5 (s). One has the classical identity

9 2 \°
C (8) = 74-(28) <> E(Ta,S),
" Wd VIA| [a]€CL(K)

where
E(z,s) = Z Im(Mz)*, zeH, Re(s)>1
MGFOQ\SLQ (Z)
is the non-holomorphic Eisenstein series for SLa(Z). On the other hand, one has the well-known

factorization

Cre(s) = ¢(s)L(xa, 5);

where L(xq4, s) is the Dirichlet L-function associated to x,. Comparing these expressions and

making the shift s — (s + 1)/2 yields

s+1

3 E<Ta,s+1> =W (M) 2 C(Sgl))L <Xd,8+1>. (1.1)

(el eCL(K) 2 2 2 C(s+1 2

Now, one has the “renormalized” Kronecker limit formula

E <z, i ‘; 1) = 1+1og(G(2))(s + 1) + O((s + 1)2), (1.2)
where
G(z) := /Im(2)|n(2)|?
and

o0
nz)=¢"™[[1-q"), ¢:=¢"" z€cH
n=1

is the Dedekind eta function, a weight 1/2 cusp form for SLy(Z). Substitute (1.2) into the left hand
side of (1.1), calculate the Taylor expansion of the right hand side of (1.1) at s = —1, differentiate

both sides of the resulting identity with respect to s, and evaluate at s = —1 to get

Z log(G(74)) = %L(Xd,()) {Iog <\/W> _ ¢ + L' (xa,0) } : (1.3)

[a] €CL(K) 2 ¢(0)  L(xa,0)




Recall the evaluation

¢'(0)
— = —log(27), (1.4)
RO (&)
and the class number formula
2h
L(xq4,0) = =2 (1.5)
wq

To evaluate L' (x4, 0), one uses the decomposition

|A|

k
L(xd,s) = A7 SZXd ( ‘A|> (1.6)

where
> 1
C(S,w) = nZ:O(n—Fu))S’ Re(w) > 0, RC(S) > 1
is the Hurwitz zeta function. Lerch [Ler87] showed that
1 F(JU)) 2
s,v)==——xz+log| —==)s+0(s*), >0 1.7
C(ove) = o +log () ) s+ 0 a7

where

I'(s) ::/ t5tetdt
0

is Euler’s gamma function. Substitute (1.7) into (1.6), then differentiate to get

|A|

k
:0) = ~los(18D B 0 + 3 vath o {T (37 |- (18)

Finally, substitute (1.4), (1.5) and (1.8) into (1.3), then exponentiate to obtain the Chowla-Selberg

formula

CN mgxg(k)
1 k)
G(re) = I (e , 1.9
II ¢ (MM) 1 (IA\) (19)

[a]€CL(K)



1.2 The Colmez conjecture

In order to state the Colmez conjecture, we start by recalling the definition of the Faltings
height of a CM abelian variety. Let F' be a totally real number field of degree n. Let E/F be a
CM extension of ' and ® be a CM type for E. Let X4 be an abelian variety defined over Q with
complex multiplication by O and CM type ®. We call Xg a CM abelian variety of type (O, ®).
Let K C Q be a number field over which X has everywhere good reduction, and choose a Néron

differential w € H°(Xg, Q7% ). Then the Faltings height of X¢ is defined by

/ w A wo
Xg(C)

The Faltings height does not depend on the choice of K or w.

1
hra(Xeo) := “3KQ Z log
’ o:K—C

Now, let E* denote the Galois closure of £. We define a function Ag ¢ : Gal(E*/Q) — Z

by

Apa(o) =P Nod|,

where 0@ := {o o7 | 7 € ®}. We also define a function A(JJE,‘P : Gal(E*/Q) — Qby

1
AOE(P(U) = T s T Z AE,@(TUTfl).
| Gal(E#/Q)] reGal(Es Q)

Let Irr(Gal(E°/Q)) be the set of irreducible Artin characters of the Galois group Gal(E*/Q).
It can be shown that the function A%,q) is a class function on the group Gal(E?/Q). The set of
class functions f : Gal(E*/Q) — C is a finite dimensional inner product vector space, with

inner product given by

1
(f1, f2) = m gegg;gs/(@) f1(g) f2(g)-

It is known that the set of irreducible Artin characters Irr(Gal(£*/Q)) forms an orthonormal basis

for this inner product space. Hence by basic linear algebra we know that the function A% 4 can be

expressed as



Ay = Z (AE®, X)X
xE€Ilrr(Gal(E*/Q))

With all these preliminaries, we can finally state the Colmez conjecture as follows.

Conjecture 1.2.1 (Colmez). The Faltings height of X is given by

hral(Xo) = — > (Ap,, X) (g((;(:(()))) + %log (fx)> :

x€lrr(Gal(E*®/Q))

where L(x, s) is the Artin L—function associated to the character x and f is the corresponding

analytic Artin conductor of x.

In the introduction to chapter 3 we will see how the Colmez conjecture can be seen as a geo-
metric reformulation of the classical Chowla-Selberg formula in the case in which the CM abelian
variety is a CM elliptic curve.

Recently there has been increased interest in the Colmez conjecture because of the important
role that it played in Tsimerman’s proof [Tsil15] of the André-Oort conjecture for the moduli space
Ay of principally polarized abelian varieties of dimension g.

In chapter 3, we will study the Colmez conjecture for non-abelian CM fields.



2. THE CHOWLA-SELBERG FORMULA FOR ABELIAN CM FIELDS*

2.1 Introduction

To establish a Chowla-Selberg formula for abelian CM fields, we will follow the basic structure
of the argument described in Chapter 1.

The following facts concerning Hilbert modular varieties and CM points are explained in detail
in Sections 2.3 and 2.4.

Let F/Q be a totally real field of degree n. Let OF be the ring of integers, O} be the group of
units, dr be the absolute value of the discriminant, and (7 (s) be the Dedekind zeta function. Let
z = (z1,...,2n) € H". The Hilbert modular group SL2(OF) acts componentwise on H" by linear
fractional transformations.

Let E be a CM extension of F'and ® = {o1,...,0,} be a CM type for E. Let hp be the class
number of F, and assume that F has narrow class number 1. Given an ideal class C' € CL(E), let
2, be a CM point corresponding to the inverse class [a] = C~1. To ease notation, we identify the

CM point z, with its image ®(z,) € H" under the CM type ®. Let
CM(E,®,0F) :={z4: [a] € CL(E)}

be a set of CM points of type (E,®). This is a CM zero-cycle on the Hilbert modular variety
SLo(Op)\H".

We will establish the following analog of (1.3),

(n) !
3 1og(H<Zu>):fm{1og<x£@) _1g00 +L<><E/F,o>}7 o
[a]€CL(E) 2 2rdp ) nerD)  Lixer,0)

where H : H" — RT is a SLy(Op)-invariant function analogous to G(z) which arises from
a renormalized Kronecker limit formula for the non-holomorphic Hilbert modular Eisenstein se-

ries (see Section 2.3, and in particular, equation (2.10)), and L(x g /F s) is the L—function of the

*Sections of this chapter are reprinted with permission from Adrian Barquero-Sanchez and Riad Masri (2016),
The Chowla-Selberg formula for abelian CM fields and Faltings heights. Compositio Mathematica, 152, pp 445-476
doi:10.1112/S0010437X15007629. Published online: 24 September 2015. Copyright 2015 by Adrian Barquero-Sanchez
and Riad Masri.



quadratic character x i/ associated by class field theory to the CM extension £/ F'.

Assume now that E is abelian over Q. Then F' C E C Q(() for some primitive N-th root of
unity Cy := >™/N . Let Hp (resp. Hp) be the subgroup of G := Gal(Q((x)/Q) which fixes
(resp. F)). Using the isomorphism G = (Z/NZ)*, one defines the group of Dirichlet characters

associated to F (resp. F') by

—

Xp:={x€(Z/NZ)*: x,, =1}

(resp. Xr). Clearly, we have Hg < Hp and Xr < Xpg.
Given a Dirichlet character y € Xp, let L(x, s) denote the L—function of the primitive Dirich-

let character of conductor ¢, which induces . The Gauss sum of x € X is defined by

T() =Y X(k)CE oy 1= 7
k=1

We will establish the identity

L'(xg/r:8) Z L'(x,s)

L(XE/F?*S) B L(X,S) ’

X€EXE\XF
hence to evaluate the logarithmic derivative of L(x/p, s) at s = 0, we must evaluate L'(x, 0) for
X € Xg \ Xp. We can express L'(x,0) in terms of values of log(I'(s)) at rational numbers as in
(1.8).

On the other hand, we will reduce the evaluation of the logarithmic derivative of Cl(pn_l) (s) at
s = 0 to the evaluation of L'(x, 1) for nontrivial x € Xp. Because each x € X is even, L'(x, 1)
cannot be expressed in terms of values of log(I'(s)) at rational numbers (this is due to the sign of
the functional equation for L(x, s) when x is even). However, Deninger [Den84] showed how to

evaluate L'(, 1) in terms of values of the function
R(w) := 0%¢(0,w), Re(w) >0

at rational numbers. The function R(w) is analogous to log(I'(s)/v/2m), as we now explain.

Consider the Taylor expansion

C(s,x) = % —z + log (f};) s+ R(z)s* + O(s*), x> 0.



By the Bohr-Mollerup theorem, log(T'(z)/+/27) is the unique function f : R™ — R such that

f(z+1) = f(z) = log(x),

f(1) = ¢'(0) = —log(v/27), and f(z) is convex on R*. Using properties of the Hurwitz zeta
function, one can show that 0;((0, z) also satisfies these three conditions, hence by uniqueness,

one recovers Lerch’s identity

Note that using the limit

I'(x)= 1 0
() nl—gox(:u—i—l)---(x—l—n)’ v

one has

log (T _ '(0) + 1 1 n_ll k) — log(k 22
og(m>—nggo C(0)+ rlog(n) ~loge) = 3_ (ol + ) ~log(i) ) 22

Deninger [Den84, Theorem 2.2] proved a similar result for the functions 99¢(0, ), € Z7,
by modeling the proof of Lerch’s identity just described. In particular, for & = 2 he proved that

R(z) is the unique function R : RT™ — R such that
R(z +1) - R(z) = log*(x),

R(1) = —¢"(0), and R(z) is convex on (e, c0). He also proved the following analog of (2.2),

1

R(z) = lim (—C”(O) + zlog?(n) — log?(x) — i: (log*(z + k) — log2(k))) )

k=1

Define the function

Iy(w) := exp(R(w)), Re(w) >0

which is analogous to I'(s)/v/27. Note that I's(w) does not extend to a meromorphic function on
C (see e.g. [Den84, Remark (2.4)]).

We can now state our Chowla-Selberg formula for abelian CM fields.

Theorem 2.1.1. Let F'//Q be a totally real field of degree n with narrow class number 1. Let E /| F



be a CM extension with E /Q abelian. Let ® be a CM type for E and
CM(E,®,0F) ={z,: [a] € CL(E)}

be a set of CM points of type (E, ®). Then

Cx & ZLE(X(Iéi Cx k hQET(LX()Y(Ifi)
X ex L(x,
(Zﬂ) Cl(E,F,TL) r (C > F2 <C ) )
[a]eCL(E) XEXE\Xp k=1 X XEXF k=1 X
x#1
where
hg

dr z
Cl(E,F,TL) = m .

Remark 2.1.2. Given a triple (F, F, @) satisfying the hypotheses of Theorem 2.1.1, one can obtain

explicit examples by determining the group of characters Xg (resp. Xr) and a set of CM points

CM(E,®,0p) of type (E, ®) (see Section 2.2).

Remark 2.1.3. The narrow class number 1 assumption in Theorem 2.1.1 could be removed by
working adelically. We have worked in the classical language to emphasize parallels with the

original Chowla-Selberg formula.

When E/Q is a multiquadratic extension (equivalently, Gal(E/Q) is an elementary abelian
2-group), one can explicitly determine the group of characters Xg (resp. Xp), leading to the

following result.

Theorem 2.1.4. Let dy,...,ds1 be squarefree, pairwise relatively prime integers with d; > 0 for
i=1,....,0 and dpy1 < 0 where { = 1 or 2. Assume that F = Q(+\/dy,...,\/d;) has narrow
class number 1 and let & = F (\/m ). Let X« (resp. xg) be the Kronecker symbol associated to
the quadratic field Q(v/a) (resp. Q(\/B)), where o = di* - - - d,*dyi1 (resp. = d5*---d*) for
e=(e1,...,ep) €{0,1}. Then

@ ™ 4h g log(e
B , plog(ep
Il He)=aEr2) ] HF(CQ) I Il (Cﬂ> -
[a]€CL(E) ec{0,1}* k=1 ec{0,1}* k=l
a=dStdifde sy B=dit-dyt #£1

Remark 2.1.5. The restriction to £ = 1 or 2 in Theorem 2.1.4 is made for the following reasons.

By Frohlich [Fro83, Theorem 5.6], if F' is a totally real abelian field in which at least 5 rational



primes ramify, then the class number of F' is even. If £ > 5, then at least 5 rational primes
ramify in ' = Q(\/dy,...,v/d;), hence F cannot have narrow class number 1 (since the class
number divides the narrow class number). It is well-known that there exist real quadratic fields
of narrow class number 1, and these must be of the form Q(v/2) or Q(,/p) for a prime p = 1
(mod 4) (see e.g. [CH88, Corollary 12.5]). This leaves the possibilities / = 2,3 or 4. One
can compute many examples of real biquadratic fields with narrow class number 1. We wrote a
program in SAGE which calculates the narrow class numbers of the real biquadratic fields F' =
Q(y/p,+/q) for p and ¢ primes with 2 < p < g < n. For example, if n = 30 there are 6 real
biquadratic fields in this list with narrow class number 1, corresponding to the pairs (p, q) given
by {(2,5),(2,13),(2,29),(5,13),(5,17),(17,29)}. On the other hand, for / = 3 or 4 the class
number of F' = Q(1/dy,...,+/d;) can be 1 (see e.g. [Mou09]), but we were unable to find any

examples with narrow class number 1.

For CM biquadratic fields of class number 1, we have the following result.

Theorem 2.1.6. Let p = 2 or p = 1 (mod 4) be a prime such that F' = Q(\/p) has narrow class
number 1. Let d < 0 be a squarefree integer relatively prime to p such that E = Q(,/p, \/ﬁ) has
class number 1. Let Ap, Ag and Apg be the discriminants of the quadratic fields Q(/p), Q(V4d)
and Q(+/pd), resp., and assume that A\, and A, are relatively prime. Then

o) 1 |Aq L Ml ﬁ k oot ﬁ O\ Ta

H(zp,) = ——— r () r () Iy (> )
o 2¢/2m|Agl oy | Al bl |Apdl =1 Ap

where

20 =

(Vd,\/d), d=2,3 (mod 4)

(1+2f’ 1+2\/3> , d=1 (mod 4)

is a CM point of type (E, ®) for & = {01 =1id, 02 : \/p— —/D; Vd — V/d}.

2.1.1 Connection to some existing work

We conclude the introduction by discussing the connection between our results and some exist-

ing work. A version of the Chowla-Selberg formula for CM fields was given by Moreno [Mor83]
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over 30 years ago. The foundation for such a generalization was laid by Asai [Asa70] in the late
1960’s, who established a Kronecker limit formula for Eisenstein series associated to any number
field of class number 1. Following Weil’s [Wei76, Chapter IX] beautiful exposition of the classical
Chowla-Selberg formula (which involves a renormalized Kronecker limit formula for Eisenstein
series over Q), Moreno obtained an expression relating values of a Hilbert modular function at spe-
cial points on a Hilbert-Blumenthal variety to the logarithmic derivative of L(xg/F,s) at s = 0.
Moreno then used Shintani’s [Shi77a, Shi76] remarkable work on special values of L—functions to
express L'(xg JFs 0) in terms of certain Barnes-type multiple gamma functions (formulas of this
type resulting from Shintani’s work can be viewed as “higher” analogs of Lerch’s identity). Putting
things together, he obtained a version of the Chowla-Selberg formula for CM fields (see [Mor83,
Main Theorem, p. 242]). The starting point of the work done in this chapter was that it should
be possible to give a much more explicit version of the Chowla-Selberg formula for abelian CM
fields. The initial structure of the proof is similar to that of Moreno’s, namely to arrive at a version
of the identity (2.1), though there are important differences. For example, we identify the CM
zero-cycles along which we evaluate the Hilbert modular Eisenstein series, which allows us to give

explicit examples of our formula (see Section 2.2).

11



2.2 Examples

In this section we give some explicit examples of the Chowla-Selberg formula for abelian CM
fields. Recall that the function H : H" — R appearing in these examples is a SLo (O )-invariant
function analogous to G (2) := +/Im(z)|n(z)|? which arises from a renormalized Kronecker limit
formula for the non-holomorphic Hilbert modular Eisenstein series. See (2.10) for the definition of

H(z). For background and notation regarding CM points, see Section 2.4.

Example 2.2.1 (Theorem 2.1.6, d; = 2 and dy = —3). Let E = Q(v/2,v/—3) and F = Q(/2).
Then E has class number 1 and F' has narrow class number 1. Moreover, Ay = 8, A_3 = —3
and A_g = —24, so that Ay and A_3 are relatively prime. The hypotheses of Theorem 2.1.6 are
satisfied, so it remains to determine the quantities in the identity stated in Theorem 2.1.6.

Since —3 = 1 mod 4, the CM point of type (E, ) corresponding to the class [Of] is given

by

1+v-3 14++v-3
20 = 5 s B .

The groups of characters associated to E and F' are Xp = {x1,X-3, X2, X—¢} and Xp =
{x1,x2}, resp., hence Xr \ Xr = {x—3, x—6}. We have the following correspondence between

subfields and associated character groups:

E=Q((V2,V/-3) XE = (X2, X-3)

N N

V/—6) Xr = (x2) (x-3) {(x-s6)

V2 QWEE) Qo
\ - ~_ 1
0

{x1}

The characters x2 = (2), x_6 = (=2!) and x_3 = (=2) have conductors 8, 24 and 3, resp.

F=Q

(note the character o generates X i and the characters y_3 and yo generate X ).
The following tables list the values of these characters. In particular, Table 2.1 lists the values of

x2 = (), Table 2.2 lists the values of x_g = (=2%), and Table 2.3 lists the values of x_3 = (=2).
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Values of xs = (§)

k 113 5 |7

x2(k) [1]| -1 |—-1]1

Table 2.1: Character values x2 (k).

Values of x_g = (;24)

k(1|5 |7|11| 13 | 17 | 19 | 23

xeo(k) [ 11|11 | =1|-1]|-1]-1

Table 2.2: Character values y_¢(k).

Values of x_3 = (;3)

k 1 2

x-3(k) | 1| -1

Table 2.3: Character values y_3(k).

The fundamental unit of F is 3 = 1 + /2, and we have h_3 = 1,h_g = 2,w_3 = 6 and
W_g = 2.

Substituting these quantities in Theorem 2.1.6 yields

1 3 k 3X—23(k) 24 k X—i(k) 8 k X2<k)\f
4log (1+v2)
= 1) Fir() ™ ()
2v6m 5 \3 i\ k=1 8
After expanding each product on the right hand side, we get

O\ Y2 VPP (2P YA
H(FE ) - 5 (?Ei) GEﬁg;Eﬁ)r(ﬁ)r(ﬁg)

-~ 2v6r
1
x (m( >r2<;>>41°g<1+ﬂ>
5 .

= (DN

Example 2.2.2 (Theorem 2.1.4, d; = 2 and dy = —5). Let E = Q(v/2,v/=5) and F = Q(v/2).

Then E has class number 2 and F' has narrow class number 1. Moreover, d; = 2 and do = —5
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are squarefree and relatively prime. The hypotheses of Theorem 2.1.4 are satisfied, so it remains to
determine the quantities in the identity stated in Theorem 2.1.4.

The four embeddings of F are determined by

o1 V2— V2, V=55
o2 1 V21— =2, =5+ /-5
o3:V2— 2,  V/-5— —/=5
04:V2— —V2, /=5+— —/-5.

Fix the choice of CM type ® = {01, 02}. The class group of E is given by CL(E) = {[Og], [a]}

where
(OF] = [0r(10 — V2) + Op(vV—=5 + 18V2 — 1)],
[a] = [0p2 + Op (V=5 — V2 +1)].
Then
V-5 +18v2 -1 q V/E-V2-1
20p = 10 — ﬂ an Za = —2

are CM points of type (F, ®) corresponding to the classes [O] and [a] resp., since

D(20,) = <\/j513i8\/\/§_ g \/jigfﬁ_ 1) € EXNH?
and
B(z) = (ﬁ—;/i—l’\/—??/i—l) B

The absolute values of the discriminants of E' and F' are dg = 6400 and dr = 8, resp., hence

the constant

8 1

" 21/6400 807

The groups of characters associated to £ and F are Xp = {x1, x2, X5, X—10} and Xp =

CI(E7F72)

{x1,x2}, resp., hence Xp \ Xr = {x—5, x—10}- We have the following correspondence between

subfields and associated character groups:
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E = Q(V2,v/=5) Xg = (x2, X-5)

N N

Vv=10)  Xr=(x2) {(x-5) {(x-10)

Qv3  QWTR
\ | / ~_ |
0

{al

The characters xs = (§), X—5 = (_—20) and x_19 = (%40) have conductors 8, 20 and 40, resp.

F=

(note the character y2 generates Xy and the characters 3 and x_5 generate X ). The following

tables give the values of these characters. In particular, Table 2.4 gives the values of y2 = (8),

Table 2.5 gives the values of y_5 = (;20) and Table 2.6 gives the values of y_19 = (%40).

Values of o = (&)

k 11 3 5 |7

x2(k) [ 1] -1 | -1

—_

Table 2.4: Values of x2 = ().

Values of x_5 = (_20)

k| 13|79 11|13 | 17 | 19

Xx-s(k) |1 |1|1]1|—-1|-1]—-1]-1

Table 2.5: Values of x_5 = (=22).

Values of x_19 = (;40)

k|1 3 |7|9|11 |13 |17 19|21 |23 |27 |29 |31 | 33|37 39
X-1o(k) |1 -1|1}]1}] 1|1 |-1|1|-1]1]-1]-1]-1

Table 2.6: Values of x_19 = (%40).

The fundamental unit of Fises = 1 + /2, and we have ho = 1, h_5 = 2, h_10 = 2, wy = 2,

w_s = 2and w_19 = 2.
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Substituting the preceding quantities in Theorem 2.1.4 yields

1 20 k; x=5F) 4o I x—10(k) ¢ I X2(k)f
2 2 2log (1+v2)

k=1 k=1

After expanding each product on the right hand side, we get

<\/—5+18\/§—1 \/—5—18\/5—1> (\/—5—\/5—1 \/—5+ﬁ—1)
H , H ;
10 — v/2 104+ /2 2 2

:1<F(210)F(§’ 50)T (55
80m \ T'(5)T(20)T ()T (23)
(Ll

o (1) e TV
Ta(3)T2( '

)
Example 2.2.3 (Theorem 2.1.1, E = Q(¢s) and F = Q(v/5)). Let E = Q((5) and F = Q(V/5).
Then FE is a CM extension of the real quadratic field F' with F/Q abelian (a cyclic quartic ex-
tension). Moreover, F has class number 1 and F' has narrow class number 1. The hypotheses
of Theorem 2.1.1 are satisfied, so it remains to determine the quantities in the identity stated in
Theorem 2.1.1.

The four embeddings of E are determined by ¢;((5) = (! fori = 1,...,4. Fix the choice of
CM type @ = {01, 02} for E. We have O = O + Op(s, thus zp,, = (5 is a CM point of type
(B, ®) since ®(z0,) = (¢5,(2) € EX NHX.

The absolute values of the discriminants are dp = 125 and dr = 5, resp., hence the constant

(B, F,2) = <87T1\/5>1/2.

—

Since E = Q((5) is cyclotomic, we have X = (Z/5Z)*. The group of Dirichlet characters

modulo 5 is given by the characters listed in Table 2.7.
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Dirichlet characters modulo 5

1| 2 3 4

X1 1111

X 1| ¢ —i | —1
X=xs=(2) [ 1|-1]|-1]1
P =x 1| —i| i | -1

Table 2.7: The Dirichlet characters modulo 5.

We have the following correspondence between subfields and associated character groups:
E=Q¢) Xe=X)

|
F=QW5  Xr=(xs)
|

Q {x1}
It follows that X = {x1,x*} = {x1, x5} and Xg \ Xr = {x, X*} = {x. X}-

The L—values corresponding to the characters Y,y are given in terms of generalized Bernoulli

numbers by
3 1. _ . 3 1.
L(x,0)=—-Bi(x)=-+-¢ and L(},0)=-B1(}x) =~ — —t.
5 5 5 5
Moreover, by the class number formula we have
Lixs.1) = 2log(1+—2‘/5)
X5 - \/g )
the Gauss sum is evaluated as 7(x5) = v/5, and the fundamental unit of F' is e5 = 1+2\/5'
Substituting the preceding quantities in Theorem 2.1.1 yields
x5 x5 x5 (k)
1 1/2 5 k 2(§+li) k 2(57%) <k> 410 (1‘*‘\/5)
H(z0,) = L(— ) I B Do =)
o0 (gvs) I () IR (E) I

After expanding each product on the right hand side, we get

3/2 1/2 S

H(Cs,¢2) = < 1 >1/2 () r\"’ Ta(3)0a(5) | oos (M%)
) ) re) \R@ne)
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2.3 Hilbert modular Eisenstein series

In this section we establish a renormalized Kronecker limit formula for the non-holo-morphic
Hilbert modular Eisenstein series. Moreno stated such a formula in [Mor83, Section 3.1], and gave
a very brief explanation as to how it is derived from a Fourier expansion of Asai [Asa70] for the
Eisenstein series. Here we give a similar formula using a slightly different form of the Fourier
expansion (the Fourier expansion we use for the Hilbert modular Eisenstein series goes back to
Hecke).

Let F’ be a totally real number field of degree n over Q with embeddings 71, ..., 7,. Let
z=z+iy=(21,...,2,) € H"

where H denotes the complex upper half-plane. Let O be the ring of integers of F' and SL2(OF)

be the Hilbert modular group. Then SLo(Op) acts componentwise on H™ by linear fractional

transformations,
a f
MZ:(Tl(M)Zl,...,Tn(M>2n), M = ESLQ(OF)
A
where
Ti(a) 5
an— 7@ )
TJ(’Y) Tj(é)
Let

denote the product of the imaginary parts of the components of z € H". Define the non-holomor-

phic Hilbert modular Eisenstein series

E(z,5) == > N(y(Mz))*, z€H", Re(s)>1
MEeTl s \SL2(OF)

18



where

Furthermore, let

N(a+b2) = | | (g5(a) + aj(b)z))
7j=1

for (a,b) € O x O and define the Epstein zeta function

' N(y(2))*
Z(z,8) = , € H", R >1
(2,9) 2 IN(@+bz)2 ~° e(s)
(a,b)EOFXOF/O;;
where the sum is over a complete set of nonzero, nonassociated representatives of O x O (recall

that (a,b) and (a’, V') are said to be associated if there exists a unit e € O such that (a,b) =

(ed’, €t')). One has the identity
Z(Z’S) = CF(2S)E(Z78)7 (2.3)

where (r(s) is the Dedekind zeta function of F.

Define the completed Eisenstein series
E*(z,s) :=(p(28)E(z,s) (2.4)
where
Cils) := im0 (s/2)" Cp(s),

is the completed Dedekind zeta function of F'.
From [vdG88, Proposition 6.9], equation (2.4), and the shift s — (s + 1)/2, we obtain the

renormalized Fourier expansion

s+1Y st Ci(s) s
E(2550) =80T + FEYENG) es)
2" N (y)'/? , W . ,
TN Nryo((1)0r) 2 0-s((0)0r) [ | K5 2l Jy;)e*m ),
(h(s+1) — it
n€edL JOF J
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where Or is the different of I,

ou(a) ==Y Niyg(0)”

bla

is the divisor function,
n . .
Tr(pe) == pPzj, ) = 75(u)
=1

is the trace and

K(t) ::/0 e LOShT cosh (sx)dx

is the K-Bessel function of order s.

Let A(s), B(s) and C(s) denote the first, second, and third terms on the right hand side of (2.5),
respectively. We compute the first two terms in the Taylor expansion of (z, %) ats = —1 by
doing this for each of the functions A(s), B(s) and C(s), in turn.

First, observe that

A(s) =1+1log N(y)?(s + 1) + O((s + 1)?).
Second, we calculate the Taylor expansion

B(s) = B(—=1) 4+ B'(=1)(s +1) + O(s + 1)*.

Since

L e =2 \" 1
Ch(s) T \T(s/2) ) Cr(s)

and (p(s) has a simple pole at s = 1, the function 1/(}-(s) has a simple zero at s = 1. Using the

functional equation (}.(s) = (5 (1 — s), it follows that
(¥) 1/Cj(s) has a simple zero at s = 0.

Now, by (*) we have
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Moreover, an application of the product and quotient rules along with two applications of (x) yields

d %
—s = +1)
B’ =N 12 * & +0(s+1),
so that
*\/ 0)

A calculation using the Laurent expansion

Ch(s+1) = 3T1 +O(s+1)
yields

bt red O+ 1) 2.6)

Gh(s+1)2 {rp+O0(s+1)}? '

where 7 is the residue of (j(s + 1) at s = —1. Hence
rr

Third, we calculate the Taylor expansion
C(s)=C(=1) +C'(=1)(s + 1)+ O(s + 1)°.
For convenience, we write

C(S) — 2nN(y)1/2 Z Du(s)e%riTr(,u:v)’

uE&;l/OIX?
u#0

where

_ Npjo((mor)?
D) = =ity

By (¥) we have D, (—1) = 0, thus C(—1) = 0.

o—s((mr) [T K3 2rluDyy).
j=1

To compute C'(—1), it suffices to compute D), (—1). Using the product rule, two applications

of (%), and (2.6) we obtain

Dy (1) = el o TT Ky (2nluly).

r
F =1

N
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A calculation using the identities K_4(t) = K4(t) and K1 (t) = \/ze_tt_é for t > 0 gives
2

rr

Dy(=1) = Nejo((1)0r) 2 1((1)0F) ﬁ \/§€2M(j>'yj @rluDly) 2. @7
j=1
Note also that
f[ \/ie—%'“(”'yf<27r|u<j>|yj>—% ) — 97" | Ny ()| 72 N(y) 22T, 2.8)
where

T(p,2) = Tr(pz) + i) [P ]y;.
j=1

Then using (2.7) and (2.8), we get

-

Cl(—l) _ Z NF/Q((M)@F)7§ 0'1((,11)8F)|NF/Q( )" 2627rzT(u z).

- F
n€dR JOF
p#0

Finally, by combining the Taylor expansions for A(s), B(s) and C(s), we obtain the following

result.

Proposition 2.3.1. We have

E <z 8;1) =1+log(H(2))(s+1)+0((s +1)?), (2.9)
where
= V/N(y)o(2) (2.10)
and

-

2

log((2)) = CF( r; (y )+ Z NF/Q(ialgaF) Jl((ﬂ)aF”NF/Q( )~ 2627rzT(uz)
pEIR/OF

p#0

Remark 2.3.2. Using (2.9) and the automorphy of E(z,s), we have H(Mz) = H(z) for all

o
M = € SL2(Op). Then a straightforward calculation yields the transformation formula
v oo

¢(Mz) = [N(vz +6)| ¢(2).
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2.4 CM zero-cycles on Hilbert modular varieties

In this section we summarize some facts we will need regarding CM zero-cycles on Hilbert
modular varieties. For more details, see [BY06, Section 3]. Let F' be a totally real number field
of degree n over Q with embeddings 7y, . . ., 7,, and assume that F' has narrow class number one.
The quotient X (OF) = SLa(Op)\H" is the (open) Hilbert modular variety associated to O. The
variety X (Op) parametrizes isomorphism classes of principally polarized abelian varieties (A, 7)
with real multiplication ¢ : Op — End(A).

Let E be a CM extension of F'and ® = (o1,...,0,) bea CM type for E. A point z = (A, 1) €

X (OF) is a CM point of type (E, ®) if one of the following equivalent conditions holds:

(1) Asapoint z € H", there is a point 7 € E such that
O(7) = (01(7)y...,0n0(7)) = 2

and

A =0p +Opr
is a fractional ideal of F.

(2) There exists a pair (A, i) that is a CM abelian variety of type (E, ®) with complex multipli-

cation i’ : Op < End(A) such thati = i’|o,.

By [BY06, Lemma 3.2] and the narrow class number one assumption, there is a bijection
between the ideal class group CL(E) and the CM points of type (E, ) defined as follows: given

an ideal class C' € CL(E), there exists a fractional ideal a € C~! and o, 3 € E* such that
a=Ora+ Opfp 2.11)

and

z:éeEXﬂH”:{zEEX: P(z) € H"}.
a

Then z represents a CM point in X (Op) in the sense that C" /A, is a principally polarized abelian
variety of type (F, ®) with complex multiplication by Og. Conversely, every principally polarized

abelian variety of type (E, ®) with complex multiplication by O arises from a decomposition as
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in (2.11) for some a in a unique fractional ideal class in CL(E). We denote the CM zero-cycle

consisting of the set of CM points of type (F, ®) by CM(E, ®, Or) and identify it with the set
{zo € EX NH" : [a] € CL(E)}
under the bijection just described. The reader should keep in mind that the latter set depends on ®.

2.5 Periods of Eisenstein series

In this section we evaluate the non-holomorphic Hilbert modular Eisenstein series along a CM
zero-cycle on the Hilbert modular variety X (Op). Let F be a totally real number field of degree n
over (Q with narrow class number 1. Let £ be a CM extension of F, and fix a CM type ® for F. By
the results of Section 3, given an ideal class C' € CL(E), there exists a fractional ideal a € C~*

such that
a=0pa+0OpB, «a,f€E” (2.12)

where zq = f/a € EX NH" is a CM point of type (E, ®).
By [Mas10, Proposition 4.1], we have the identity

M dp ) S

Vde ) [Of : O]

where we have identified z, with its image ®(z,) € H". Make the shift s — (s + 1)/2 in this

Ce(s,C) = < Cr(28)E(zq, 8),

identity and sum over ideal classes C' € CL(E) to obtain

> E (za,‘M) = (0% : O] <\/@>;1 e(*5H)

[a]eCL(E) 2 2ndp Cr(s+1)

By class field theory, we have the factorization

Ce(s) = Cr(s)L(xa/F, 9), (2.13)

where L(x g /F s) is the L—function of the quadratic character x /F associated to the extension
E/F. Using the Taylor expansion (2.9), the factorization (2.13), and the Taylor expansion

() 1 {1_1 ¢ (0)
2n ¢V (0)

Crls+1)  2n1 (s+1) *O“S“)Q)}’
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we obtain

(0% : Op]L(xE/F,0)

> {1+log(H(z)) (s +1)+O0(s +1)%} = -

[a]eCL(E)

(n) /
x{2+log(\/@>(s+1) L G (0) (s+1)+L(XE/F’O)(s—i-l)—i-O((s%-l)Q)}.

(2.14)

2"dp n ¢t~ (o) L(xg/r,0)
Let s = —1 in (2.14) to recover the class number formula
2n—1 hE'
L ,0)= ———.
(XE/F ) [(’)g : O;]
Then differentiate (2.14) with respect to s and evaluate at s = —1 to get

(n) /
_hE{log<\/@> 167 +L<><E/F,0>}. 015)

Z log (H(zq)) = - ——
[a]€CL(E) 2 2ndp “C} ) Llxg/r,0)

2.6 Evaluation of the logarithmic derivative

In this section we evaluate the logarithmic derivative of L(x g /F s) at s = 0 in terms of values
of the gamma function I" at rational numbers. Let Q C F' C E be abelian number fields. By the
Kronecker-Weber theorem, there is a cyclotomic field Q(¢xy) such that FF C E C Q((x) where
(n = €2™/N is a primitive N-th root of unity. Let G := Gal(Q(¢x)/Q), which we identify

with the group (Z/NZ)* via the isomorphism
SN - GN — (Z/NZ)X

or— [sn(0)]N,

where o((n) = sn () for some integer sy (o) modulo N. Let Hr and Hg be the subgroups of
N g

Gy which fix F' and E, resp. Since Gy is abelian, Hr and H g are normal, and by Galois theory
we have Gal(F/Q) = Gy /Hp and Gal(FE/Q) = Gn/Hpg. We also note that Hy < Hp < Gy,
since the Galois correspondence is inclusion reversing.

Let G be a finite abelian group and G be its character group. Given a subgroup H < G, we
have (T/T{ >~ [ where

HY :={xeG|xlu=1}.
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Additionally, if H' < H < G then H+ < H'*.

Given an abelian field K C Q((x ), the group of characters associated to K is defined by
Xk = Hig = {x € (Z/NZ)* | X|n, = 1}.

By our preceding observations, we have GﬁE = Xpg and Gﬁp = Xp, and since Hg <
Hr < Gpy,wehave Xr < Xg.

We now evaluate the logarithmic derivative of L(xg/r, s) at s = 0. The Dedekind zeta func-
tion (x (s) of an abelian field K’ C Q((y) factors as

CK(S): H L(X’S)v

x€Xk
where L(x, s) is understood to be the Dirichlet L—function associated to the primitive Dirichlet

character of conductor ¢, which induces x € X (see [Coh07, Theorem 10.5.25]). Therefore by
(2.13), we have

Vxers) _ d CrEe IR 2.16)

L(xg/p,s) ds Cr(s) X Kp

where

—

Xp\Xr={x€(@Z/NZ)* | xlny =1 and X|p,\n, # 1}

o —

is the set of characters in (Z/NZ)* that are trivial on Hg but not trivial on Hp.

Now, we have

CX k
L(x,s) = ¢° Y x(k)¢ (s, ) , 2.17)
k=1 “x
where
- 1
¢ (s,w):= ————, Re(w) >0, Re(s)>1
ngﬂ (n+w)

is the Hurwitz zeta function. Differentiating (2.17) yields

L(x,5) = —log(e ) L(x, ) + ° 3 x(B)¢! < "“) .

k=1
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The Taylor expansion of the Hurwitz zeta function at s = 0 is given by
C(s,2) = ¢(0,2) + {'(0,2)5 + O(s?), @ >0

where ((0,z) = % — x and Lerch’s identity [Ler87] gives

¢'(0,2) = log C};) : (2.18)

Using (2.18), we find that

v

V2r

Recall that if x is even, then L(x,0) = 0, while if x is odd, then L(x,0) # 0. If we assume

L' (x,0) = —log (¢,) L(x; 0) + Y _ x(k) log
k=1

that E is a CM extension of F, then all of the characters x € Xg \ X are odd (see Lemma 2.6.2).

Hence using the orthogonality relations for group characters, we get

L'(x,0) k
T000) log (cy ZX logF< X) (2.19)

Finally, substituting (2.19) into (2.16) yields

L( ,0)
in:_ Z log (cy) + Z ZL

(xz/r,0) XEXB\XF XEXE\Xp k=1

logT ( k ) (2.20)
X

7

Remark 2.6.1. Since the primitive Dirichlet character x of conductor ¢, which induces a Dirichlet

character x € X is also a Dirichlet character modulo /V, we have the following analog of (2.17),

N
k
= N_S -_— . .
> x(k)¢ (s, N) 2.21)
k=1
Then by repeating the preceding calculation with (2.21) instead of (2.17), we get

L'(xg/r,0) x(k k
———— = —log(N)[F : Q] + <), (2.22)
L(XE/Fvo) Ml ] Z Z N

XEXE\Xp k=1

where we used #(Xg \ Xr) = [F : Q].

It remains to prove the following
Lemma 2.6.2. [f E/F is a CM extension, then all of the characters x € Xg \ X are odd.
Proof. Let E/F be a CM extension. Then the nontrivial automorphism o. € Gal(E/F') is com-
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plex conjugation, which when viewed as an element of Gy = (Z/N7Z)* corresponds to the residue
class [-1|y € (Z/NZ)*. Clearly, [-1]n € Hp but [-1]y ¢ Hg, and by Galois theory we have
Hp = (Hp U{[—1]|n}). Let x € X \ Xp. Then Y is trivial on Hg, but nontrivial on Hp, so we

must have x([—1]x) = —1, which implies that x is odd.

2.7 Taylor coefficients of Dedekind zeta functions

In this section we evaluate the logarithmic derivative of Cl(,,"_l) (s) at s = 0 and prove Theorem
2.1.1. The evaluation we obtain is analogous to (2.20), the difference being that log(I'(x)) is
replaced by Deninger’s R-function R(x). Let F' be a totally real field of degree n over Q. Write
the Laurent expansion of (p(s) at s = 1 as

CF(S) 1 +A0+O(8—1).

S —
Lemma 2.7.1. We have the Taylor expansion

dpA_ d
\/Enlsn—l —+ Q(AO + A_1 log(dp) — nA_l{fy —+ 10g(27r)})3” + O(Sn'H)’

Cr(s) = — o

where v is Euler’s constant.

Proof. From the functional equation (}.(s) = (5 (1 — s), we have

Ir(1—s)\"
I“R(s)> Cr(l—s),

where I'gr(s) := s/ 2I'(s/2). Then the lemma follows by multiplying the Taylor expansions

1
58

cr(s) ="

1_s
di = \/dr — \/dplog(dp)s + O(s%),

<FR(1_$))“ = <S Ty + log(2m) s + 0(83)>n

FR<8> 2 2
_ s" n n+1 n+2
= 27+27(7+10g(27r))5 +O(S ),
and
A_
(r(l—s) = —Tl + Ag 4 O(s).
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From Lemma 2.7.1, we have

v Vo) _VdrAo

(n—1)! 2n

and

(n)
r (0) = Vdp (Ao + A_1log(dr) — nA_1{y+log(27m)}),

n! 2n
which gives
(n)
0 A
F71() = -—n <0 + log(dp) — ny — nlog(27r)> . (2.23)
¢ (0 A

Assume now that F' is abelian. Then we have the factorization

¢r(s) = ¢(s) ] Llx.9)-

XEXF
x#1
Substituting the Laurent expansions
C(S) = j‘f"Y"‘O(S—l)

and
L(Xa S) = L(X7 1) + Ll(X? 1)(8 - 1) + O((S - 1)2)
into this factorization yields

Crls) = (i oyt Os 1)) TT (LGo1) + 2o 1)(s — 1)+ O((s — 1))
s—1 XE;Z(lF
X

Then expanding the right hand side and comparing coefficients yields

A—lz || L(X71)
XEXF
x#1
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and

A=~ [T toov+ | I zeny | 3o 2l 1)) I S ¢ 1)).

XEXF XEXF XEXF L(X’ 1 XEXF L(X’ 1
x#1 x#1 x#1 x#1

It follows that

AO L,(Xa 1)
=yt . (2.24)
A—l XEXp L(X7 1)

X#1

Each of the characters x € X is even, since [—1]y € Hp and

—

Xr={x€(Z/NZ)* | x|, = 1}.

Therefore, we must evaluate L'(x, 1) for x an even, primitive Dirichlet character. This problem was
solved by Deninger [Den84] in the following way. Let x be an even, primitive Dirichlet character
of conductor c,. Then the functional equation for the Dirichlet L—function is

2¢57 1T (s
L(x,1—s)= Xi()cos (7rs

S eos () L),

where

T(X) == > X(K)CE oy 1= €7/
k=1

is the Gauss sum of . A calculation with the functional equation yields

L = W <(v ~tog (£)) F(x.0) - I (x. 0>> .

X

Because

Ex
k
L — S L r
(6 8) = ¢ > x(k)¢ (s, CX> :
k=1
to evaluate L'(%, 0) and L” (%, 0), it suffices to evaluate the coefficients in the Taylor expansion

C(s,x) = ¢(0,2) + '(0,7)s + ¢"(0,z)s% + 0(33), x> 0.

Recall the logarithmic form of the Bohr-Mollerup theorem.
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Theorem 2.7.2 (Bohr-Mollerup). Let f : RT™ — R be a function such that
f(z+1) = f(z) = log(x),
f(1) =0, and f(x) is convex on R*. Then f(z) = log(T'(x)).
Deninger [Den84, Theorem 2.2] proved the following result.
Theorem 2.7.3 (Deninger). The function
falz) = (—1)0+ (agg(o,x) @ (0)) L 2>0, a=0,1,2,...

is the unique function such that

(1) falw+1) = fu(z) = log*(2)

(2) fa(1) =0

(3) fa(x) is convex on (exp(a — 1), 00).

Let o = 1 in Theorem 2.7.3. Then f1(z) is convex on (1, 00) (hence convex on R™ by virtue

of (1)), so by the Bohr-Mollerup theorem, f;(x) = log(T'(x)), or equivalently

¢'0.0) =tog (2.

where we used ¢’(0) = —2%log(27). This gives a conceptual proof of Lerch’s identity (2.18)
(a beautiful account of this approach to Lerch’s identity is given by Weil [Wei76, Chapter VII]).
Moreover, using the limit

['(z) = lim nin’ x>0
Cnscox(z4+1)---(x4n)

one has

1

log (1:/(2172> = lim (C’(O) + zlog(n) — log(x) — kg_l (log(z + k) — log(k))> ~

Next, let « = 2 in Theorem 2.7.3 and define R(x) := —¢”(0,z). Then R(x) is the unique

function such that
(1) R(z+1) — R(z) =log*(z), x>0

31



(2) R(1) = =¢"(0)
(3") R(x) is convex on (e, 00).

Moreover, by [Den84, Lemma 2.1, eqn. (2.1.2)] one has

n—1
R(z) = lim (—(/’(0)+x10g2( ) — log?(x Z log?(z + k) — log (k))) (2.25)

n—00
=1

These facts show that R(x) is analogous to log(I'(z)/v/2m) (see [Den84, Section 2] for more

details concerning this analogy).

Remark 2.7.4. Alternatively, one could define R(x) by the limit (2.25), then verify directly that
R(x) satisfies conditions (1')—(3'). Then by uniqueness, one has the identity R(z) = —¢"(0,x).

This is analogous to the conceptual proof of Lerch’s identity just described.

Using the preceding facts, Deninger [Den84, Section 3] established the formula

L1) = (gm0 + 70 S xR (£ (226)
Substituting (2.26) into (2.24) yields
Ao 700 <~ _X(k) (k)
-— =7+ + log(27)) + R| — . 2.27
s Xg;F{(V og(2m)) o 21000 ey (2.27)
x#1

Since X = Gy /Hp = Gy /Hp = Gal(F/Q), we have # X = [F : Q] = n. Then substituting

(2.27) into (2.23) and simplifying yields the formula

(n) ¥
% — —n | —log(2n) + log(dp) + Z Z >(< < i ) . (28)
k=

Cp (0) XEXFE x x
x#1

Proof of Theorem 2.1.1. By combining equations (2.15), (2.20) and (2.28), we obtain Theorem

2.1.1 after a short calculation with the conductor-discriminant formula

dp = ] e (2.29)
XEXL
where d, denotes the absolute value of the discriminant of a number field L. OJ
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2.8 The group of characters of a multiquadratic extension

In this section we determine the group of characters associated to a multiquadratic extension.
Let dy, ..., d; be squarefree, pairwise relatively prime integers and define the multiquadratic ex-
tension K = Q(+/d1,...,+/d:). The absolute value of the discriminant of the quadratic subfield

Q) is given by
|d;] if di=1 (mod 4)
D; =
Ald|  if d;=2,3 (mod 4).

One has Q(+/d;) € Q(¢p,), so by taking compositums we obtain

K = Q(\/aa ) \/dit) - Q(CD17 . "<Dt) C @(CDI'“Dt) = Q(CD)

where D := D --- Dy.
Recall that the group of characters associated to K is given by

o —

Xk ={x € (Z/DZ)* | x|lm, =1},

where Hy is the subgroup of Gp := Gal(Q(({p)/Q) which fixes K. Let m = df*---d;* for
(0,...,0) # (e1,...,er) € {0,1}, and define the quadratic subfield

Q(vm) = Q(y/di* -+ di) C K.

Let x1 be the trivial character of (Z/DZ)*, and x/,, be the Dirichlet character of (Z/DZ)* induced

by the Kronecker symbol ¥, associated to the quadratic field Q(1/m).
Proposition 2.8.1. The group of characters associated to K is given by
X ={x1}U{x}: m=di*---di* for (0,...,0)# (e1,...,er) € {0,1}'}.

Proof. For notational convenience, let Gy, := Gal(Q(v/m)/Q), and let Hy, := Hgy, sy be the
subgroup of G p which fixes Q(y/m). Define the integers

|| ifm=1 (mod 4)
M = M, =

4|m)| ifm=23 (mod4).
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Clearly, the primitive Dirichlet characters ., : (Z/MZ)* — {£1} induce 2° — 1 Dirichlet char-
acters x,, : (Z/DZ)* — {%1} by composing with the projections 7 : (Z/DZ)* — (Z/MZ)*.
Thus to show X/, € X, it suffices to show x}, |, = 1. In fact, because Hy < H,,, it suffices to

show x/.|g,, = 1. We have the diagram

Hg < H,, <Gp —2— (Z/DZ)*

| s

Gu 2 (Z/MZ)*| X,

| [

G ——— {1}
where res is the restriction map, and sp and sps are the canonical isomorphisms. We will prove

that

Xm([sp(o)|p) = Ui\/ﬁnﬁ) forall o€ Gp. (2.30)

Then (2.30) implies that x/,|m,, = 1, since

o(vm)
N

That is, an automorphism o € H,, restricts to the identity in GG,,,. Because the following diagram

=1 forall o€ H,,.

commutes (see [KKS11, Proposition 5.14])

Gy 2 (Z/MZ)~

| [

Gy ——— {1}

we have

Xm([s:(0)]nr) N or oe€Gyy
Thus to prove (2.30), it suffices to show that
Xon([8D(0)]D) = Xm([sr(res(a))]nr) for o € Gp.

Let 0 € Gp. Then since x,,, = xm o 7, we have x,.([sp(c)]p) = xm(7([sp(o)]p)) =

Xm([sp(0)]ar). Thus it suffices to show [sp(o)|ar = [sar(res(o))]|as, or equivalently, sp(o) =
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sy(res(o)) (mod M). Since M|D, there is an integer k such that {3y = ¢¥. Thus o((y) =
o(¢k) = a(¢p)F = IZ)SD(U) = 7\/1[3(0)' On the other hand, o((pr) = res(o)(Cy) = E/’(res(g)),

thus sp(o) = spr(res(o)) (mod M). O

2.9 Proof of Theorem 2.1.4

In this section we will prove Theorem 2.1.4. We first recall the setup in the theorem. Let
dy,...,de+1 be squarefree, pairwise relatively prime integers with d; > 0 forv = 1,...,¢ and
dey1 < 0, where £ = 1 or 2. Assume that F' = Q(v/dy, ..., +/dy) has narrow class number 1,
and let £ = F (M ). Let xq (resp. xp) be the Kronecker symbol associated to the quadratic
field Q(v/a) (resp. Q(+/B)), where ov = d* - - - d*dpy1 (vesp. § = di' ---d}*) for (e1,...,ep) €
{0, 1}¢. Now, the field F is totally real of degree n = 2¢ over Q, and E is a CM extension of F.
We have ' C E C Q(¢p) where D = Dy --- D11 (see Section 2.8 for the notation). Then by

Proposition 2.8.1,

o —

XF:{Xl}U{X/IBE (z/DzZ)* : B=d5*---d,f, (0,...,0) # (e1,...,e€r) G{O,I}Z} and

Xg={x1}U {X:;v € (Z/DZ)* : a=d5 ---dif, (0,...,0) # (er, ..., ee1) € {071}“1}-

It follows that

—

Xp\ Xp = {x’a € (ZIDL)* |a=d - d%dgsr, (er,... e0) € {0,1}‘}.

Using the class number formulas

2h 2hgl
Llxa,0)= % and L(xs.1) = ==
Wq NG
along with the evaluation 7(x3) = ,/cg, we deduce Theorem 2.1.4 from Theorem 2.1.1. O

2.10 Proof of Theorem 2.1.6

In this section we prove Theorem 2.1.6, which amounts to using the assumptions in Theorem
2.1.6 to give an explicit version of the formula appearing in Theorem 2.1.4 for a particular choice
of CM point zp,,. We first recall the setup in the theorem. Let p = 2 or p =1 mod 4 be a prime

such that ' = Q(,/p) has narrow class number 1. Let d < 0 be a squarefree integer relatively
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prime to p such that &/ = Q(,/p, \/&) has class number 1. Let A;,, Ag and A, be the discriminants
of Q(,/p), Q(v/d) and Q(+/pd), resp., and assume that A, and A, are relatively prime. The four

embeddings of E are given by

id: pr— B, Vd—Vd
g P =D Vd— Vd
T P P Vd— —Vd
ot P —/D, \/& — —\/&.
These embeddings occur in the complex conjugate pairs {id, 7} and {o, o7}. Fix the choice of CM
type & = {id, o}. We now determine a CM point of type (E, ®) associated to the ideal class [Of].
Define 6, and 0, by

1 1 d
%\/ﬁ ifp=1 (mod4) +Vd ifd=1 (mod 4)

Op = and 6, := 2
V2 if p=2 Vd ifd=2,3 (mod 4).

The integer rings O = Oq(,/p) and Og /) have integral bases {1,6,} and {1,6,}, resp. Since

A, and A are relatively prime, and E = Q(y/p, V/d) is the compositum of Q(/p) and Q(V'd),

it follows that O, has the integral basis {1, 6,04, 0,04} and dp = AgAfl (see [Lan94, Chapter 3,

Theorem 17]). Recall from Section 2.4 that to determine a CM point zp,, of type (£, ®) associated

to the ideal class [Og], we need a decomposition O = Opa + Opf for some «, f € O with

B/a€ EXNH? ={z € EX: ®(z) € H2}. We have
Op =72+ 0,7+ 0qZ + 0,042 = (Z + 0,7) + (Z + 0,Z)0q = Of + Opby.

Letting v = 1 and 8 = 64, we get a CM point zp, = /a = 04, since ®(0y) = (id(04), 0(0q)) =
(64,04) € H2. Then with our convention of identifying a CM point with its image under the CM

type @, we have

(Vd,

d), d=2,3 (mod4)
<1+2\/E’ L d) , d=1 (mod 4).

20 = (I)(ad) =

~
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To determine the constant ¢; (E, F, 2), recall that dp = AIQ)Ag, dr = Ap and hg = 1, thus

2
A 1
a(B,F,2)= | —F—| =

smy/a2az ) 2y/2nAd]

The groups of characters associated to the fields ' and E are Xp = {x1,xp} and Xp =
{X1: Xps Xd> Xpd }> resp., so that X \ Xz = {X4, Xpa}. The character x,, = (ﬁ) has conductor
A,, the character x4 = (ﬁ) has conductor |Ag4|, and the character x,q = (ﬁ) has conductor
A,ql. The characters y,, and y, generate X g. The following diagrams show the correspondence

P Xp Xd & g diag 1Y

between subfields and associated groups of characters:

E = Q(y/p, Vd) X = (Xp Xa)

(vp) Q(Vd) Q(v/pd) Xr = (xp) (Xa) (Xpd)
Q X1

Since F' = Q(,/p) has narrow class number 1, we have h;,, = 1. Then recalling that £,, denotes

F=Q

the fundamental unit in F, the result follows by substituting the quantities determined in this section

into the identity in Theorem 2.1.4. 0
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3. THE COLMEZ CONJECTURE FOR NON-ABELIAN CM FIELDS*

3.1 Introduction
3.1.1 The Chowla-Selberg formula and the Colmez conjecture

One of the central objects of study in number theory is the Dedekind eta function, which is the

weight 1/2 modular form for SLy(Z) defined by the infinite product

o0
n(z) =g [ -q"), q¢:=e
n=1

As was already discussed in the introduction in Chapter 1, a remarkable formula of Chowla and
Selberg [CS67] relates values of 7(z) at CM points to values of the Euler Gamma function I'(s)
at rational numbers. Here we briefly recall this formula again in order to set the discussion in
the proper context. Let E' be an imaginary quadratic field of discriminant —D < 0. Let h(—D)
be the class number, w(—D) be the number of units, and x_p be the Kronecker symbol. Using

Kronecker’s first limit formula, one can prove the identity

5" tog (vim(ren(re) ) = 22 <1og (“25) ~ L iog(am) + W) SNERY
C

L(x-p,0)

where the sum is over a complete set of CM points 7¢ of discriminant —D on S Lo (Z)\H. There are
h(—D) such points, corresponding to the ideal classes C of E. On the other hand, a classical iden-
tity of Lerch [Ler87] evaluates the logarithmic derivative of the Dirichlet L—function L(x_p, s) at

s = 0 in terms of values of I'(s) at rational numbers,

L'(x-p,0) w(=D) ¥ ( <k ))
—=—— =—log(D) + ———= _pk)log(T'| =] |. (3.2)
Substituting Lerch’s identity (3.2) into (3.1) then yields the Chowla-Selberg formula
1 h(=D) p i w(—D)x_p (k)
2 4
Im(7¢)|n(t0)|? = r{— : 3.3
[Ivintomeor = (5) 1 (5) 63

There is a beautiful geometric reformulation of the Chowla-Selberg formula (3.3) as an identity

*Sections of this chapter are reprinted with permission from Adrian Barquero-Sanchez and Riad Masri (2016), On
the Colmez conjecture for non-abelian CM fields. arXiv:1604.01057 [math.NT]. Copyright 2016 by Adrian
Barquero-Sanchez and Riad Masri.
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which relates the Faltings height of a CM elliptic curve to the logarithmic derivative of L(x_p, )
at s = 0. In order to describe this, we first recall the definition of the (stable) Faltings height of a
CM abelian variety. Let F’ be a totally real number field of degree n. Let E//F be a CM extension
of F and ® be a CM type for E. Let X4 be an abelian variety defined over Q with complex
multiplication by O and CM type ®. We call Xg a CM abelian variety of type (Og, ®). Let
K C Q be a number field over which X has everywhere good reduction, and choose a Néron

differential w € H%(Xg, Q% )- Then the Faltings height of X¢ is defined by
1
hra(Xo) == — s Z log

wAw®
2[K : Q] o K—C /Xg((C)

The Faltings height does not depend on the choice of K or w.

Now, if E = Q(v/—D) is an imaginary quadratic field and X¢ is a CM elliptic curve of type
(Op, ®), then one can prove that (see e.g. [Gro80, Sil86])

hpa(Xe) = —log (2(1/%) — h(—lD) Zlog (\/Im(Tc)‘n(TC”Q) :
C

Combining this identity with (3.1) allows one to express the Chowla-Selberg formula in the equiv-
alent form

1L (x-p,0) 1 1
3Tl p.0) i log (D) — 3 log(27). (3.4

hpal(Xo) =
Colmez [Col93] gave a vast conjectural generalization of the identity (3.4) which relates the
Faltings height of any CM abelian variety Xg of type (Op, ®) to logarithmic derivatives at s = 0

of certain Artin L—functions constructed from the CM pair (E, ®). See Section 3.3 for the precise

statement of the Colmez conjecture.
3.1.2  Previous work on the Colmez conjecture

There have been many remarkable works on the Colmez conjecture.

Colmez [Col93] proved his conjecture when E/Q is abelian, up to addition of a rational mul-
tiple of log(2) which was recently shown to equal zero by Obus [Obu13].

Yang [Yan10a, Yan10b, Yan13] proved the Colmez conjecture for a large class of non-biquadra-

tic CM fields of degree [E : Q] = 4, thus establishing the only known cases of the Colmez
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conjecture when F/Q is non-abelian.

In his paper, Colmez [Col93] also stated an averaged version of his conjecture, where the
Faltings heights are averaged over the different CM types for the given CM field E. See Section
3.4 for the statement of the average Colmez conjecture. Very recently, Andreatta-Goren-Howard-
Madapusi Pera [AGHM15] and Yuan-Zhang [YZ15] independently proved the average Colmez
conjecture. Interest in the average Colmez conjecture is motivated in part by work of Tsimerman
[Tsil5], who used it to prove the André-Oort conjecture for the moduli space A, of principally
polarized abelian varieties of dimension g. The average Colmez conjecture will also play a crucial

role in the proofs of the results in this chapter (see e.g. Section 3.1.6).
3.1.3 Statement of the main results

As discussed, the only known cases of the Colmez conjecture for non-abelian CM fields are
due to Yang for a large class of CM fields of degree 4. In our first main result, we will prove that
if F'is any fixed totally real number field of degree n > 3, then there are infinitely many CM
extensions £/ F' such that E/Q is non-abelian and the Colmez conjecture is true for E.

More precisely, let p be a prime number which splits in the Galois closure F'® and let p be
a prime ideal of F' lying above p. We will prove that if we fix an “arbitrary” finite set R of
prime ideals of F', then we can explicitly construct infinitely many CM extensions E/F which are
ramified only at the primes in the prescribed set R U {p} and at exactly one more prime ideal of F’
(which is different for each of the extensions E/F’) such that £'/Q is non-Galois and the Colmez
conjecture is true for E. Similarly, we can prescribe finite sets U/, (resp. o) of prime ideals of F’

that will be split (resp. remain inert) in the extensions £/ F.

Theorem A. Let F' be a totally real number field of degree n > 3. Let p € 7 be a prime number
which splits in the Galois closure F'° and let p be a prime ideal of F lying above p. Let dps be the
discriminant of F'* and R be a finite set of prime ideals of I' not dividing pdps. Let Uy and Us be
finite sets of prime ideals of F' not dividing 2pdgs such that R, U1 and Uy are pairwise disjoint.
Then there is a set Sg p, of prime ideals of F which is disjoint from R UU; UUs U {p} such that

the following statements are true.
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(i) Srp has positive natural density.t

(ii) For each prime ideal q € Sg y, there is an element Ay € OF with prime factorization

AGOF = pq H t.
te€R

(iii) The field Eq := F(\/Aq) is a CM extension of ' which is non-Galois over Q and is ramified
only at the prime ideals of F dividing Ay. Moreover, each prime ideal in U, splits in Eq and

each prime ideal in Uz remains inert in Ej.
(iv) The Colmez conjecture is true for Ej.

Remark 3.1.1. We emphasize that Theorem A is effective in the sense that we give an algorithm
to construct the set Sr , and the associated CM fields E; for ¢ € Sg . See Section 3.7, and in

particular, Section 3.7.4, Algorithm 1.

Remark 3.1.2. The set of prime numbers p € Z which split in the Galois closure F® has natural

density 1/[F* : Q.

In our second main result, we will prove that the Colmez conjecture is true for a generic class
of non-abelian CM fields called Weyl CM fields (see e.g. [CO12]). As remarked by Oort [Oor12,
p- 5], “most CM fields are Weyl CM fields”. There are (at least) two different ways in which
“most” can be understood. In the context of Oort’s remark, “most” refers to density results for
isogeny classes of abelian varieties over finite fields. In Section 3.1.5 we will give an alternative
point of view based on counting CM fields of fixed degree and bounded discriminant, and use this
to develop a probabilistic approach to the Colmez conjecture.

To define the notion of a Weyl CM field, let £ = Q(«) be a CM field of degree 2g. Let mq (X))
be the minimal polynomial of « and denote its roots by oy = «, g, ..., a4, 0. Let age—1 1= oy

and agy = ag for{ = 1,...,g. Then E* = Q(a1,...,as,) is the Galois closure of E. Let Sy,

"The natural density of a set S of prime ideals of a number field L is defined by

d(S) := lim #{9 € S| Nrsglq) < X}
" X—oo #{q C O | qis a prime ideal with N jo(q) < X}’

provided the limit exists.
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be the symmetric group on the letters {a1, ..., as,} and Wy, be the subgroup of Sy, consisting of
permutations which map any pair of the form {ag;_1, ag;} to a pair {as;_1, agi}. The group Wy

is called the Weyl group. The Weyl group has order #W», = 29¢! and fits in the exact sequence
1 —(2)22)9 — Wyy — Sy — 1.

Now, it can be shown that the Galois group Gal(£*®/Q) is isomorphic to a subgroup of Wy,.
If E is a CM field such that Gal(E*/Q) = Wa,, then E is called a Weyl CM field. Thus, for a CM
field to be Weyl is analogous to the classical fact that the splitting field of a generic polynomial in

Q[X] of degree g has Galois group isomorphic to S, (see e.g. [Gal73]).
Theorem B. If E is a Weyl CM field, then the Colmez conjecture is true for E.

Remark 3.1.3. If £ is a CM field with [E : Q] = 4, the only possibilities for Gal(E?*/Q) are
Z]2Z x 7/2Z, Z/AZ or Dy. Therefore, since Dy = Wy, every non-abelian quartic CM field E is
Weyl. It then follows from Theorem B and the work of Colmez [Col93] and Obus [Obul3] that the

Colmez conjecture is true for every quartic CM field.

Remark 3.1.4. We emphasize that if g > 2 and E is a Weyl CM field of degree 2g, then E/Q
is non-Galois since #Gal(E*/Q) = 29¢g! > 2g = [E : QJ. In particular, any Weyl CM field of

degree 2g > 4 is non-abelian.

Remark 3.1.5. In Section 3.7 (see e.g. Remark 3.7.12), we will prove that the CM fields £
which appear in Theorem A are Weyl CM fields if and only if [F* : Q] = n!. In particular, if
[F* : Q] < nl, then the fields E are not Weyl CM fields, so that Theorems A and B can be viewed

as complementary to one another.

3.1.4 Explicit non-abelian Chowla-Selberg formulas

One important feature of the precise form of the Colmez conjecture for the CM fields appearing
in Theorems A and B is that it allows us to give explicit evaluations of Faltings heights of CM
abelian varieties.

Recall that for imaginary quadratic fields, the Colmez conjecture is a geometric reformulation

of the Chowla-Selberg formula which evaluates the Faltings height of a CM elliptic curve in terms
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of values of I'(s) at rational numbers. More precisely, if £ = Q(v/—D) and Xg is a CM elliptic

curve of type (Op, ®), then substituting (3.2) into (3.4) yields

D
hra(Xg) = —m S x_p(k)log (F (l’“))) +log (D)~ Llog(2n).  (39)
k=1

Now, if E is a CM field as in Theorem A or Theorem B, and X¢ is a CM abelian variety of

type (Op, ®), then the Colmez conjecture takes the form (see Proposition 3.5.1)

1L (xg/p,0) 1 |dE|
hpa(Xo) = —— ——2 2 g [ 2H
Fal( @) 2 L(XE/F7O) 4 O, ( dF )

where L(x g /F s) is the (incomplete) L—function of the Hecke character x g /F associated to the

- %log(Qﬂ), (3.6)

quadratic extension £/ F and dg (resp. dp) is the discriminant of E (resp. F'). In fact, we will
develop a probabilistic framework which predicts that the Colmez conjecture takes this form “most”
of the time (see Section 3.1.5). One reason for interest in this form of the Colmez conjecture is the
appearance of the L—function L(X g/, s), which allows us to give explicit “non-abelian Chowla-
Selberg formulas™ analogous to (3.5) which evaluate the Faltings heights of CM abelian varieties
in terms of values of the Barnes multiple Gamma function at algebraic numbers in F'. We will
study this problem extensively in the forthcoming papers [BS-M16a, BS-M16b]. Here we give an
example of such an evaluation for the Faltings height of the Jacobian of a genus 2 hyperelliptic

curve with complex multiplication by a non-abelian quartic CM field.

Example 3.1.6. Let £ = Q(\/W) Then E is a non-abelian quartic CM field of discrim-
inant dg = 1088 with real quadratic subfield F' = Q(+/2) of discriminant d = 8. Moreover, by
Remark 3.1.3 the CM field E is Weyl, hence the Colmez conjecture is true for E.

Now, by [BS15, Theorem 1.1 and Table 2b] with the choice [D, A, B] = [8, 10, 17], the Jaco-

bian J of the genus 2 hyperelliptic curve C' over Q(1/17) given by the equation
: 254 3v17 .
y? =28+ (3+V17)ad + (2) a4 (3 +5V17)2? (3.7)

- 9v1
+ (W) 2’ + (=244 8V1T)w 410 - 2V17

is a CM abelian surface defined over Q with complex multiplication by the ring of integers O of
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E'. The hyperelliptic curve C' is shown in Figure 3.1.

/\y

— N W A W

3,271y 1 2 3

31
41
51

Figure 3.1: The hyperelliptic curve C.

Since the Colmez conjecture is true for F, it follows from (3.6) that

1L (xg/r,0) 1
— 2T 2 Zog(136) — log(27). (3.8)
2 Ly m0) 1 g(136) — log(27)

Hence, to complete the evaluation of hgy (Jc), we need a two-dimensional analog of Lerch’s iden-

hea(Jo) =

tity for the logarithmic derivative of L(xpg/F, s) at s = 0. For this we require the Barnes double
Gamma function (see e.g. [Bar01, Shi77b]).

Letw = (w1,w2) € R? and z € C. Then the Barnes double Gamma function is defined by
FQ(Zaw) = F(va)_la

where

Fle.w) =z (1a()s + 3 m()

(i Ve
() mwy + nwsy P mwi + nwy  2(mwy + nwy)? )’
m,n

the product being over all pairs of integers (m,n) € 2220 with (m,n) # (0,0). The function

F(z,w) is entire, and the constants Y22 (w), 21 (w) are explicit “higher” analogs of Euler’s constant

Y-
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Given an element o € F, let (o) = aOp and a“ be the image of o under an automorphism
o € Gal(F/Q). We also let o denote the image of « under the nontrivial automorphism in
Gal(F/Q).

Let ® i/ be the relative discriminant, /v be the class number of £, and € > 1 be the generator
of the group O;’Jr of totally positive units of F'. Let By(t) = t> — t 4 1/6 be the second Bernoulli
polynomial.

In [BS-M16a], we use work of Shintani [Shi77b] to establish the following two dimensional

analog of Lerch’s identity (3.2),

L'(xg/r0)

L(xs,r0) = —log(Np/o(Dg/r)) (3.9)

¢ O] Y X (Dmye(z)log II ()

+
2h
E zeR(e,ng}F) c€Gal(F/Q)

+ € —2 g 1og(5/)w Z XE/F (QE/F<Z>) Ba(x),

2hEg
2€R(eDp ) p)
Z=x+Yye
where R (e, @E} ») is a finite subset of ’DTE} - consisting of the elements z = x + ye € ’}DE} 7 such
that
b x? y 6 Q’

e 0<x<1,0<y<1,and
® Dp/p(z) is coprime to D/ p.

Here we have Dp/p = (=5 — 2v/2) and € = 3 + 21/2. We wrote a program in SageMath

to compute the Shintani set R (e, ’D;J} ). This set can be visualized geometrically in Ri via the

embedding o — (a, &) as a finite subset of the Shintani cone
Cle) == {t1(1,1) + ta (e,€") [ t1 >0, t2 > 0} C R2

generated by the vectors (1,1) and (£, '), as shown in Figure 3.2.}

The shaded parallelogram in Figure 3.2 is the subset of the Shintani cone C(e) determined by the inequalities

0 <t1 <1landO <ty < 1, which correspond to the inequalities appearing in the definition of R (g, @E} )
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Figure 3.2: The embedding of R, @;} ) into C(g).

In order to give a uniform description of the points in R (e, @E} ), it is convenient to express

them in terms of a Z-basis for D!

E/F" In particular, for the Z-basis given by

642
—1
@E/F—Z-lJrZ-( - )

we find that

R(S,DE}F) = {zmm =—-m+ (4dm+n—1) <6‘§}/§> ‘ 0<m<8, ne S(m)},
where

{2,3,4}  ifm=0
{1,2,3,4} ifm=1,2,3
S(m) = ¢ {1,3} ifm =4

{0,1,2,3} ifm=5,6,7

{0,1,2}  ifm=38.
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We also wrote a program in SageMath to compute the character values

Cm,n ‘= XE/F(@E/F<Z7TL,TL>) € {£1},

which are given in Table 3.1.

Values of ¢, 1,

n m 0 1 2 3 4 5 6 7 8
0 1] 1 1 1
1 -1/-1] 1 |-1|1 1 1 | -1
2 -1 1 |-1]-1 -1/-1] 1 |-1
3 1] 1 1 1 -1 1 |-1]-1
4 1 1 1 | -1

Table 3.1: The character values ¢y n = Xg/r(D g/ (2mn))-

Since [0}, : Op] = 1 and hg = 1, the preceding calculations yield the following explicit

version of (3.9),

r ,
Dm0 s Z ennlog | T Ta(:5m (1,e%) (3.10)
L(xg/r;0) 2 0Emes s€Cal(F/Q) 7
nes(m)
42
——1 g(e).

Finally, by combining (3.8) and (3.10) we get an explicit evaluation of hpy (J¢) which is sum-

marized in the following theorem.
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Theorem 3.1.7. Let C be the genus 2 hyperelliptic curve over Q(\/17) defined by (3.7). The
Jacobian Jc is a CM abelian surface defined over Q with complex multiplication by the ring of
integers O of the non-abelian quartic CM field £ = @(\/—5—72\/5) with real quadratic subfield
F = Q(V/2). The Faltings height of Jc is given by

1 ag g
hea(Jo) = =7 D emnlog | J[ Ta(ef.. (1e7)
0<m<8 o€Cal(F/Q)

nesS(m)

2v2 1 17
+ 47 log(e) + 1 log <8> — log(27),

where zy, n, = —m+ (dm+n— 1)(6‘5}/5), £ = 3+ 2V/2, and the numbers c,, , € {£1} are given
in Table 3.1.

3.1.5 An arithmetic statistics approach to the Colmez conjecture

In this section we develop an approach to the Colmez conjecture based on the study of certain

problems of arithmetic distribution.
3.1.5.1 The density of Weyl CM fields when ordered by discriminant

A natural way to count number fields K/Q which satisfy some property is to order them by the
absolute value of their discriminant dx. Here we are interested in the problem of counting number
fields (and in particular CM fields) with a given Galois group. This problem has a long history and
has been studied extensively by many authors in recent years. See for example the excellent survey
articles [CDO06, Woo16].

We start by introducing some notation. If K/Q is a number field, we denote its isomorphism

class by [K/Q]. For a permutation group G on n letters, we define the counting function
No(G, X)) :=#{[K/Q] | [K : Q] =n, Gal(K®/Q) = Gand |dx| < X},

which counts the number of isomorphism classes of number fields K/Q of degree [K : Q] = n
such that the Galois group of the Galois closure K* is Gal(K*/Q) = G and such that |dx| < X.

Similarly, in order to count isomorphism classes of number fields with a specific signature
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(r1,72), where n = 1 + 219, we define the counting function
Nyy 7o (G, X) := #{[K/Q] € N,(G,X) | signature(K) = (r1,72)}.
Now, for CM fields we define the counting functions
CM,,(X):=#{[E/Q] | EisaCMfield, [F: Q] = nand |dg| < X}
and
CM, (G, X) = #{[E/Q] € CM,(X) | Gal(E®/Q) = G}.

We want to study the density of Weyl CM fields of fixed degree 2n when ordered by discrimi-
nant, i.e., we want to study the limit

lim CM?n(W2n7 X)
X —o00 CMgn (X) ’

PWeyl (2n) 1=
provided the limit exists. Conjectures of Malle [Mal02, Mal04] and various refinements (see e.g.
[Bha07, Woo16]) concerning asymptotics for the counting functions N, (G, X) and N, ,, (G, X)
suggest that this limit exists and is positive. This is of great interest, for if pweyi(2n) > 0 then
Theorem B implies that the Colmez conjecture is true for a positive proportion of CM fields of
fixed degree 2n when ordered by discriminant.

When n = 1, a CM field of degree 2 is just an imaginary quadratic field. In this case the Weyl

group Wy = 7Z,/27, so trivially every quadratic CM field is Weyl and hence

) CMs(Ws, X
pret(2) = lim S22, X)

= 1.
X—oo  CMy(X)

When n = 2, the situation is already much more complicated. The following table can be

extracted from [Coh03, p. 376], and strongly suggests that pwey1(4) exists and equals 1.
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X || OMy(Wy, X) | OMy(X) | S
10* 27 72 37.5%
10° 395 613 64.4%
106 4512 5384 83.8%
107 47708 51220 93.1%
108 486531 500189 97.3%
10° 4904276 4956208 98.9%
1010 || 49190647 49384381 99.6%
1012 || 4926673909 | 4929271179 |  99.9%

Table 3.2: Density of quartic Weyl CM fields.

In fact, we will appeal to the works of Baily [Bai80], Maki [Mik85], and Cohen, Diaz y
Diaz and Olivier [CDO02, CDO05, CDO06] to deduce the following result, which confirms the

computational observations from Table 3.2.

Theorem 3.1.8. The density of quartic Weyl CM fields is

. CMy(Wy, X
PWeyl(4) = )}gﬂoo CT\/L(}))

=1.

Remark 3.1.9. It follows from Theorem B and Theorem 3.1.8 that the Colmez conjecture is true
for 100% of quartic CM fields. On the other hand, we have already observed in Remark 3.1.3 that
the Colmez conjecture is true for every quartic CM field. Nonetheless, Theorem 3.1.8 supports our
belief that the probabilistic approach described here can be used to prove (at least in low degree)

that the Colmez conjecture is true for a positive proportion of CM fields of fixed degree. We are

currently investigating this problem for sextic CM fields.

3.1.5.2 Abelian varieties over finite fields and density results

We now explain how to use density results for isogeny classes of abelian varieties over finite

fields to prove probabilistic results about the Colmez conjecture.
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Let IF, be a finite field with ¢ = p" elements. Let a4 be a root of the characteristic polynomial
fa of the Frobenius endomorphism 7 4 of an abelian variety A/IF, of dimension g. It is known that
if A/F, and B/F, are isogenous abelian varieties, then f4 = fg.

Let A, (q) be the set of isogeny classes of abelian varieties A/F, of dimension g. Let Ky, =
Q(cva)® be the splitting field of f4 and Gal(Ky,/Q) be the Galois group. Kowalski [Kow06]
proved that the proportion of isogeny classes [A] € Ay(p™) which satisfy Gal(K;, /Q) = Wy,
approaches 1 as n — oo. We will show that if Gal(Ky,/Q) = Wy, and g > 2, then Q(a4) is a
non-Galois Weyl CM field of degree 2g > 4. By combining these results with Theorem B, we will

establish the following probabilistic result.

Theorem 3.1.10. Suppose that g > 2. Then

I #{[A] € A;(p") | Q(va) is a non-Galois CM field satisfying the Colmez conjecture}
im =

o #Aq (")

On the other hand, let A7 (q) be the set of isogeny classes of simple abelian varieties A/F, of

1.

dimension g. We will use work of Greaves-Odoni [GO88] and Honda-Tate (see e.g. [Tat71]) to
prove that given a CM field E' of degree 2¢g and an integer n > 2, there is a set of prime numbers
p € Z with positive natural density such that £ = Q(m4) for some simple abelian variety A/F,»
of dimension g. It seems likely that a modification of the methods in [Kow06] can be used to
prove that the proportion of isogeny classes [A] € A7 (p") which satisfy Gal(Ky, /Q) = Wy
approaches 1 as n — oo. As in Corollary 3.1.10, it would follow that if g > 2, then

i #{[A] € A3(p") | Q(m4) is a non-Galois CM field satisfying the Colmez conjecture } .
n0o #As (p) a

3.1.6  Outline of the proofs of the main results

We now briefly outline the proofs of Theorems A and B.

Let E be a CM field of degree 2n and ®(E) be the set of CM types for £. Let Q¢ be the
compositum of all CM fields. Then the Galois group G‘M := Gal(Q°M/Q) acts on ®(E) by
composition. By a careful study of the action of G on ®(E) and a theorem of Colmez [Col93,
Théoreme 0.3] which relates the Faltings height of a CM abelian variety X of type (Op, ®) to the

“height” of a certain locally constant function on G¢M constructed from the CM pair (E, ®), we
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will prove that the Faltings height of X depends only on the G¢M-orbit of ®. Given this result,
we will prove that if the action of G on ®(E) is transitive, then an averaged version of the
Colmez conjecture proved recently by Andreatta-Goren-Howard-Madapusi Pera [AGHM15] and
Yuan-Zhang [YZ15] implies the Colmez conjecture for E.

Now, let ® be a CM type and Eg be the associated reflex field. The reflex degree satisfies
[Es : Q] < 2". We will prove that the action of GEM on ®(F) is transitive if and only if
[Ep : Q] = 2™. In particular, by the results discussed in the previous paragraph, if [Fg : Q] = 2"
then the Colmez conjecture is true for E. This leads to the problem of constructing CM fields with
reflex fields of maximal degree.

Roughly speaking, Theorems A and B comprise two different ways of constructing infinite fam-
ilies of CM fields with reflex fields of maximal degree. Our approach to Theorem A is as follows.
Let F' be a fixed totally real number field of degree n > 3. Based on an idea of Shimura [Shi70],
in Section 3.7 we explicitly construct infinite families of CM extensions E/F" such that E/Q is
non-Galois and the reflex fields F¢ have maximal degree. This construction is quite elaborate, and
consists of two main parts. First, in Proposition 3.7.1 we explicitly construct infinite families of
CM extensions F/F with “arbitrary” prescribed ramification. Second, in Theorem 3.7.6 we prove
that if £/ F' is a CM extension satisfying a certain mild ramification condition, then the reflex fields
Eg have maximal degree, and moreover, if n > 3 then £/Q is non-Galois. By combining these
two results, we will obtain Theorem A. For the convenience of the reader, we have summarized
this construction in Section 3.7.4, Algorithm 1. On the other hand, to prove Theorem B, we will

show that the reflex fields of a Weyl CM field have maximal degree.
3.2 CM types and their equivalence

In this section we prove some important facts that we will need regarding CM types and their
equivalence.

Let Q°M be the compositum of all CM fields. Then Q¢ /Q is a Galois extension of infinite
degree, and the Galois group GEM := Gal(Q°M /Q) is a profinite group with the Krull topology.

Recall that the open sets of GEM with the Krull topology are the empty set @ and the arbitrary
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unions

| oi Gal(@“M/E),

i€l
where for every i € I we have o; € G and Q C E; € QM with [E; : Q] < oo and E;/Q
a Galois extension. The group G¢M is Hausdorff, compact, and totally disconnected (see e.g.
[Mor96, Chapter IV]). A function f : GEM — Q is locally constant if for each g € GEM, there is
a neighborhood IV, of g such that f is constant on V.

Let ¢ € GM denote complex conjugation.

Definition 3.2.1. Let E be a CM field of degree 2n. A CM type for E is a set ®g consisting of
embeddings £ < Q such that Hom(E, Q) = ®g ) c® . We denote the set of all CM types for
E by ®(E). The Galois group G acts on ®(FE) as follows. For & := {01,...,0,} € ®(E)

and 7 € GM Jet
T -Op =70 :={701,...,T0,} € D(E).

Two CM types &, @y, € ®(F) are said to be equivalent if they lie in the same orbit under the

GM, i.e., if there is an element 7 € G°M such that b = 7 - <I>;E.

action of
We also have the following alternative definition.

Definition 3.2.2. A CM type is a locally constant function ® : G¢™ — @ such that ®(g) € {0,1}

and ®(g) + ®(cg) = 1 for every g € GCM. We let
CM :={®: GM — Q| ®isaCM type}

be the set of all CM types. The Galois group G° acts on CM as follows. For ® € CM and
7€ GM, let 7- ® € CM be the CM type defined by

(1-®)(g) := ®(r71g) forevery g € GM.

Two CM types P, ®' € CM are said to be equivalent if they lie in the same orbit under the action

of GEM  i.e., if there is an element 7 € GEM such that ®(g) = &' (7~ g) for every g € GEM.
The following proposition gives a dictionary relating the two notions of a CM type and their
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equivalence.
Proposition 3.2.3. The following statements are true.
(i) Let E be a CM field and ® € ®(E). Define the function ® : GM — Q by

D(g) := Xo,(9lp), g€ GM

where X, denotes the characteristic function of the set ® g and g\, is the restriction of g to
E. Then ® € CM. Moreover, if ®, € ®(E) is equivalent to g and T € GM is such that

Oy =1 - D, then ' is equivalent to ® with ® = 7 - &',

(ii) Let & € CM. Then there exists a Galois CM field E such that for every g € G and every
h € Gal(QM/E), we have ®(gh) = ®(g). Moreover, if [g] := g Gal(Q“M/E) and we
define

dp = {0 € Hom(E, Q) | there exists g € G with o = g| and ®([g]) = {1}},

then & € ®(E). Finally, if ® € CM is equivalent to ® and 7 € G is such that
® = 7., then for every g € G and every h € Gal(Q°M/E), we have ®'(gh) = ®'(g),

and O is equivalent to g with O = 7 - O/
For clarity we divide the proof of Proposition 3.2.3 into the following two subsections.
3.2.1 Proof of Proposition 3.2.3 (i)
Let E be a CM field and & € ®(E) be a CM type for E. Define the function ® : G¢M —;
{0,1} by
®(9) = xaz(9lp), g€ M

where Yo, is the characteristic function of the set @ and g|r € Hom(FE, Q) is the restriction of
g to E. We now prove that & € CM.

Let g € GSM. Since Hom(E,Q) = &g ) cPp, we either have g|p € ®f or g|p € P, or
equivalently, g|p € ®g or (cg)|g € ®g. This proves that ®(g) + ®(cg) = 1. It remains to prove

that @ is locally constant. Let £/° be the Galois closure of E. Then E? is also a CM field (see e.g.
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[Shi94, Proposition 5.12]), and it follows that g Gal(Q“M/E*) is an open set containing g. Now,

observe that for any h € Gal(Q“M/E*), we have h|g = idg, so that (gh)|g = g|. Therefore

®(gh) = xa,((gh)|E) = xos(9]E) = (9),

which implies that ® is constant on g Gal(Q¢M /E*). Tt follows that ® is locally constant, and
hence ¢ € CM.
Now, suppose that ® 5 and <I>;3 are equivalent CM types for E. Let 7 € G°M be such & =
7'<I>/E. Then for an arbitrary element g € GSM, the corresponding CM types @, ' e CM satisfy
®(g9) = xo5(912) = X,a7_(9]2) = Xor (T 9)|E) = D (' g).

Therefore, ® is equivalent to &’ with ® = 7 - ®’. This completes the proof of Proposition 3.2.3
). O
3.2.2  Proof of Proposition 3.2.3 (ii)

The first assertion of Proposition 3.2.3 (ii) is proved in the following lemma.

Lemma 3.2.4. Let ® € CM be a CM type. Then there exists a Galois CM field E such that for

every g € GM and every h € Gal(Q°M/E) we have ®(gh) = ®(g).

Proof. Let g € GM. Since ® is locally constant, there exists an open set Uy containing g such

that @ is constant on U,. Now, by definition of the Krull topology we have

Uy = 9i Gal(Q“M/Ey),

iel
where for every i € I we have g; € G and Q C E; € QM with [E; : Q] < oo and E;/Q a
Galois extension. Since g € Uy, we have g € g;, Gal(Q“M/Ej;) for some ig € I. It follows that

g Gal(Q“M/E;,) C gi, Gal(Q°M/E;,). Let E, be any Galois CM field containing F;,. Then
g Gal<QCM/Eg) Cyg Gal(@CM/Eio) C i Gal(QCM/Eio) c Uy.

From the preceding facts, we conclude that
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{g Gal(Q“M/E,) | g € GM}

is an open cover of GEM such that ® is constant on each of the sets g Gal(Q“M /E,).

Now, since G¢M is compact, there exists a finite subcover

{95 Gal(@M/Ey,) Y1

for some elements g; € GM. Let E = Ey, --- Ey, be the compositum of the Galois CM fields
Egy,. Then E is a Galois CM field (see e.g. [Shi94, Proposition 5.12]). To complete the proof, we
will show that ® is constant on g Gal(Q°M /E) for every g € GEM.

Since @ is constant on each g; Gal(QM/ Ey; ), it suffices to show that there exists an integer

j €{1,...,7r} such that g Gal(Q°M/E) C g; Gal(QCM/Eg].). Since
{g; Gal(Q“M/ By}

covers GEM, there exists an integer j € {1,...,7} such that g € g; Gal(@CM/Egj). This implies
that g = g;h; for some h; € Gal(Q“M/E, ). Let o € g Gal(Q“M/E). Then o = gh for some
h € Gal(Q°M/E), hence o = g;hjh. Moreover, since Gal(Q“M/E) C Gal(Q“M/E,,), we
have hjh € Gal(QCM/Egj). It follows that o € g; Gal(QCM/Egj), and so g Gal(Q°M/E) c
gj Gal(Q°M/E,)), as desired. O

We now prove the second assertion of Proposition 3.2.3 (ii). Let ® € CM be a CM type. By
Lemma 3.2.4, there exists a Galois CM field E such that ® is constant on g Gal(Q“M /E) for every
g € GM. For notational convenience, we define [g] := g Gal(Q°™/E). Since E/Q is Galois,

we have Hom(E, Q) = Gal(E/Q), and
GEM

Gal(Q°M/E) =~ Hom(E, Q). (3.11)

Define the set
dp = {0 € Hom(FE, Q) | there exists g € GM with o = g|p and ®([g]) = {1}}.

We now show that & € ®(F).
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By (3.11), given an element o € Hom(E, Q), there is a unique coset
l9] € G/ Gal(@M /)

such that o = g|g. Since ® is constant on each coset [g], it follows that either ®([g]) = {0} or

®([g]) = {1}. Suppose that o ¢ ®5. Then ®([g]) = {0}, so that ®([cg]) = {1}. Moreover, we

have co = (cg)|p, and thus co € ®p, or equivalently, o € ¢c®p. A short calculation shows that

®pNcdp = 3. Hence Hom(E, Q) = @ ) c® g, and we conclude that @ € ®(E).

Finally, we prove the third assertion of Proposition 3.2.3 (ii). Suppose that d € CM is
equivalent to ®. Let 7 € G°M be such that ® = 7 - &, ie. ®(g) = ' (7 'g) for every
g € GM. Since ® is constant on Tg Gal(Q°M /E), it follows that for every g € G and
every h € Gal(Q°M/E), we have

’

®'(gh) = B(rgh) = B(rg) = ®'(9).
Let
®, := {0’ € Hom(E, Q) | there exists ¢ € G with o = ¢/|p and @ ([¢']) = {1}}.

We will prove that P = 7'<I>/E. We need only prove the containment @5 C TCI),E, since the reverse
containment can be proved mutatis mutandis. Let 0 € ® and let g € GSM be such that o = 9lE
and ®(g) = 1. Then this implies that &' (7—'g) = 1. Finally, let o’ := (7~ 'g)|z. Then o’ € @,
and moreover ¢ = 70/, so that o € T(I)/E. Hence &5 C 7'(1);3. This completes the proof of
Proposition 2.3 (ii). O

Important Remark. In light of Proposition 3.2.3, from here forward we will use the two
different notions of CM type and equivalence of CM types interchangeably, leaving it to the reader

to distinguish which notion is being used from the context.
3.3 Faltings heights and the Colmez conjecture

In this section we review the statement of the Colmez conjecture, following closely the discus-
sion in [Col98] and [Yan10b].

We begin by recalling the definition of the Faltings height of a CM abelian variety. Let F' be a
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totally real number field of degree n. Let E/F be a CM extension of F' and ® € ®(E) be a CM
type for E. Let X¢ be an abelian variety defined over Q with complex multiplication by O and
CM type ®. We call Xg a CM abelian variety of type (Og, ®). Let K C Q be a number field over
which Xg has everywhere good reduction and choose a Néron differential w € H%(Xg, Q}(}).

Then the Faltings height of X¢ is defined by

1
hra(Xeo) := “3K . Q Z log
’ o:K—C

/ w A w?
Xg(C)

The Faltings height does not depend on the choice of K or w. Moreover, Colmez [Col93] proved
that if X¢ and Yo are CM abelian varieties of type (O, ®), then hpa(Xo) = hra(Ys), i.e., the
Faltings height depends on the CM type @, but does not depend on the choice of CM abelian variety
Xo.

Let H(GM, Q) be the Hecke algebra of Schwartz functions on the Galois group G¢M which
take values in Q (see e.g. [Win89]). This is the Q-algebra of locally constant, compactly supported
functions f : G¢M — Q with multiplication of functions fi, fo € H(GM, Q) given by the

convolution

(1 fa)lg) = / £ (1) fa(h™g) du(h).

GEM

Here 4 is the left-invariant Haar measure on G¢M, normalized so that

Vol(GEM) = / du(g) = 1.

GEM
The Hecke algebra H (GM, Q) is an associative algebra with no identity element. For a func-
tion f € H(GM, Q), the reflex function f¥ € H(GM, Q) is defined by f¥(g) := f(g—1). We

define a Hermitian inner product on H (G, Q) by

(ot = [ SO0 dulh)

Let H2(GM, Q) be the Q-subalgebra of H(GM, Q) of class functions, i.e., the Q-subalgebra
of functions f € H(GM, Q) satisfying f(hgh™') = f(g) for all h, g € G°M. It is known that

an orthonormal basis for H°(G°M Q) is given by the set

{xx | m an irreducible representation of G}
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of Artin characters ., associated to the irreducible representations 7 of GEM.,

There is a projection map
H(GM,Q) — H(GM,Q)
f 10
defined by

@)= [ Hhgh™) du(h).
GEM
As a map of Q-vector spaces, it corresponds to the orthogonal projection of H (GCM,@) onto
HO(GM, Q). In particular, one has

£O=> (X)X

X

Define the functions

20%,5) = U ) and panl£7) = S0 ) o)

X7 X

where L(r, s) is the (incomplete) Artin L—function of x, and f, . is the analytic Artin conductor

of xr.
If & € CM is a CM type, we define the function Ag € H(GM, Q) by

Acp = x (I)V.
Colmez [Col93] made the following conjecture.

Conjecture 3.3.1 (Colmez [Col93]). Let E be a CM field, ® be a CM type for E, and X be a CM
abelian variety of type (Op, ®). Let Ap o = [E : Q| Ag. Then

1
hral(Xo) = —Z(A% 4,0) — §MArt(A%,¢>)-

Colmez [Col93] proved Conjecture 3.3.1 when E/Q is abelian, up to addition of a rational
multiple of log(2) which was recently shown to equal zero by Obus [Obul3]. Yang [Yan1Oa,
Yan10b, Yan13] proved Conjecture 3.3.1 for a large class of non-biquadratic quartic CM fields,

thus establishing the only known cases of the Colmez conjecture when F /Q is non-abelian.
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3.4 The average Colmez conjecture

Let F be a totally real number field of degree n. Let E/F be a CM extension of F' and ®(E)
be the set of CM types for E. There are 2" CM types ® € ®(FE). By averaging both sides of
Conjecture 3.3.1 over ®(E), one gets the conjectural identity

1 1 o 1 o
on Z hal(Xo) = on Z (—Z(AE,@ 0) — iﬂArt(AE,q>))~ (3.12)
DED(E) PED(E)

The average on the right hand side of (3.12) can be simplified. Namely, by [AGHM 15, Proposition
8.4.1] we have

1 0 1 0 _ 1L(xgr,0) 1 |dE|
2n¢§m( Z(Ag.e,0) 2uArt(AE,@))— 3 T(xoyr0) 1los (g (3.13)

— g log(2),

where L(x g /F> s) is the (incomplete) L—function of the Hecke character x /F associated to the
quadratic extension E/F and dg (resp. dp) is the discriminant of E (resp. F)).

These identities yield the following averaged version of the Colmez conjecture.

Conjecture 3.4.1 (The Average Colmez Conjecture). Let F' be a totally real number field of degree
n. Let E/F be a CM extension of F, and for each CM type & € ®(F), let Xg be a CM abelian

variety of type (O, ®). Then

—= 0
2 L(xg/r,0) 4

Conjecture 3.4.1 was recently proved independently by Andreatta, Goren, Howard, Madapusi

1
on Z hpa(Xe) =

1L (xg/r,0) 1, (!dE!
Ped(E)

n
— —log(2m). .14
T - Glesen. 69
Pera [AGHM15] and Yuan-Zhang [YZ15].

Theorem 3.4.2 (|[AGHM15], [YZ15]). Conjecture 3.4.1 is true.

3.5 The action of G on ®(F) and the Colmez conjecture

In this section we prove the following result.

Proposition 3.5.1. Let F' be a totally real number field of degree n. Let E/F be a CM extension
of F and ®(E) be the set of CM types for E. If the action of GM on ®(E) is transitive, then
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Conjecture 3.3.1 is true. In particular, if & € ®(E) and Xo is a CM abelian variety of type
(Op, D), then

1L (xg/r,0) 1
hra(Xe) = —§m 1 log <

lds]

n
ar ) - 510g(27r). (3.15)

We will need the following two crucial lemmas.
Lemma 3.5.2. If &1, ®5 € CM are equivalent CM types, then A%l = A%Q.

Proof. Since the CM types ®; and ®, are equivalent, there is an element 7! € G°M such that

®1(g) = Po(7g) for every g € GEM. Then we have

A3 (g) = / Agy (hgh™) du(h)
GeMm

/ / £)®Y (t~ hgh™1) du(t)du(h)
GeM Jgem

/ / £)®1 (hg~ h~1t) dpu(h)dp(t)
GCM GCM

- / / Do (rt)Da(rhg ™ h"t) du(h)dp(t)
GeM JGgem

= /GCM Dy (1) (/GCM Oo(thg *h~tr1rt) du(h)) du(t). (3.16)

Now, define the function f, - +(h) := ®2(hg~'h~1rt). Then the inner integral in (3.16) can be

written as

/ <I)2(Thg_1h_17'_17't) du(h) :/ fort(Th) du(h)
GEM GEM
= / fort(h) dp(h)
GEM

= / o(hg *hlrt) du(h), (3.17)
GeM

where in the second equality we used the left-invariance of the Haar measure. We substitute the
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identity (3.17) for the inner integral in (3.16) and continue the calculation to get

Ao = [ waee) ([ ®athg om0 du) ) dute)

~ [ (L, @@ n rn aute)) dnio
[ (], 2matng™ 10 auo)) i

= [ (], 2005 i) ) dut

- / Ag,(hgh™") dpu(h)
GCM

= A3, (9),

where in the third equality we again used the left-invariance of the Haar measure. O

Lemma 3.5.3. Let E be a CM field, let ®1 and ®3 be CM types for E, and let Xo, and X¢, be
CM abelian varieties of types (O, ®1) and (O, ®2), respectively. If ®1 and P9 are equivalent,

then

hial(Xo,) = hpat( X, )-

Proof. Let X¢ be a CM abelian variety of type (Op, ®). Then by Colmez [Col93, Théore-me 0.3],

there is a unique Q-linear height function ht : H°(G™, Q) — R such that
hra(Xa) = ~hi(A%0) — L jan(AL 0). (3.18)
Since ¢, and @, are equivalent, by Lemma 3.5.2 we have A%l = A%Q, so that
Apa, = [E: QAs, =[E: QAg, = Afq,.
It follows from (3.18) that hp.(Xe,) = hra(Xs,). O

Proof of Proposition 3.5.1. Fix a CM type &y € ®(E), and let X4, be a CM abelian variety
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of type (Op, ®o). Since the action of GEM on ®(E) is transitive, we have

hral(Xo,) = Z hra(Xo)
" wéan)

1
~ on Z (—Z(A%@,,O) - QﬂArt(AOE@;)) (3.19)
PeP(F)

1
Z(AE<I>07) iﬂArt(A%,cbo)?

where the first equality follows from Lemma 3.5.3, the second equality is the identity (3.12) (which
is equivalent to Theorem 3.4.2), and the third equality follows from Lemma 3.5.2. Since ®( was
arbitrary, this proves Conjecture 3.3.1. The identity (3.15) for the Faltings height then follows from
(3.19) and (3.13). O

3.6 The action of G on ®(F) and the reflex degree

In this section we relate the action of G on ®(E) to the degree of the reflex field of a CM
pair (E, ®).
Let Gy = Gal(Q/Q) be the absolute Galois group. The following result can be found in

[Mil06, Proposition 1.16] and [Shi98, Proposition 28], for example.

Proposition 3.6.1. Let E be a CM field and ® be a CM type for E. Then the following conditions

on a subfield Eg of Q are equivalent.
(i) We have
{0 € Gg | ofixes Es} = {0 € Gg | 0 = D},
that is, Gal(Q/Eg) = Stabg, ().

(ii) Eo = Q({Tro(a) | a € E}), where Trg(a Z ¢(a) is the type trace of a € E.
pcd

Definition 3.6.2. The field E3 satisfying the equivalent conditions in Proposition 3.6.1 is called

the reflex field of the CM pair (E, ®).

Let £° denote the Galois closure of F.
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Proposition 3.6.3. Let E be a CM field of degree 2n and ® be a CM type for E. Then
[Eo : Q] = #(Gal(E*/Q) - ).
In particular, [Eg : Q] < 2™

Proof. By Proposition 3.6.1 (ii) we have Ep C E*, hence one can replace Q with E* and G with
Gal(E®/Q) in Proposition 3.6.1 (i) to conclude that

Gal(Es/Ecp) = StabGal(Es/Q)(tID). (3.20)

Then using the fundamental theorem of Galois theory, identity (3.20), and the orbit-stabilizer the-

orem, we have
[Eo : Q) = [Cal(E*/Q) : Gal(E*/Eq)] = [Gal(E*/Q) : Stabgaz o) (P)]
= #(Gal(E°/Q) - @).
Finally, since Gal(E*/Q) - ® C ®(E) and #®(E) = 2", it follows that [Eg : Q] < 2". 0

Corollary 3.6.4. The action of GM on ®(E) is transitive if and only if [Eg : Q] = 2™ for some

CM type ® € ®(E).
Proof. Since E° is a CM field, we have
Gal(E*/Q) - & = GM . 3.

The result now follows from Proposition 3.6.3 and the fact that #®(F) = 2. O

3.7 CM fields with reflex fields of maximal degree

Let F be a totally real number field of degree n. In the paragraph following [Shi70, (1.10.1)],
Shimura briefly sketched the construction of a CM extension £/ F' with reflex fields of maximal de-
gree. Based on this idea, we undertake an extensive study of the problem of constructing CM fields
with reflex fields of maximal degree and explicitly construct infinite families of CM extensions

E/F with this property. When n > 3 these CM fields E are non-Galois over Q.
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We begin with the following facts and notation which will be needed for the results in this

section.
3.7.1 Multiplicative congruences, ray class groups, and higher unit groups

Let K be a number field. For a prime ideal 3 of K, let vp : K — Z U {oo} be the discrete
valuation defined by vg(x) := ordg(x). Also, let Kq be the completion of K with respect to the
B-adic absolute value | - |z induced by the valuation vyz. We denote the ring of ‘B-adic integers by
Og. The unique maximal ideal of Oy is QA3 = POx.

LetU := (’);; be the group of units of Oy. For any n > 1, there is a subgroup of U defined by

UM =14 B O,
called the n-th higher unit group. The higher unit groups form a decreasing filtration
UouWou@o...oyum o,
For elements «, 5 € K, we define the multiplicative congruence by

a=8 (modP") < ac B(1+P"Oy).

Thus we see that equivalently

11k

B (mod P") — %EU(") — vm<g—1> > n.

Let mg be an integral ideal of K and m, be the formal product of all the real infinite primes
corresponding to the embeddings in Hom (K, R). Define the modulus m := mgmy,. Then we

extend the multiplicative congruence by setting

=B (mod P* (™))  for all 3|my, and

Q
11l

aZ=B (mod m) <—
—= >0 for all o € Hom(K, R).

The multiplicative congruence is indeed multiplicative, i.e., if

X

ap =01 (modm) and «y
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then
o109 = B1B2  (mod m).
Let Zx (mp) be the group of all fractional ideals of K that are relatively prime to mg. Let
K :={z € K* | zOk is relatively prime to mg and =1 (mod m)}

be the ray modulo m and Pg (m) be the subgroup of Zx (mg) of principal fractional ideals O

generated by elements @ € Ky, 1. Then the ray class group of K modulo m is the quotient group
RK(m) = IK(mo)/PK(m).
A coset in the ray class group is called a ray class modulo m.

3.7.2  Constructing CM extensions with prescribed ramification

In the following proposition we explicitly construct infinite families of CM extensions with
“arbitrary” prescribed ramification. This is a variation on [Shi67, Lemma 1.5], adapted to the

particular setting we will consider.

Proposition 3.7.1. Let F' be a totally real number field. Let p € Z be a prime number and m > 1
be a positive integer. Let p be a prime ideal of F' lying above p. Let R be a finite set of prime ideals
of F not dividing pm. Let Uy and Uy be finite sets of prime ideals of F' not dividing 2pm such that
R, Uy and Uz are pairwise disjoint. Then there is a set Sg p, of prime ideals of F' which is disjoint

Sfrom R UUy UUs U {p} such that the following statements are true.
(i) Srp has positive natural density.
(ii) Each prime ideal q € Sy y is relatively prime to pm.
(iii) For each prime ideal q € SR p, there is an element Ay € O with prime factorization

AGOF = pq H t.
teR

(iv) The field Eq := F(\/Ay) is a CM extension of I’ which is ramified only at the prime ideals

of F dividing Ay. Moreover, each prime ideal in Uy splits in Eq and each prime ideal in U
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is inert in E.

Remark 3.7.2. Note that if q;, q2 € Sg With q1 # g2, then the associated CM extensions Eg, /F
and E,,/F are distinct since they are ramified only at the primes in the sets R U {p,q;} and

R U {p, q2}, respectively.
In order to prove Proposition 3.7.1 we will need the following two lemmas.
Lemma 3.7.3. Let S be a set of prime ideals of F and suppose that e € 7 satisfies
e > 2max{vp(2) | P € S} + 1.
Then for any prime ideal P € S, if « € F* and « =1 (mod B€) then Fp(y/a) = Fip.

Proof. Let P € S. Observe that Fig(y/a) = Fy if and only if « is a perfect square in Fiy.
Let Oy be the ring of integers of Fi and U ) =14+ B"Og be the n-th higher unit group.
Let vp : ' — 7Z U {oo} be the discrete valuation given by vp(x) := ordp(x). By [Wei98,
Proposition 3-1-6, p. 79], if m,i € Z are integers with m > 1 and i > vp(m) + 1, then the map
b 2 U — U+es(m) given by ¢, () := 2™ is an isomorphism. In particular, when m = 2
the surjectivity of the map ¢2 implies that every element of U (i+vp(2)) is a perfect square.

Now, let ¢ := max{vp(2) | ¥ € S} + 1. Then because i > vyp(2) + 1, every element of

U+vn(2) js a perfect square. On the other hand, if e € Z satisfies
e > 2max{vp(2) | P € S} + 1,
then e > i 4 vg(2). Since the higher unit groups form a decreasing filtration, it follows that
Ut c glitep2),

In particular, every element of U(®) is a perfect square. Finally, since o =1 (mod P3¢) implies

that o« € U(®), the proof is complete. O

Lemma 3.7.4. For each prime ideal B of I, there exists an element csp € Op such that Fig(, /oep)

is an unramified quadratic extension of Fy.
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Proof. Up to isomorphism, there is a unique unramified quadratic extension of Fi, and moreover,
it can be obtained by adjoining to Fip a lifting of a primitive element for the unique quadratic

extension of the finite field
Op/POgp
(see e.g. [Chi09, Theorem 1.2.2, p. 14] or [KKS11, Proposition 6.54]). Thus, let
f(x) == 2 + @iz + ap € Op/ROpl]
be an irreducible quadratic polynomial. It is known that the homomorphism
¢ : Op — Ogp/PBOgp
a— a+ POy

has kernel B3 and is surjective (see e.g. [Neu99, Propositions 11.4.3 and I1.2.4] or [FT93, Theorem
11(c)]). Thus every coset of Og/POxy: has a representative in Op. Let ag, a; € Op be such that
ag = ap + POy and a1 = a1 + POsyp. Then define the polynomial

f(-%') = g2 +a1x +ag € (’)F[ac] C Fqg[x]

It follows that f(x) is irreducible in Fip[x], and moreover by the quadratic formula its roots have

the form

—a1 \/a% —4dag
5 .

Hence by taking asp := a?—4ap € Op, we see that Fip(/0sp) is an unramified quadratic extension

of Fiy. O
Proof of Proposition 3.7.1. Define the following disjoint sets of prime ideals of F.
Ti:= (U U{P C Of | B divides pm}) ~ {p},

To = (Us U{ C Op | 9 divides 2}) ~ (T; UR U {p}).
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Now, fix an integer e € Z satistying
e > 2max{vp(2) | P TTUT}+ 1.

Then by Lemma 3.7.3, for any prime ideal p € 73 U 7, if « € F* and « =1 (mod ¢) then
Fp(y/a) = Fg. Also, as in Lemma 3.7.4, for each prime ideal i € 75, let asp € Op be such that
Fy(,/asp) is an unramified quadratic extension of Fiy.

Let m, be the formal product of all the real infinite primes corresponding to the embeddings
in Hom(F, R). By an application of the Approximation Theorem (see e.g. [Jan96, pp. 137-139]),

there exists an element @ € F'* satisfying the following congruences.

(1) a= -1 (mod ms).
?2) a =1 (mod 3¢) for every P € 7.
(3) a= asp (mod P¢) for every B € Ts.

Define the integral ideal

mp = H ‘Be

PeT1UT2

and the modulus m := momy,. Let Rp(m) be the ray class group modulo m. Observe that the

fractional ideal

no=ap !t [[7 (3.21)

teR
is relatively prime to mg. Then we can define the set of prime ideals
S(n) :={q C OF | qis a prime ideal and [q] = [n] in Rp(m)}.
Also, define the set of prime ideals

Spp=8SM) N (TTIUT2URU{p}).

To prove Proposition 3.7.1 (i), it is known that the set S(n) has natural density

L #{qa € S(n) | Npglq) < X} _ 1
d(S(n) = Xlgnoo #{a9 C Or | qis a prime ideal with Np/q(q) < X}  #Rp(m)’
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Since the set 71 U T2 U R U {p} is finite, we also have

155) = sty

To prove Proposition 3.7.1 (ii), note that if ¢ € Sg, then q & 71 U {p}, hence q is relatively
prime to pm.
To prove Proposition 3.7.1 (iii), let ¢ € Sg . Since [q] = [n] in R p(m), there exists an element

by € F* such that
4) by =1 (mod m) and q = byn.
By (3.21) and (4) we have

q= abqp_1 H L
teR

Define A := aby. Then

AqOp = abgOp =pq [ ] = (3.22)
t€R

Note that this also proves that A, € Op.
Finally, define the field Ey := F'(1/Aq). Then Proposition 3.7.1 (iv) is a consequence of the

following lemma.

Lemma 3.7.5. Let a € F'* be an element satisfying (1) —(3) and by € F* be an element satisfying
(4). Let Aq := abq € Op. Then the field Eq := F(\/Aq) is a CM extension of F' which satisfies

the following properties.
(i) Eq is ramified only at the prime ideals of F dividing A,.
(ii) Each prime ideal in Uy splits in Eq and each prime ideal in Us is inert in E.

Proof. Since the prime ideals p, g and v € R are all distinct, the identity (3.22) shows that A is not
a perfect square in F'. Also, by (1) and (4) we have A, = ab, =1 (mod my,), or equivalently
Ay < 0. These facts imply that Ej is a totally imaginary quadratic extension of F’, hence a CM

field.
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Now, since Aq € O we have \/Aq € O, . Then by (3.22) we have

2
p0£,408, [ ] 1On, = 2408, = (VAq08,) -
teER

This implies that each of the prime ideals of F' dividing A is ramified in . Thus, to prove (i), it
remains to show that if 3 is a prime ideal of F' not dividing A, then 3 is unramified in Ej.

It is known that if K is a number field and « is a root of the polynomial
f(z) = 2% - B € Oglz],

then any nonzero prime ideal ‘3 of K such that 3 does not divide 2/ is unramified in L := K («)
(see e.g. [KKS11, Example 6.40, p. 59]). Therefore if 3 is a prime ideal of F' such that *J3 does
not divide 2A, then *P is unramified in £;. Thus it suffices to prove that if 93 is a prime ideal of F
such that 3 divides 2 and P does not divide A, then B is unramified in Fj.

By (3.22) we know that the prime ideals of F' that divide A4 are the primes in the set RU{p, q}.
Therefore from the definitions of 7; and 75 we see that the set of prime ideals B of F’ such that 3
divides 2 and P8 ¢ R U {p, q} is a subset of 7; U T5. Hence, in the remainder of the proof we will
show that the prime ideals in 77 U 7> are unramified in E;. In fact, we will show that the prime
ideals in 77 split in £, and the prime ideals in 75 remain inert in Fy. Since Uy C 71 and Us C Ta,
this will also complete the proof of (ii).

Thus let P € 71 U T3 and let Q be a prime ideal of E; lying above . Also, let ‘i} and Q
denote the unique prime ideals in the completions Fiy and E o, respectively. It is known that the

ramification indices are the same, i.e., we have

e(QIP) = e(QIF).

We will show that e(Q[R) = e(Q|B) = 1.

The minimal polynomial of the primitive element /A, of E; over F is
ma,(z) = 2% — Ay € Oplz].
It is known that the primes of Ej lying above ‘B are in one to one correspondence with the irre-

ducible factors of ma (x) when considered as a polynomial in Fiz[x] and moreover, if 9 corre-
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sponds to an irreducible factor m;(x), then the completion of F; at Q satisfies

(my(z))
(see for example [Jan96, Theorem I11.6.1, p. 115]).

We have two cases to consider.

Case 1: P € 7;. In this case the congruences (2) and (4) satisfied by a and b, imply that

Ay = abg =1 (mod B€). Hence by Lemma 3.7.3 we conclude that Fig(\/Ay) = Fy. This

implies that there is an element ¢ € Fig such that A; = 2. Therefore the polynomial ma ()
factors as

ma,(z) = 2> — & = (z — ¢)(z + ¢)
in Fig[z]. Since the prime ideals of F; lying over 3 are in one to one correspondence with the

irreducible factors z — c and x + ¢, and since F,/F is a quadratic extension, we see that *P splits
in Ejy, so that e(Q|P) = 1.

Ay =

Case 2: P € 7. In this case the congruences (3) and (4) satisfied by a and by imply that
= ab = asp (mod P€), or equivalently,

B9 2

o (mod P°).

Hence by Lemma 3.7.3, we have A = c2ozq3 for some c € ng, which implies that
Fp(vAq) = Fp(y/ag).

On the other hand, by Lemma 3.7.4 we have that Fip(,/csp) is an unramified quadratic extension

of Fiy. It follows that ma (z) is irreducible in Fig[z]. Thus Q is the only prime ideal of E, lying
above B and it corresponds to ma, (z) = x> — A4. Therefore we have

~ _Fpla]
Eya = *

g @) T3V

This implies that E o is an unramified quadratic extension of Fis, hence e(Q|P) = 1. Therefore
e(Q|P) = 1, and in particular P remains inert in E.

O
This completes the proof of Proposition 3.7.1.

U
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3.7.3 Constructing non-abelian CM fields with reflex fields of maximal degree

In the following theorem we prove that if E/F is a CM extension satisfying a certain mild
ramification condition, then the reflex fields 3 have maximal degree, and moreover, if n > 3 then

E/Q is non-Galois.

Theorem 3.7.6. Let F' be a totally real number field of degree n. Let p € 7 be a prime number
that splits in the Galois closure F'° and let p be a prime ideal of F' lying above p. Let dps be the
discriminant of F'* and L be a finite set of prime ideals of F not dividing pdps. Then if E/F is a
CM extension which is ramified only at the prime ideals of F in the set L U {p}, the reflex degree
[Eg : Q] = 2" for every CM type ® € ®(E). Moreover, if n > 3 then E/Q is non-Galois (hence

non-abelian).

We will prove Theorem 3.7.6 using a sequence of five lemmas which are now proved in suc-

cession.

Lemma 3.7.7. Let F be a totally real number field of degree n. Let E/F be a CM extension and
O ={01,...,0,} € ®(FE) be a CM type for E. Let Eg be the reflex field of the CM pair (E, ®).

Then
EeF® =E°' ... " = E°.
Proof. We first prove that
E? - E™ C EgF".

It suffices to show that 0(c) € EgF® forallc € Eand j = 1,...,n. Let ai,...,a;, be an

integral basis for F'. By Proposition 3.6.1 (ii), the reflex field of the CM pair (E, ®) is given by
Ep =Q({Tre(a) | a € E}),

oj(a). Thenforallc € Eandi =1,...,n, we have

where Trg(a) =
i=1

J

TI‘@(CC%) = ZJj(COéZ‘) = Zaj(ai)aj(c) € Fg.
i=1 j=1
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In particular, there are elements 3; € Eg such that

Z oj(ai)oj(c) = Bi
=1

for¢ =1,...,n. This yields the linear system
01(041) 02(041) Un(Oq)
o1(ag) o2(a2) on(a2)
_Ul(an) o2(an) Un(an)_

a1(c) b1
o2(c) _ B2
On (C)_ _Bn_

The matrix [o;(c;)] € M™™(F*#), and it is invertible since det [0;(c;)]* = dp # 0. It follows

from Cramer’s rule that

o1(a1) oi—1(1) Br1 ojyi(aa) on(a1)
det
01 (an) Uj—l(an) Bn 0j+1 (an) Un(a
oj(c) = (3.23)
o1(ar) on(a)
det
o1(an) on (o)

forj =1,...,n. Since 0j(cy) € F*and f5; € Eg fori,j = 1,...,n, the denominator in (3.23)

is in ' and the numerator is in Eg F'*. Therefore, 0j(c) € EgF* forallc € Eandj =1,...,n,

which implies that

E°t ... Fo" C EgF*.

On the other hand, since the compositum of all the conjugate fields of a number field is equal to

its Galois closure, and since complex conjugation is an automorphism of £ that commutes with

every embedding (see [Shi94, Proposition 5.11]), we have E* ... F9» = E*. Therefore, since

EeI'® C E?*, we conclude that

EgF* = E°' ... E%" = B,
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Lemma 3.7.8. Let F be a totally real number field of degree n. Let p € Z be a prime number that
splits in the Galois closure F'* and let p be a prime ideal of F lying above p. Let E/F be a CM ex-
tension and ® = {o1,...,0,} € ®(E) be a CM type for E. Then the ideals p°* Ops, ..., p’"Ops

are pairwise relatively prime.

Proof. Suppose that 3 is a prime of F'® lying above p. Thus ‘B also lies above p € Z. Since F**/Q
is Galois, we have

pOrs= [ o). (3.24)

seGal(F*/Q)
Moreover, since p splits in F'*, then o () # 7(*B) for any o, 7 € Gal(F*/Q) with o # .

Now, let G; := Gal(F*¢/F°) fori = 1,...,n. Foreachi = 1,...,n we have that p7i is a
prime ideal of F'?¢ lying above p. Hence p? also splits in F'*. Let 5; € Gal(F'*®/Q) be an extension
of the embedding o;|r : F' — F*,i.e. ;| = o;|r. It follows that &;(*B3) lies above p?, and since
the extension F'* / F'7¢ is Galois, we have

p70ps = [[ o@®) = [] 7.

o€, T€G;6;
Since G;0; C Gal(F*/Q) fori = 1,...,n and o(P) # 7(P) for any o, 7 € Gal(F*/Q) with
o # T, it suffices to prove that G;0; N Gjo; = @ fori # j.

Suppose by contradiction that there exists an element o € G;0; N G0, for i # j. Then there
are elements 7; € G; and 7; € G such that 0 = 7;6; and 0 = 7;0;. Since {o1,...,0,} isaCM
type for E, then Hom(F, Q) = {o1|p, ..., 0n|r} and therefore the embeddings o;|r and 0| are
different. Hence there is an element z € F such that o;(x) # o;(z). Since o;(x) € F? and

7i|Fei = idpos, it follows that
oi(z) = 0i(x) = 7;(0i(x)) = 7j(0;(2)) = 7j(x) = 0j(z),

which is a contradiction. Thus for ¢ # j, we have G;0; N Gj0; = @, which shows that the ideals

p?: O3 and p?: O3, are relatively prime. O

For an extension of number fields L/K, let ©(L/K) be the relative different, which is an

integral ideal of L.

75



Lemma 3.7.9. Let F be a totally real number field. Let p € Z be a prime number that splits in
the Galois closure F* and let p be a prime ideal of F lying above p. Let L be a finite set of prime
ideals of F not dividing pdps. Let E/F be a CM extension which is ramified only at the prime
ideals of F' in the set LU {p}. Then

D(EF*/F*) = D(E/F)Opp:.

Proof. We have the following towers of fields.

F? /EFS\ E
A

Since the relative different is multiplicative in towers, we have the identity
D(EF°/F*)D(F°/F) =9(FEF°/E)D(E/F). (3.25)

We will prove that ©(EF*®/F*) and ®(EF*/E) are relatively prime, and that ®(F*/F') and

D(E/F) are relatively prime as ideals in Ogps. Then (3.25) would imply that
D(EFS/F*) = D(E/F)Opp-. (3.26)

First, we prove that © (F*/F') and © (E/ F) are relatively prime as ideals in Ogps. To see this,

suppose by contradiction that there is a prime ideal P rrs of Ogps such that
mEFs|@(FS/F)OEF5 and mEFS |®(E/F)OEF5

Define the prime ideals Br := PVprs N Op, Prs := Pprs N Ops and Pg := Pprs N Op. Then
P is a prime in F* that divides © (F*°/F') and hence Pr = Pprs N O ramifies in the extension
F#/F. Similarly, P is a prime ideal of E that divides ©(E/F') and hence Pr = Pr N OF
ramifies in the extension F/F.

Now, since the only primes of F' that ramify in E are the primes in the set £ U {p}, it follows
that Pr = p or Pr = [ for some [ € L. We will see now that each of these two possibilities leads

to a contradiction. If 3 = p, then p would be ramified in F'*. But this would contradict the fact
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that p splits in F'®, since p lies above p. On the other hand, if B = [ for some [ € L, then [ would
be ramified in £'°. Hence the rational prime ¢ such that {Z = [N Z would be ramified in F'®, which
implies that ¢ divides dps and hence that [ divides drs. However, this is a contradiction since we
assumed that the prime ideals in the set £ do not divide pdps. Thus ®(F*/F) and ©(E/F) are
relatively prime as ideals in Ogps, as claimed.

Next, we prove that O (EF*®/F?) and ©(EF*/FE) are relatively prime. By [Rib01, Section
13.2, U. (1), p. 253], we have that ©(EF*/F?*) divides ©(E/F)Ogps and D(EF?/E) divides
D(F*/F)Ogps. Since we proved that the ideals © (E/F)Ogps and © (F*/ F)Opps are relatively
prime, it follows that © (E'F*/F'*¥) and © (EF*/E) are relatively prime. This completes the proof
of the lemma.

O]

For an extension of number fields L/K, let 9(L/K) be the relative discriminant, which is an

integral ideal of K.

Lemma 3.7.10. Let F' be a totally real number field of degree n. Let p € Z be a prime number
that splits in the Galois closure F® and let p be a prime ideal of F lying above p. Let L be a finite
set of prime ideals of F' not dividing pdps. Let E/F be a CM extension which is ramified only at
the prime ideals of F in the set LU {p}. Let ® = {o1,...,0,} € ®(E) be a CM type for E. Then
the relative discriminant 9(E% F'* | F'*) is divisible by p? Ops, but relatively prime to p°i Ops for
J# i
Proof. We first prove the following claim.

Claim. The relative different © (E /| F)Ogps is divisible by the primes of EF* lying above the
primes in the set L U {p}, and by no other primes of EF*.

Proof of the Claim. Since the primes in the set LU {p} are the only primes of F' which ramify
in F, we have

AE/F) =p» [] 1"

lel

for some positive integers a, and a; for [ € L. Moreover, since £/ F' is quadratic, there is a prime
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ideal ' of E such that pOp = B2 and a set of prime ideals {3; | | € L} of E such that [Op = P?

for each [ € L. Therefore, the relative different factors as

D(E/F) =P [[B"

lel

for some positive integers ug and u; for [ € L. By extending the relative different to EF*,
we see that ©(E/F)Ogps is divisible by the primes of EF*® lying above the primes in the set
{PB}U{PB | [ € L}, and by no other primes of EF**. It follows that © (E/F)Ogps is divisible by
the primes of E'F** lying above the primes in the set £LU {p}, and by no other primes of EF®. This
completes the proof of the claim. O

Now, since p splits in F'%, then p splits in F'°. Hence
pOps = p1-- Py, (3.27)
where g = [F® : F] and the py, are distinct prime ideals of F'*. For k = 1,..., g, we have
ag b
p:Opps = Hm;ﬂt
t=1

for distinct prime ideals 3, ; of EF'® and some positive integers ay, and by, ;. Thus

g ap
pOgps = H H‘Bi’fﬁ

k=1t=1

The prime ideals B}, ; are the primes of £/ lying above p. Hence by the Claim, we see that I3,

divides ® (E/F)Ogps. However, by Lemma 3.7.9,
D(EF®/F®) = D(E/F)Opps, (3.28)

hence Py, ; divides D(EF*/F*). It follows that p, = B, N Ops divides 90(EF*/F?) for k =

1,...,9.

Similarly, for a prime ideal [ € L, starting with the factorization
1 L
Op: =PV b0

for distinct prime ideals B ;, of F'* and some positive integers ([, k) for k = 1,..., g, an analo-

gous argument shows that B ;, divides 9(EF*/F*®) fork =1,...,g..
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By the Claim and the identity (3.28), the primes of E'F'® lying above the primes in the set

{pk‘k:]-v79}UU{§B[,k|k:177g[}

leL

are the only primes of EF*® which divide ® (EF*/F*). Hence, the relative discriminant factors as

gi
o(BF /P =pi-p [T T ®i" (3.29)
lef k=1
for some positive integers c1,...,cyand d([, k) forl € Landk =1,..., g,

Now, for each embedding o; € @, let g; be an extension of o; to EF*®. Then since F**/Q is
Galois, we have ¢;(F*) = F*, and therefore conjugating by &; in equation (3.29) yields

gu
WETFS|F%) = 65(py)t - - @(pg)cg H H o; (mw)d([’k) . (3.30)

el k=1
It follows from (3.27) and (3.30) that

p7Ops = ai(p1) -~ 0ilPy) (3.31)

divides d(E7: F'* / F'*). This proves the first part of the lemma.

It remains to prove that p® Ops is relatively prime to d(E?:F*/F*®) for j # i. By Lemma
3.7.8, the ideal p?i Ops is relatively prime to p?Ops for j # i, and hence relatively prime to
gi(p1)° -+ gi(pg)° by equation (3.31). Thus, by (3.30) it suffices to prove that p®/ Ops is rela-
tively prime to o; (Pyy) foreach [ € Land k = 1,..., g;. To see this, recall that the prime ideal
[ does not divide pdps, hence [ lies above a rational prime ¢ € Z with £ # p. Since o; (P ) lies
above /, and each of the prime factors of p?iOps lies above p, it follows that p°Ops must be

relatively prime to &; (% 1,). This proves the second part of the lemma. O

Lemma 3.7.11. Let F' be a totally real number field of degree n. Let p € 7 be a prime number
that splits in the Galois closure F® and let p be a prime ideal of F lying above p. Let L be a finite
set of prime ideals of F' not dividing pdps. Let E/F be a CM extension which is ramified only at
the prime ideals of F' in the set LU {p}. Let & = {01,...,0,} € ®(E) be a CM type for E and
Eg be the reflex field of the CM pair (E, ®). Then [E¢F* : F*] = 2" and [E*® : Q] = 2"[F* : Q).

Proof. By Lemma 3.7.7 we have E¢F°* = E? ... E°»F° = E*. Hence, to prove that [E¢F* :
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F?] = 2", we will show that in the tower of extensions
FS C EUlFS C EUIEUQFS C ... C EUl .. .Eo'nFS

each successive extension
FEo1... Foi-1 Foi 'S
EoL...EBoi-1fs
is quadratic. First, observe that there is an element A € O with A < 0 and E = F(VA).

Therefore E7 F'® = F*(y/0;(A)), and hence for each i = 1,...,n we have

EoV - EOFS = F5(\/oy(A),...,Vai(A)).
This implies that
[E°Y ... E7-1RTIFS Bl BT ES]) < 2

Now, for each ¢ = 1,...,n, let p; be a prime ideal of F** dividing the ideal p°*Ops. Then for
i # j, Lemma 3.7.8 implies that p; # p;, and moreover, by Lemma 3.7.10, the relative discriminant
d(E7 F*/F?) is divisible by p;, but not by p;. This implies that p; is ramified in £ F**, but p; is
unramified in £ F'%.

By the preceding paragraph, for each ¢ = 1,...,n, the prime ideal p; is unramified in the
extensions F°1F¥% ... E7-1F% Now, it is known that if a prime ideal of a number field M is
unramified in the extensions K /M and L/M, then it is unramified in their compositum KL /M
(see e.g [Koc00, Proposition 4.9.2]). Therefore, it follows that p; is unramified in the composi-
tum E° ... E%-1FS  On the other hand, since p; is ramified in E7 F*/F*, it is ramified in
E°t...EFOi-1 RO S,

Let B be a ramified prime ideal of E?! ... E%i-1 E% F'® lying above p;. Then Q := P N
Opgo1...goi—1 ps 18 an unramified prime ideal of £71 - - - £7-1 F'* lying above p;. In terms of ramifi-
cation indices, we have e(P|p;) > 2 and e(Q|p;) = 1. Then by multiplicativity of the ramification

index, we have

e(Blpi) = e(B|Q)e(Qlpi) = e(P|Q).

80



Hence
[E°Y .. E91E7FS : 7V .. B9 FY] > e(BQ) = e(Plps) > 2.
We conclude that
[E°Y.. . E91E7 RS B9V BT RS = 2,

This completes the proof that [Eg F'* : F'¥] = 2.

Finally, since E® = EqF*® and [Eq F* : F'*] = 2™, it follows that

[E°: Q] = [E®: FP][F”: Q] = 2"[F* : Q.

Proof of Theorem 3.7.6. We have the following towers of fields.

EgF?

Eq>/ \FS
D

Therefore,
[EoF® : Egl[Es : Q) = [EgF? : F°|[F?:Q),

hence by Lemma 3.7.11 we have

[F*: Q]
[E@FS : Eq;].

[Ecp . @] =2"
Now, it is known that if /M is a finite Galois extension and L/M is an arbitrary extension, then
[KL : L] divides [K : M] (see e.g. [Lan02, Corollary VI.1.13]). Since F**/Q is Galois, we have
that [Eo F® : Eg] divides [F*® : Q]. This implies that [Eg : Q] > 2™. On the other hand, by
Proposition 3.6.3, we also know that [Eg : Q] < 27, thus we conclude that [Fg : Q] = 2", as

desired.

Finally, since Q C Eg C E%, it follows that [Ep : Q] = 2™ divides [E® : Q]. Then if n > 3
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we have [E° : Q] > 2" > 2n = [E : Q], which proves that the field extension E/Q is non-Galois,

therefore non-abelian. O

Remark 3.7.12. Let E/F be a CM extension as in Lemma 3.7.11. Then since [E* : Q] = 2"[F* :
Q], the CM field E' is a Weyl CM field if and only if [F** : Q] = nl.

3.7.4  Algorithm for constructing CM fields with reflex fields of maximal degree

By combining (the proof of) Proposition 3.7.1 with the choice m = dps and Theorem 3.7.6
with the choice £ = R U {q}, we obtain the following algorithm for constructing infinite families

of CM extensions which are non-Galois over Q and have reflex fields of maximal degree.
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Algorithm 1 CM fields with reflex fields of maximal degree

1:

Input: A tuple (F,p,p, R,U;,Us) consisting of a totally real number field F' of degree n, a
rational prime p € Z that splits in F'*, a prime ideal p of F' lying above p, a finite set R of
prime ideals of F' not dividing pd s, and finite sets {/; and {45 of prime ideals of F' not dividing
2pd s such that R, U and Uy are pairwise disjoint.

Output: A pair (q, Aq) where q is a prime ideal of F' not dividing pdrs, and A, is an element

of O with prime factorization

AGOF = pq H T.
teR
The field Eq := F(y/A,) is a CM extension of F' ramified only at the prime ideals of F
dividing A with reflex fields of maximal degree 2". Moreover, each prime ideal in 47 splits
in E; and each prime ideal in U/, remains inert in ;. If n > 3 then E;/Q is non-Galois.
Set 71 := (U1 U {PB C OF | B divides pdps}) ~ {p}.
Set Tz := (U2 U {B C Op | P divides 2}) ~ (T1 UR U {p}).

: Choose an integer e € Z satisfying e > 2max{vp(2) | P € T1 U T2} + 1.

Set mo, to be the formal product of all the embeddings in Hom(F, R).

. Set

mo ‘= H f,Be

PETIUT2
and m := myMey.
For each B € 75 find an element asp € OF such that Fiy(,/asp) is an unramified quadratic
extension of Fip.

Find an element a € F'* satisfying the following congruences.

(i) a = —1 (mod mu).
(i) a =1 (mod 3¢) for every P € T;.
(iii) @ = oy (mod P°) for every B € Ts.
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10: Set

n:= ap_l H L

t€R
11: Choose a prime ideal ¢ C Op lying in the ray class of n modulo m such that q & 73 U 75 U

RU{p}

12: Find an element by € F'* such that b

X

1 (mod m) and q = bgn.
13: Set Ay := aby.

14: Return: (q,A).

Remark 3.7.13. For steps 5 and 8 in the algorithm, see Lemmas 3.7.3 and 3.7.4, respectively.

Remark 3.7.14. The congruences in steps 9 and 11 of the algorithm are chosen to force the given
prime ideal 3 € 77 U 7> to be unramified in the extension Fj. In fact, as was shown in the proof
of Lemma 3.7.5, the congruence 9 (ii) forces ‘B to split in £, while the congruence 9 (iii) forces

B3 to remain inert in £.
Remark 3.7.15. Recall from the proof of Proposition 3.7.1 that
Srp =S~ (TTUT URU {p}),
where
S(n) :={q C Of | qis a prime ideal and [q] = [n] in Rp(m)}.
Also, as was shown in the proof of Proposition 3.7.1, the set S , has natural density d(Sgr ) =

3.8 Proof of Theorem A

Let F' be a totally real number field of degree n > 3. Let p € Z be a prime number which
splits in the Galois closure F'® and let p be a prime ideal of F' lying above p. Let R be a finite

set of prime ideals of F' not dividing pdps. Let U; and Us be finite sets of prime ideals of F' not
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dividing 2pdgs such that R,U; and Uy are pairwise disjoint. Then by Proposition 3.7.1 with the
choice m = dps, there is a set Sg j, of prime ideals of /' which is disjoint from R UlU; Ul U {p}

such that the following statements are true.
(i) Sr,p has positive natural density.
(ii) Each prime ideal q € Sg y is relatively prime to pdps.
(iii) For each prime ideal q € Sg p, there is an element A; € OF with prime factorization

AqOF = pq H t.
t€ER

(iv) The field E; := F(1/A,) is a CM extension of /' which is ramified only at the prime ideals
of F' dividing A;. Moreover, each prime ideal in U/, splits in Eq and each prime ideal in U/

is inert in Ej.

It follows from Theorem 3.7.6 with the choice £ = R U{q} that for each prime ideal q € Sr p, the
degree of the reflex field Fy ¢ is [Fqe : Q] = 2" for every CM type ® € ®(E;), and moreover,
since n > 3 then F,;/Q is non-Galois.

Now, by Proposition 3.5.1 and Corollary 3.6.4, if E/ is a CM field and there exists a CM type
® € ®(F) such that the degree of the reflex field Eg is [Eg : Q] = 2", then Conjecture 3.3.1
is true for E. It then follows from the previous paragraph that for each prime ideal q € Sgrp,

Conjecture 3.3.1 is true for Fj. ]
3.9 Weyl CM fields and the proof of Theorem B
Let £ = Q(«) be a CM field of degree 2¢g. Let m,,(X) be the minimal polynomial of v and
denote its roots by a1 = o, a1, . . ., g, 0. Let

agp_1 = O and aop := Oy (3.32)

for¢ =1,...,9. Then E* = Q(a1, ..., as,) is the Galois closure of E. Let Sy, be the symmetric
group on the elements {aq,...,az,} and Wy, be the subgroup of Sy, consisting of permutations

which map any pair of the form {ag;_1, as;} to a pair {as,_1, asx }. The group Woy is called the
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Weyl group. It can be shown that # W5, = 29¢! and that W5, fits in the exact sequence
1 — (Z/2Z2) — Wy — Sy — 1.
Proposition 3.9.1. The Galois group Gal(E®/Q) is isomorphic to a subgroup of Wag.

Proof. There is an injective group homomorphism ¢ : Gal(E£?®/Q) — S, given by restriction
o —> a|{a17m7a29}. Hence Gal(E®/Q) = ¢(Gal(E£°/Q)) < S, so it suffices to prove that
#(Gal(E£°/Q)) € Way, or equivalently, that given o € Gal(£°/Q) and a pair {agj—1,a2;}, we
have o({agj—1,a2;}) = {agk—1,a2;}. Since o permutes the elements {a1,...,az,}, we have

o(azj—1) = agk—1 or o(azj—1) = agy for some k. Now, since E is a CM field, given any b € E,

we have o(b) = o(b) for all o € Gal(E®/Q). Moreover, from (3.32), we have ag;—1 = ags and

G9¢ = age—1. Combining these facts yields

o(azj) = o0(G2j_1) = Gog—1 = az, or o(azj) = 0(Gzj_1) = Gox = A2k—1-
This completes the proof. O

Definition 3.9.2. If £ is a CM field such that Gal(E®/Q) = W, then E is called a Weyl CM
field.

Observe that if g > 2 and F is a Weyl CM field of degree 2g, then E/Q is non-Galois since
#Gal(E®/Q) = 29g! > 2g = [E : Q]. In particular, any Weyl CM field of degree 2g > 4 is
non-abelian.

Proof of Theorem B. Let £ be a Weyl CM field. Then by Proposition 3.5.1 and Corollary
3.6.4, it suffices to prove that there exists a CM type @ for E such that the reflex field Eg has degree
[Ep : Q] =29. Fori=1,...,glet7; : E — C be the embedding defined by 7;(c;) = «;, where
a1 = a. Then Hom(E, C) = {11,71,...,74,T4}. Note that 7;(a1) = ag;—1 fori =1,...,¢. Fix
the choice of CM type ® = {7y,...,7,}. We will prove that [Eg : Q] = 29.

Since FE is a Weyl CM field, we have Gal(E*®/Q) = Wy, and thus #Gal(E°®/Q) = 29g!.

Moreover, the calculations in the proof of Lemma 3.6.3 yield

Baig - FOAE/Q)
¢ # StabGal(Es/Q) ((I)) # StabGal(Es/Q) ((I)) .
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Hence it suffices to prove that # Stabga(gs @) (®) = g!.

Let Sggd be the symmetric group on the odd-indexed elements {a1, as, ..., azg—1}. Then
S StabGal(Es/Q) ((I)) <— 0d =90
<= for all 4, there exists a j such that o7;(a1) = 7j(a1)

<= for all 4, there exists a j such that o (ag;—1) = ag;j—1

odd

= U’{al,a:’),‘..,an_l} S S2g .

Thus we have a map gg : Stabgai(ps /) (P) — Sggd given by restriction

g 0—‘{0470‘37"'7(129—1}.

We will prove that d; is bijective.

Surjectivity: Let 7 € Sg‘gid. Then for all 4, there exists a j such that 7(ag;—1) = ag;—1. There
is a unique lift 7 of 7 to W, given by T(a2;—1) = azj—1 and 7(ag;) = ag;. Since £ is a Weyl CM
field, we have an isomorphism Gal(E*/Q) = ¢(Gal(E?®/Q)) = Wa,, where ¢ is the restriction

map 0 = 0lf4, . as,} in the proof of Proposition 3.9.1. Hence there exists a unique element

a2qg

o € Gal(E?/Q) such that ¢(o) = 7. Observe that

odd

:71'6529.

U|{a1,a3,...,agg,1} = aTJ|{(11,aLg,...,ang,1}
It follows that o € Stabga(gs /) (®) with gg(o) = 7. This proves that 5 is surjective.
Injectivity: Let 01,02 € Stabg,)(gs /q)(P) with gg(al) = q?(ag). Then
J1|{(117a37---7a2g71} = 02‘{a1,a37---7a2971}?

i.e., o1(agi—1) = o2(agi—1) for i = 1,...,g. On the other hand, arguing as in the proof of

Proposition 3.9.1, we have

o1(a2i) = o1(azi—1) = o1(azi—1) = 02(azi—1) = o2(azi—1) = o2(az)

fort =1,...,g. Thus, o1 = o9. This proves that qus injective.

Since 5 is bijective, we have # Stabgai(gs/g)(®) = #S‘Q’Sd = g!. This completes the proof.
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3.10 Proof of Theorem 3.1.8

As mentioned in Remark 3.1.3, if £ is a quartic CM field then the only possible Galois groups
of its Galois closure are Cy := Z/4Z, Vi := 7 /27 x Z/2Z and D4. Moreover, the Weyl group
Wy = Dy. It is known that if a quartic number field K has Galois group Gal(K*/Q) = Cy or Vy,
then K contains a unique real quadratic subfield. Hence for the signature (0, 2) (which corresponds

to the quartic totally complex case) we have
CM4(C4,X) == N072(C4,X) and CM4(V4,X) = N072(V4,X). (3.33)

When Gal(K®/Q) = Dy, then K can either contain a real quadratic subfield or an imaginary
quadratic subfield. Thus in that case one can define a refined counting function N0+, (D4, X)) which
counts only isomorphism classes of quartic number fields K /Q with signature (0, 2) containing a
real quadratic subfield, and such that Gal(K*®/Q) = Dy and |dg| < X (see [CDO02]). With this

notation we then have
CMy (W4, X) = CMy(Dy, X) = Nyp(Dy, X). (3.34)

By Cohen, Diaz y Diaz and Olivier [CDOO0S, Corollary 4.5 (2), p. 501] (which refines earlier
work of Baily [Bai80] and Mi#ki [M#k85]) we have

No2(Ca, X) = ¢(C1) X7 + O(X5+9), (3.35)

for some explicit positive constant ¢(Cy) and any £ > 0. Similarly, in [CDOO06, p. 582] we find the

asymptotic formula
Noa2(Va, X) = c(V1) X 2 log? X + O(X 2 log X), (3.36)

for some explicit positive constant ¢(V}). Finally, in [CDOO02, Proposition 6.2, p. 88] we find the

asymptotic formula
Nifo(Da, X) = e(Dg) "X + O(X 119, (3.37)

where again ¢(D4)™ is an explicit positive constant.
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Since
CMy(X) = CMy(Dy, X) + CMy(Cy, X) + CMy(Va, X),
it follows from equations (3.33)—(3.37) that
CM,(X) = ¢(Ds)TX + O(X17).

Finally, since this is the same asymptotic formula satisfied by the counting function CMy(Wy, X),

we conclude that the density of quartic Weyl CM fields is

. CMy(Wy, X
PWey1(4): lim 74( . X)

TG

3.11 Abelian varieties over finite fields, Weil g-numbers, and density results
We first review some facts concerning Weil g-numbers and abelian varieties over finite fields.
3.11.1 Weil q-numbers and abelian varieties over I,

Let ¢ = p™ where p is a prime number and n is a positive integer. A Weil q-number is an
algebraic integer 7 such that for every embedding o : Q(7) <+ C we have |o(7)| = ¢'/. Let
W (q) denote the set of Weil g-numbers. Two Weil g-numbers 7 and 7o are conjugate if there
exists an isomorphism Q(71) — Q(72) which maps 7; to . In this case, we write m ~ ma.

We have the following facts about Weil g-numbers (see e.g. [GOS88, p. 1 and Corollary 2.1]).
Lemma 3.11.1. Let g = p" and 7 € W (q).
(i) If o(m) € R for some embedding o : Q(w) — C, then Q(7) = Q if n is even and Q(7) =
Q(y/p) ifn is odd.

(ii) If o(m) € C \ R for all embeddings o : Q(w) — C, then Q(r) is a CM field with maximal
totally real subfield Q(m + q/7).

Let F; be a finite field of characteristic p with ¢ = p™ elements. Let A/, be an abelian variety
of dimension g defined over IF; and let m4 € End(A) be the Frobenius endomorphism of A. Let f4

be the characteristic polynomial of A, which is a monic polynomial of degree 2¢ with coefficients
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in Z. Let Q[ 4] be the Q-subalgebra of End(A) ®z Q generated by 7.4. It is known that Q[7 4] is
a field if and only if A/F, is simple.

Weil proved that the roots of f4 are Weil g-numbers. Moreover, if A/F, is simple, then the
image of w4 under any homomorphism ¢ : Q[r4] — C is a Weil g-number. Any such homo-
morphism ¢ maps 74 to a root a4 of f4. From here forward, we identify w4 with ¢(m4) for
some choice of ¢. This choice does not matter, since we will only consider Weil g-numbers up to
conjugacy.

If A/F, and B/F, are isogenous simple abelian varieties, then f4 = fp. In particular, 74 ~
mp. This gives a well-defined map A — 74 between the set of isogeny classes of simple abelian
varieties A/IF, and Weil g-numbers up to conjugacy. A celebrated theorem of Honda and Tate (see

e.g. [Tat71]) asserts that this map is a bijection.
3.11.2 Density results and the proof of Theorem 3.1.10
Let A/IF, be an abelian variety and o4 be a root of f4. Let K¢, = Q(ca)® be the splitting
field of f4 and Gy, = Gal(K, /Q). Define the sets

Ag(q) := {isogeny classes of abelian varieties A/F, with dim(A4) = g},

By(q) := {isogeny classes of abelian varieties A/, with dim(A) = g and G, = Wo,}.

Kowalski [Kow06, Proposition 8] proved the following density result.

Theorem 3.11.2. With notation as above, one has

#B,(p")

lim ——~+~ =1.

n—00 #Ag (r")

On the other hand, we have the following result.

Proposition 3.11.3. Let A/F, be an abelian variety of dimension g > 2. If Gy, = Wag, then
Q(avn) is a non-Galois Weyl CM field of degree 2g.

Proof. Let m := [Q(a4) : Q]. Since ay is aroot of f4 and f4 € Z[x] is monic of degree 2g,

then o4 is an algebraic integer of degree m where m|2g. Suppose by contradiction that m < 2g.
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Since m is a proper divisor of 2¢, we have m < g. Hence the Galois closure K¢, = Q(4)® has
degree [K¢, : Q] < m! < g!. However, #Ws, = 29g!, which contradicts the assumption that
Gy, = Wy, Thus m = 2g > 4, hence it follows from Lemma 3.11.1 that Q(a4) is a CM field.

Finally, since 2g > 4, we conclude that Q(cv4) is a non-Galois Weyl CM field of degree 2g. 0

Proof of Theorem 3.1.10. By Theorem 3.11.2 and Proposition 3.11.3, if ¢ > 2 then the
proportion of isogeny classes [A] € Ay(p™) for which Q(a4) is a non-Galois Weyl CM field
approaches 1 as n — oco. Theorem 3.1.10 now follows from Theorem B. O

We next show that any CM field E is isomorphic to a CM field of the form Q(7 4 ) for a simple
abelian variety A/IF,.

The following result is a consequence of [GO88, Theorems 1 and 2 (i)].

Theorem 3.11.4. Let E be a CM field. Then for each integer n > 2, there exists a prime number

p = p(E,n) such that E = Q(m,) for some Weil p"-number m, € W (p").
Greaves and Odoni used the Chebotarev density theorem to deduce the following corollary.

Corollary 3.11.5. There exists an integer a(E,n) > 1 such that

#{p=pE,n): 2<p< X, E=Q(mp), mp € W(p")} =

a(E,n)
[H(E*) : Q]

as X — oo, where H(E?®) denotes the Hilbert class field of E°, Li(X) := f2X dt/log(t), and

Li(X) + Op.n <X exp <—c(E, n) log(X)>>

c¢(E,n) > 0.
We have the following corollary.

Corollary 3.11.6. Let E be a CM field. Then for each integer n > 2, there is a set of prime
numbers p = p(E, n) with positive natural density such that E = Q(7 4) for some simple abelian

variety A/Fpn.

Proof. Let E'be aCM field. Then by Corollary 3.11.5, for each integer n > 2 there is a set of prime

numbers p = p(E, n) with positive natural density such that E = Q(n,) for some 7, € W (p").
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On the other hand, by the Honda-Tate theorem, for each such prime number p, there exists a simple

abelian variety A/IF,» such that w4 ~ 7,. Therefore, Q(74) = Q(m,) = E. O

Given Corollary 3.11.6, it is natural to ask whether a density result analogous to Theorem

3.11.2 holds for simple abelian varieties. Define the sets

Aj(q) = {isogeny classes of simple abelian varieties A/IF, with dim(A4) = g},

By(q) = {[A/Fq] € Ag(q) | Gy = Wag}-

It seems likely that a modification of the methods in [Kow06] can be used to prove that

B (p™
fim 7o)

n—o0 #A5(p")
If true, then arguing as in the proof of Theorem 3.1.10, it would follow that if ¢ > 2, then the
proportion of isogeny classes [A] € A7 (p") for which Q(74) is a CM field that satisfies the

Colmez conjecture approaches 1 as n — oc.
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4. CONCLUSIONS

The two main topics treated in this thesis were the establishment of a Chowla-Selberg formula
for abelian CM-fields, which was done in chapter 2, and the proof of infinitely many new cases of
the Colmez conjecture for non-abelian CM fields, which was done in chapter 3.

Both topics still merit further investigation, and in what follows we briefly indicate how we
attempt to study this in future joint work with Riad Masri.

In the case of the Chowla-Selberg formula, the non-abelian case still remains to be studied in
detail. We plan to prove non-abelian Chowla-Selberg formulas by using the non-abelian cases of
the Colmez conjecture that we proved, in combination with a very detailed study and refinement of
Shintani’s work on the evaluation of L-functions.

On the other hand, as was indicated in the introduction of chapter 3, we plan to attack the
Colmez conjecture in low degree for non-abelian CM fields by using methods from arithmetic
statistics to study the density of Weyl CM fields of a fixed degree, when ordered by the absolute

value of their discriminant.

93



REFERENCES

[And82] G. W. Anderson, Logarithmic derivatives of Dirichlet L-functions and the periods of
abelian varieties. Compositio Math. 45 (1982), 315-332.

[ABP04] G. W. Anderson, D. W. Brownawell, and M. A. Papanikolas, Determination of the alge-
braic relations among special I'-values in positive characteristic. Ann. of Math. 160 (2004),

237-313.

[AGHM15] F. Andreatta, E. Z. Goren, B. Howard and K. Madapusi Pera, Faltings heights of

abelian varieties with complex multiplication. arXiv:1508.00178 [math.NT] (2015).

[Asa70] T. Asai, On a certain function analogous to log |n(z)|. Nagoya Math. J. 40 (1970), 193—

211.

[Bai80] A. M. Baily, On the density of discriminants of quartic fields. J. Reine Angew. Math. 315
(1980), 190-210.

[BarO1] E. W. Barnes, The theory of the double Gamma function. Phil. Trans. R. Soc. Lond. A 196

(1901), 265-387.

[BS-M16a] A. Barquero-Sanchez and R. Masri, Faltings heights of CM abelian surfaces and the

non-abelian Chowla-Selberg formula, preprint (2016).

[BS-M16b] A.Barquero-Sanchez and R. Masri, Faltings heights of CM abelian threefolds and the

non-abelian Chowla-Selberg formula, in preparation (2016).

[BhaO7] M. Bhargava, Mass formulae for extensions of local fields, and conjectures on the density
of number field discriminants. Int. Math. Res. Not. IMRN 2007, no. 17, Art. ID rnm052, 20
Pp-

[BMM-B90] Jean-Benoit Bost, Jean-Frangois Mestre, and Laurent Moret-Bailly, Sur le calcul
explicite des “classes de Chern” des surfaces arithmétiques de genre 2. (French) [On the

explicit calculation of the "Chern classes” of arithmetic surfaces of genus 2] Séminaire sur

les Pinceaux de Courbes Elliptiques (Paris, 1988). Astérisque No. 183 (1990), 69-105.

94



[BS15] FE. Bouyer and M. Streng, Examples of CM curves of genus two defined over the reflex field.
LMS J. Comput. Math. 18 (2015), no. 1, 507-538.

[BKY12] J. H. Bruinier, S. S. Kudla, and T. H. Yang, Special values of Green functions at big CM

points. Int. Math. Res. Not. IMRN 2012, no. 9, 1917-1967.

[BY06] J. H. Bruinier and T. H. Yang, CM-values of Hilbert modular functions. Invent. Math. 163

(2006), 229-288.

[BYO7] J. H. Bruinier and T. H. Yang, Twisted Borcherds products on Hilbert modular surfaces

and their CM values. Amer. J. Math. 129 (2007), 807-841.

[BY11] J. H. Bruinier and T. H. Yang, CM values of automorphic Green functions on orthogonal
groups over totally real fields. Arithmetic geometry and automorphic forms, 1-54, Adv. Lect.

Math. (ALM), 19, Int. Press, Somerville, MA, 2011.

[CO12] C. Chai and F. Oort, Abelian varieties isogenous to a Jacobian. Ann. of Math. (2) 176

(2012), no. 1, 589-635.
[Chi09] N. Childress, Class field theory. Universitext. Springer, New York, 2009.

[CS49] S. Chowla and A. Selberg, On Epstein’s zeta function. I. Proc. Nat. Acad. Sci. U. S. A. 35
(1949). 371-374.

[CS67] S. Chowla and A. Selberg, On Epstein’s zeta-function. J. Reine Angew. Math. 227 (1967),
86-110.

[Coh03] H. Cohen, Enumerating quartic dihedral extensions of Q with signatures. Ann. Inst.

Fourier (Grenoble) 53 (2003), no. 2, 339-377.

[Coh07] H. Cohen, Number theory. Vol. Il. Analytic and modern tools. Graduate Texts in Mathe-

matics, 240. Springer, New York, 2007. xxiv+596 pp.

[CDO02] H. Cohen, F. Diaz y Diaz and M. Olivier, Enumerating quartic dihedral extensions of Q.
Compositio Math. 133 (2002), no. 1, 65-93.

[CDOO05] H. Cohen, F. Diaz y Diaz and M. Olivier, Counting cyclic quartic extensions of a number
field. J. Théor. Nombres Bordeaux 17 (2005), no. 2, 475-510.

95



[CDO06] H. Cohen, F. Diaz y Diaz and M. Olivier, Counting discriminants of number fields. J.

Théor. Nombres Bordeaux 18 (2006), no. 3, 573-593.

[Col93] P. Colmez, Périodes des variétés abéliennes a multiplication complexe. Ann. of Math. 138

(1993), 625-683.

[Col98] P. Colmez, Sur la hauteur de Faltings des variétés abéliennes a multiplication complexe.
(French) [On the Faltings height of abelian varieties with complex multiplication] Compositio

Math. 111 (1998), no. 3, 359-368.

[CHS88] P. E. Conner and J. Hurrelbrink, Class number parity. Series in Pure Mathematics, 8.

World Scientific Publishing Co., Singapore, 1988. xii+234 pp.

[Del79] P.Deligne, Valeurs de fonctions L et périodes d’intégrales. With an appendix by N. Koblitz
and A. Ogus. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and
L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2,
pp. 313-346, Amer. Math. Soc., Providence, R.1., 1979.

[Den84] C. Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic
fields. J. Reine Angew. Math. 351 (1984), 171-191.

[Fro83] A. Frohlich, Central extensions, Galois groups, and ideal class groups of number fields.
Contemporary Mathematics, 24. American Mathematical Society, Providence, RI, 1983.
viii+86 pp.

[FT93] A. Frohlich and M. J. Taylor, Algebraic number theory. Cambridge Studies in Advanced

Mathematics, 27. Cambridge University Press, Cambridge, 1993.

[Gal73] P. X. Gallagher, The large sieve and probabilistic Galois theory. Analytic number theory
(Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 91-101.

Amer. Math. Soc., Providence, R.1., 1973.

[GO88] A. Greaves and R. W. K. Odoni, Weil-numbers and CM-fields. 1. J. Reine Angew. Math.
391 (1988), 198-212.

96



[Gro80] B. H. Gross, Arithmetic on elliptic curves with complex multiplication. With an appendix

by B. Mazur. Lecture Notes in Mathematics, 776. Springer, Berlin, 1980.

[GZ85] B. H. Gross and D. B. Zagier, On singular moduli. J. Reine Angew. Math. 355 (1985),
191-220.

[Jan96] G. J. Janusz, Algebraic number fields. Second edition. Graduate Studies in Mathematics,

7. American Mathematical Society, Providence, RI, 1996.

[KKS11] K. Kato, N. Kurokawa, T. Saito, Number theory. 2. Introduction to class field theory.
Translated from the 1998 Japanese original by Masato Kuwata and Katsumi Nomizu. Transla-
tions of Mathematical Monographs, 240. Iwanami Series in Modern Mathematics. American

Mathematical Society, Providence, RI, 2011.

[Koc00] H. Koch, Number theory. Algebraic numbers and functions. Translated from the 1997
German original by David Kramer. Graduate Studies in Mathematics, 24. American Mathe-

matical Society, Providence, RI, 2000.

[Kow06] E. Kowalski, Weil numbers generated by other Weil numbers and torsion fields of abelian

varieties. J. London Math. Soc. (2) 74 (2006), no. 2, 273-288.

[Lan94] S. Lang, Algebraic number theory. Second edition. Graduate Texts in Mathematics, 110.

Springer-Verlag, New York, 1994. xiv+357 pp.

[Lan02] S. Lang, Algebra. Revised third edition. Graduate Texts in Mathematics, 211. Springer-
Verlag, New York, 2002.

[Ler87] M. Lerch, Sur quelques formules relatives au nombre des classes. Bull. d. sci. math. (2)

21 (1897), 302-303.
[M#k85] S. Miki, On the density of abelian number fields. Thesis, Helsinki, 1985.
[Mal02] G. Malle, On the distribution of Galois groups. J. Number Theory 92 (2002), 315-329.
[Mal04] G.Malle, On the distribution of Galois groups. 1. Experiment. Math. 13 (2004), 129-135.

[Mas10] R. Masri, CM cycles and nonvanishing of class group L—functions. Math. Res. Lett. 17
(2010), 749-760.

97



[Mil06] J. S. Milne, Complex Multiplication. Course notes, version 0, April 7 (2006).
http://www.jmilne.org/math/CourseNotes/CM.pdf

[Mor96] P. Morandi, Field and Galois theory. Graduate Texts in Mathematics, 167. Springer-
Verlag, New York, 1996.

[Mor83] C.J. Moreno, The Chowla-Selberg formula. J. Number Theory 17 (1983), 226-245.

[Mou09] A.Mouhib, On the parity of the class number of multiquadratic number fields. J. Number
Theory 129 (2009), 1205-1211.

[Neu99] J. Neukirch, Algebraic number theory. Translated from the 1992 German original and
with a note by Norbert Schappacher. With a foreword by G. Harder. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 322.

Springer-Verlag, Berlin, 1999.

[Obul3] A. Obus, On Colmez’s product formula for periods of CM-abelian varieties. Math. Ann.
356 (2013), 401-418.

[Oorl2] F.  Oort, CM  Jacobians. Notes from a talk at the conference
“Galois covers and deformations”, Bordeaux, June 25-29, 2012.

http://www.staff.science.uu.nl/~oort0109/Bord2-VI-12.pdf

[Rib01] P. Ribenboim, Classical theory of algebraic numbers. Universitext. Springer-Verlag, New

York, 2001.

[Shi67] G. Shimura, Construction of class fields and zeta functions of algebraic curves. Ann. of

Math. (2) 85 (1967), 58-159.

[Shi70] G. Shimura, On canonical models of arithmetic quotients of bounded symmetric domains.

Ann. of Math. (2) 91 (1970), 144-222.

[Shi94] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Reprint of
the 1971 original. Publications of the Mathematical Society of Japan, 11. Kand Memorial

Lectures, 1. Princeton University Press, Princeton, NJ, 1994,

98



[Shi98] G. Shimura, Abelian varieties with complex multiplication and modular functions. Prince-

ton Mathematical Series, 46. Princeton University Press, Princeton, NJ, 1998.

[Shi76] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-

positive integers. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 393-417.

[Shi77a] T. Shintani, On values at s=1 of certain L functions of totally real algebraic number
fields. Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto,
Kyoto, 1976), pp. 201-212. Japan Soc. Promotion Sci., Tokyo, 1977.

[Shi77b] , T. Shintani, On a Kronecker limit formula for real quadratic fields. J. Fac. Sci. Univ.
Tokyo Sect. IA Math. 24 (1977), no. 1, 167-199.

[Sie65] C. L. Siegel, Lectures on advanced analytic number theory. Notes by S. Raghavan. Tata
Institute of Fundamental Research Lectures on Mathematics, No. 23 Tata Institute of Funda-

mental Research, Bombay 1965 iii+331+iii pp.

[Sil86] J. H. Silverman, Heights and elliptic curves. Arithmetic geometry (Storrs, Conn., 1984),
253-265, Springer, New York, 1986.

[Tat71] J. Tate, Classes d’isogénie des variétés abéliennes sur un corps fini (d’apres T. Honda).
(French) [Isogeny classes of abelian varieties over finite fields (after T. Honda)] Séminaire
Bourbaki. Vol. 1968/69: Exposés 347-363, Exp. No. 352, 95-110, Lecture Notes in Math.,
175, Springer, Berlin, 1971.

[Tsil5] J. Tsimerman, A proof of the André-Oort conjecture for A,;. arXiv:1506.01466

[math.NT] (2015).

[vdG88] G. van der Geer, Hilbert modular surfaces. Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3) [Results in Mathematics and Related Areas (3)], 16. Springer-Verlag, Berlin,
1988. x+291 pp.

[Wei76] A. Weil, Elliptic functions according to Eisenstein and Kronecker. Ergebnisse der Math-

ematik und ihrer Grenzgebiete, Band 88. Springer-Verlag, Berlin-New York, 1976.

99



[Wei98] E. Weiss, Algebraic number theory. Reprint of the 1963 original. Dover Publications, Inc.,
Mineola, NY, 1998.

[Win89] K. Wingberg, Representations of locally profinite groups. Representation theory and num-
ber theory in connection with the local Langlands conjecture (Augsburg, 1985), 117-125,

Contemp. Math., 86, Amer. Math. Soc., Providence, RI, 1989.

[Wool16] M. Wood, Asymptotics for number fields and class groups. Women in Numbers 3: Re-

search Directions in Number Theory, to appear.

[Yan10a] T. H. Yang, An arithmetic intersection formula on Hilbert modular surfaces. Amer. J.

Math. 132 (2010), 1275-1309.

[Yan10b] T. H. Yang, The Chowla-Selberg formula and the Colmez conjecture. Canad. J. Math. 62
(2010), 456-472.

[Yan13] T. H. Yang, Arithmetic intersection on a Hilbert modular surface and the Faltings height.

Asian J. Math. 17 (2013), 335-381.

[Yos99] H. Yoshida, On absolute CM-periods. Automorphic forms, automorphic representations,
and arithmetic (Fort Worth, TX, 1996), 221-278, Proc. Sympos. Pure Math., 66, Part 1, Amer.

Math. Soc., Providence, RI, 1999.

[YZ15] S. Yuan and S. Zhang, On the Averaged Colmez Conjecture. arXiv:1507.06903

[math.NT] (2015).

[ZagO8] D. Zagier, Elliptic modular forms and their applications. The 1-2-3 of modular forms,
1-103, Universitext, Springer, Berlin, 2008.

100





