Universidad de Costa Rica
Facultad de Ciencias Agroalimentarias

Escuela de Tecnología de Alimentos

Trabajo Final de Graduación bajo la modalidad de Proyecto de Graduación, presentado a la Escuela de Tecnología de Alimentos para optar por el grado de Licenciatura en Ingeniería de Alimentos

Efecto de diferentes tiempos de exposición a radiaciones ultravioleta sobre las características sensoriales y la reducción de bacterias patógenas y de deterioro en melón (*Cocumis melo*), piña (*Ananas comosus*) y banano (*Musa cavendish*).

Raquel Román Lara
A75696
Ciudad Universitaria Rodrigo Facio
San José, Costa Rica
Setiembre, 2015
TRIBUNAL EXAMINADOR

Proyecto de Graduación presentado a la Escuela de Tecnología de Alimentos como requisito parcial para optar por el grado de Licenciatura en Ingeniería de Alimentos.

Elaborado por:
Raquel Román Lara

Aprobado por:

Ileana Morales Herrera
MSc. Presidenta del Tribunal

Marcy González Vargas
Lic. Directora del Proyecto

Eric Wong González
PhD. Asesor del Proyecto

Sandra Calderón Villaplana
Lic. Asesora del Proyecto

Gabriela Davidovich Young
Lic. Profesora Designada
DEDICATORIA

A mamá y a papá, porque a ellos les debo todos los esfuerzos que hicieron para que yo obtuviera este logro.

A Dios por escogerlos a ellos como mis padres.
AGRADECIMIENTOS

En primer lugar agradezco a mi comité asesor por ser parte del proyecto y brindarme toda la ayuda necesaria. A Marcy González, por permitirme realizar mi tesis con su proyecto de investigación. A Sandra Calderón por todo su apoyo, interés y recomendaciones para la parte sensorial del proyecto. Un sincero agradecimiento a Erick Wong por darme los consejos y regaños necesarios durante el proceso y especialmente al final cuando necesite un último empujón para terminar.

Gracias a mi familia, a mamá por siempre inculcarme los deseos de estudiar y superarme, a papá porque con su esfuerzo y trabajo me ayudó en todos los años de universidad. A Ana y Marvito porque con ellos emprendí el recorrido por la vida universitaria y fueron el mejor apoyo que pude tener. A Archi porque él fue el apoyo necesario para la recta final. A mi Tía Leda y a Paula porque ellas son un ejemplo de vida para mí.

Gracias a los amigos TA que estuvieron desde el inicio, Mabel, Caro, Glori y especialmente a Orlando, mi mejor amigo, el que siempre me impulso para acabar más rápido y adelantar el proceso. A los amigos que encontré a la mitad del camino, Sofi, Pau, Pilílilu, Cris, Abea, Vargas, Nacho, Nina, Adri, con ustedes todo fue mucho más divertido. A los amigos que encontré al final Ara y Beatri. Gracias Beatri, tú apoyo en la recta final fue indispensable para terminar y que todo fuera menos “abuuurrido”.

Al personal del Laboratorio de Microbiología del CITA, en especial a Vanny Mora, al personal de la Escuela de Tecnología de Alimentos, Micela González, Tatiana Villalobos y Geovanny González y al personal de la Planta Piloto del CITA, Alonso Contreras y Fernando Camacho por estar dispuestos siempre a ayudar y por sus palabras de motivación.

Por último, agradezco a la Vicerrectoría de Investigación de la Universidad de Costa Rica por financiar este proyecto, a la Universidad de Costa Rica por la formación y el orgullo que representa ser egresado de esta institución y a todas aquellas personas que de una u otra forma fueron parte de este proceso.
<table>
<thead>
<tr>
<th>Nivel</th>
<th>Sección</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Justificación</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>Objetivos</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Específicos</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>3.</td>
<td>Marco teórico</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Importancia y mercado de frutas tropicales</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Banano</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Piña</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Melón</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Microbiología de las frutas</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Inocuidad de las frutas frescas</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Salmonella spp.</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Listeria spp.</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Calidad de las frutas frescas</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Microorganismos de deterioro: Fusarium spp.</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Aplicación de la desinfección UV</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Fuentes de luz UV</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Mecanismo de desinfección</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Factores que afectan la inactivación microbiana</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Microorganismo</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Características de la superficie</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>Parámetros de tratamiento</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>3.3.3.4</td>
<td>Mecanismos de reparación</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Efecto sobre la calidad</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>3.3.4.1</td>
<td>Síntesis de compuestos protectores</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>3.3.4.2</td>
<td>Valor nutricional agregado</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>3.3.4.3</td>
<td>Atributos sensoriales</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>3.3.4.3.1</td>
<td>Color</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>3.3.4.3.2</td>
<td>Sabor</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>3.3.4.3.3</td>
<td>Textura</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>
4. Materiales y métodos. ... 34
 4.1. Localización. .. 34
 4.2. Materia prima. ... 34
 4.3. Metodología. .. 36
 4.3.1. Pruebas preliminares .. 36
 4.3.1.1. Evaluación microbiológica a diferentes tiempos de exposición a radiación UV-C 36
 4.3.1.2. Evaluación de los cambios de sabor .. 37
 4.3.1.3. Evaluación de los cambios de color .. 37
 4.3.1.4. Evaluación del cambio de la fuerza de corte ... 37
 4.3.2. Pruebas definitivas ... 38
 4.3.2.1. Determinación de la reducción microbiológica de Salmonella Typhimurium, Listeria innocua y Fusarium spp. en melón (Cucumis melo), piña (Ananas comosus) y banano (Musa cavendish) debida a la exposición a diferentes tiempos de radiación ultravioleta 38
 4.3.2.2. Determinación del cambio en las características sensoriales de banano, melón y piña, irradiadas por diferentes tiempos, para establecer el tiempo máximo de exposición a los rayos ultravioleta... 40
 4.3.2.3. Estudio de almacenamiento para evaluar el efecto de la radiación ultravioleta sobre la estabilidad de banano, melón y piña .. 43
 4.4. Métodos de análisis. ... 44
 4.4.1. Microbiológicos ... 44
 4.4.1.1. Recuento de Listeria innocua ... 44
 4.4.1.2. Recuento de Salmonella Typhimurium ... 45
 4.4.1.3. Recuento de mohos y levaduras .. 45
 4.4.1.4. Recuento Total Aerobio .. 45
 4.4.2. Físicos ... 46
 4.4.2.1. Color .. 46
 4.4.2.2. Textura ... 46
 4.4.2.3. Prueba de Discriminación Sensorial .. 46
 5. Resultados y discusión .. 47
 5.1. Pruebas preliminares .. 47
 5.1.1. Evaluación microbiológica para los tiempos de exposición elegidos 47
5.1.2. Evaluación de los cambios de sabor ..48
5.1.3. Evaluación de los cambios de color ..48
5.2. Pruebas definitivas ..55
5.2.1. Determinación de la reducción microbiológica de Salmonella Typhimurium, Listeria innocua y Fusarium spp. en melón (Cocumis melo), piña (Ananas comosus) y banano (Musa cavendish) debida a la exposición a diferentes tiempos de radiación ultravioleta ..55
5.2.2. Determinación del cambio en las características sensoriales de banano, melón y piña, irradiadas por diferentes tiempos, para establecer el tiempo máximo de exposición a los rayos ultravioleta ...60
5.2.3. Estudio de almacenamiento para evaluar el efecto de la radiación ultravioleta sobre la estabilidad de banano, melón y piña ..63
6. Conclusiones y recomendaciones ..75
6.1. Conclusiones ...75
6.2. Recomendaciones ..76
7. Bibliografía ..78
7.1. Citada ...78
7.2. Consultada ...86
8. Anexos ...90
Anexo 1. ANDEVA de la evaluación microbiológica de los tiempos de exposición elegidos ..90
Anexo 2. ANDEVA de la determinación de la reducción microbiológica de Salmonella spp., Listeria monocytogenes y Fusarium spp. en melón (Cocumis melo), piña (Ananas comosus) y banano (Musa cavendish) debida a la exposición a diferentes tiempos de radiación ultravioleta ...90
Anexo 3. ANDEVA Salmonella Typhimurium ...90
Anexo 4. ANDEVA Listeria monocytogenes ..90
Anexo 5. ANDEVA Fusarium spp. ..91
Anexo 6. ANDEVA de la prueba de textura ..91
Anexo 7. ANDEVAs de la prueba de color para cada valor ..91
Anexo 8. ANDEVAs del estudio de almacenamiento para evaluar el efecto de la radiación ultravioleta sobre la estabilidad de banano, melón y piña. ..92
ÍNDICE DE CUADROS

Cuadro I. Ejemplos de brotes de enfermedades causadas por contaminación de frutas frescas. Fuente: Centers for Disease Control and Prevention ... 22
Cuadro II. Dosis de radiación ultravioleta necesarias para destruir el 99,9 % de la población según microorganismo (Bioagricolas de Costa Rica, s.f.) ... 39
Cuadro III. Datos del equipo de medición del color ... 46
Cuadro IV. Reducciones logarítmicas de S. Typhimurium, L. innocua y Fusarium spp después del tratamiento de ultravioleta, según fruta y tiempo de tratamiento .. 47
Cuadro V. Registro de fotografías de la piña con y sin tratamiento de radiación UV – C aplicado por 15 min, según tiempo de almacenamiento (días) .. 49
Cuadro VI. Registro de fotografías del banano con y sin tratamiento de radiación UV – C aplicado por 15 min, según tiempo de almacenamiento (días) ... 52
Cuadro VII. Registro de fotografías del banano con y sin tratamiento de radiación UV – C aplicado por distintos tiempos, según tiempo de almacenamiento (días) ... 53
Cuadro VIII. Registro de fotografías del melón con y sin tratamiento de radiación UV – C aplicado por 15 min, según tiempo de almacenamiento (días) .. 54
Cuadro IX. Reducciones logarítmicas promedio para S. Typhimurium por tiempo de tratamiento según la fruta evaluada ... 55
Cuadro X. Reducciones logarítmicas promedio para L. innocua por tiempo de tratamiento según la fruta evaluada ... 56
Cuadro XI. Reducciones logarítmicas promedio para Fusarium spp por tiempo de tratamiento según la fruta evaluada .. 56
Cuadro XII. Reducciones logarítmicas promedio de S. Typhimurium, L. innocua, Fusarium spp según la fruta evaluada .. 58
Cuadro XIII. Número de aciertos por juez para cada tiempo de tratamiento UV-C, según fruta tratada. 60
Cuadro XIV. Fuerza de corte (N/cm²) para cada tiempo de tratamiento UV-C aplicado, según fruta 61
Cuadro XV. Valores L* obtenidos para cada tiempo de tratamiento UV-C aplicado a banano, melón y piña ... 63
Cuadro XVI. Fotografías tomadas según día de almacenamiento de piña sin tratamiento UV-C (CONTROL) y con tratamiento UV-C (UV-C) .. 72
Cuadro XVII. Fotografías tomadas según día de almacenamiento de melones sin tratamiento (CONTROL) y con tratamiento UV-C (UV-C) .. 73
Cuadro XVIII. Fotografías tomadas según día de almacenamiento de banano sin tratamiento UV-C (CONTROL) y con tratamiento UV-C (UV-C) .. 74
ÍNDICE DE FIGURAS

Figura 2. Espectro electromagnético. Fuente: Rivera, Gardea, Martínez, Rivera & González, 2007. .. 26

Figura 3. Estructura de ADN (Fuente: Koutchma, Forney & Moraru, 2009) antes y después de la absorción de un fotón de UV-C. .. 28

Figura 4. Escala de maduración del banano (Musa cavendish). Fuente: Piña et al., 2006. .. 34

Figura 7. Cabina de desinfección y esterilización de radiación UV-C. .. 38

Figura 8. Esquema de bandejas de triángulos presentadas a los jueces durante el panel sensorial. .. 41

Figura 9. Fotografías ampliadas de la cáscara de piña no tratada y piña tratada con radiación UV-C (de izquierda a derecha). .. 50

Figura 10. Recuento Total Aerobio y recuento de mohos y levaduras en función del tiempo para banano sin tratamiento UV-C (CONTROL) y banano con tratamiento UV-C (UV-C). .. 64

Figura 11. Recuento Total Aerobio y recuento de mohos y levaduras en función del tiempo para melón sin tratamiento UV-C (CONTROL) y melón con tratamiento UV-C (UV-C). .. 64

Figura 12. Recuento Total Aerobio y recuento de mohos y levaduras en función del tiempo para piña sin tratamiento UV-C (CONTROL) y piña con tratamiento UV-C (UV-C). .. 65

Figura 13. Fuerza de corte (N/cm²) en función del tiempo según fruta sin tratamiento UV-C (CONTROL) y con tratamiento UV-C (UV-C). .. 65

Figura 14. Valor L* en función del tiempo según fruta sin tratamiento UV-C (CONTROL) y con tratamiento UV-C (UV-C). .. 69
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDEVA</td>
<td>Análisis de variancia</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control</td>
</tr>
<tr>
<td>CITA</td>
<td>Centro Nacional de Ciencia y Tecnología de Alimentos</td>
</tr>
<tr>
<td>CORBANA</td>
<td>Corporación Bananera Nacional</td>
</tr>
<tr>
<td>ETA</td>
<td>Enfermedades de Transmisión Alimentaria</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FAO</td>
<td>Organización de las Naciones Unidad para la alimentación y la Agricultura</td>
</tr>
<tr>
<td>PROCOMER</td>
<td>Promotora de Comercio Exterior de Costa Rica</td>
</tr>
<tr>
<td>RTA</td>
<td>Recuento Total Aerobio</td>
</tr>
<tr>
<td>UFC</td>
<td>Unidades Formadoras de Colonias</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>UV</td>
<td>Ultravioleta</td>
</tr>
</tbody>
</table>
RESUMEN

Se evaluó el efecto de diferentes tiempos de tratamiento de radiación ultravioleta sobre la reducción de Salmonella Typhimurium, Listeria monocytogenes y Fusarium spp. en melón (Cocumis melo), piña (Ananas comosus) y banano (Musa cavendish). Los tiempos evaluados fueron 5, 20, 45, 90, 180 y 360 s. Para ello se inoculó por microgoteo 10 µL de cada uno de los microorganismos estudiados sobre 25 cm² de cada fruta y se colocaron en una lámpara de radiación ultravioleta por los tiempos definidos. Se realizó el recuento de los tres microorganismos y se calculó la reducción obtenida para cada uno, con base en el inóculo inicial. Considerando únicamente los resultados microbiológicos, el tiempo de 180 s es el más adecuado para la piña y el tiempo de 5 s para melón y banano. Se determinó que S. Typhimurium es el microorganismo estudiado menos resistente y el Fusarium spp el más resistente a la radiación ultravioleta. Además se determinó que es la superficie del banano donde se obtienen mayores reducciones. Se realizó la evaluación de melón (Cocumis melo), piña (Ananas comosus) y banano (Musa cavendish), tratados por 30, 90 y 150 s con radiación ultravioleta mediante un panel sensorial. El panel sensorial determinó que el sabor presenta una diferencia significativa en los melones tratados por 150 s, mientras no se detectó diferencia en el sabor de banano y piña para ningún tiempo. El factor fruta tiene un efecto significativo sobre la fuerza de corte (p<0,0001); sin embargo, se obtuvo una interacción entre los factores fruta y tiempo (p=0,0263) encontrando diferencia significativa en la piña tratada por 150 s. El tiempo no presentó un efecto significativo sobre el color según los valores L* (p=0,5045, 1-β=0,21), a* (p=0,9041, 1-β=0,08) y b* (p=0,1877, 1-β=0,44).

Por último, se realizó un estudio de almacenamiento de las frutas tratadas con radiación ultravioleta por 90 s. Las frutas se almacenaron por 12 días bajo condiciones de temperatura controlada y se realizaron mediciones de fuerza de corte, color, RTA y recuento de mohos y levaduras cada tres días. El efecto del tratamiento sobre el recuento de mohos y levaduras fue significativo (p=0,0428) y además no es dependiente de la fruta estudiada (p=0,5619, 1-β=0,14) resultando menores recuentos en frutas tratadas. En el caso del RTA la interacción entre el tratamiento y la fruta fue significativa (p=0,0216) y únicamente el banano presentó mayor RTA en la fruta control. El efecto del tratamiento sobre la fuerza de corte no es significativo (p=0,3052, 1-β=0,18) manteniéndose constante durante todo el almacenamiento. El efecto del tratamiento sobre el valor L* fue significativo (p=0,0016) y es dependiente de la fruta estudiada (p=0,0206) causando un oscurecimiento en la cáscara del banano. Según los resultados obtenidos en el presente estudio se concluye que la aplicación de un tratamiento de 90 s en sustitución de una desinfección permite la comercialización de piña y melón como fruta fresca; sin embargo, no es posible la aplicación de este tratamiento en banano.

El consumo promedio de frutas en Costa Rica tradicionalmente ha sido bajo (30g/persona/día) (Monge & Muñoz, 1991); sin embargo, en los últimos años se ha visto un incremento muy significativo (426,8g/persona/día) (Barquero, 2014), pese a ello y a pesar de contar con una amplia variedad y disponibilidad de frutas el consumo promedio se encuentra muy por debajo de países europeos que consumen ≥800 g/persona/día. Según las estadísticas del comercio exterior emitidas por PROCOMER, en el 2013 los productos frescos representaron 2510,6 millones de US$ lo que coloca a la actividad como una de principales fuentes de divisas en nuestro país.

El banano, la piña y el melón son de los principales productos frescos exportados en Costa Rica; ellos representan respectivamente el 32,5 %, el 31,5 % y el 2,6% del total de las exportaciones de productos frescos. Dichas estadísticas convierten a Costa Rica en el tercer exportador de banano y el primer exportador de piña fresca del mundo, mientras que durante la temporada de invierno en el hemisferio norte somos el tercer proveedor de melón de los Estados Unidos y el primer proveedor de la Unión Europea (PROCOMER, 2012).

Dada la magnitud de los ingresos económicos que representa esta actividad, es de suma importancia considerar la pérdida de calidad que algunas veces sufren las frutas durante el tiempo que media entre la cosecha y el consumo. Este detrimento de la calidad se debe a cambios físicos, químicos, enzimáticos o microbiológicos que pueden intensificarse cuando el tiempo de transporte es prolongado, como sucede en el caso de las exportaciones. La pérdida de calidad se traduce en importantes pérdidas económicas que afectan al sector agroindustrial (Rivera, 2008).

Otro problema que afecta al sector agroindustrial es la contaminación de frutas por microorganismos causantes de enfermedades a los humanos. Algunos de los factores que pudieran considerarse de riesgo en la calidad microbiológica de los productos frescos incluyen: el uso de agua de riego contaminada con heces de humanos y animales, procesos inadecuados en los campos de cultivo, prácticas deficientes de desinfección, condiciones inapropiadas durante empaque, higiene deficiente de los trabajadores y el mal manejo durante almacenamiento y transporte. Aunado a esto, una vez que ocurre la contaminación, muchos microorganismos patógenos poseen la capacidad de sobrevivir por largos períodos en frutas
Algunos microorganismos son también capaces de sobrevivir a procesos de desinfección e incluso de multiplicarse en el producto durante almacenamiento (Chaídez, s.f.).

Las Enfermedades de Transmisión Alimentaria (ETA) se producen por la ingesta de alimentos y/o bebidas contaminadas. Se han descrito más de 250 diferentes enfermedades transmitidas por los alimentos, la mayoría de éstas son infecciones causadas por variedad de bacterias, virus y parásitos. Otras ETA’s son causadas por toxinas o productos químicos nocivos que han contaminado los alimentos (Centers for Disease Control and Prevention, 2005). La prevención de las ETA’s comienza con el conocimiento de las posibles contaminaciones, de cómo éstas llegan a los alimentos y qué se puede hacer para evitar o eliminar estas contaminaciones (Barrantes, 2006). Dado que estas enfermedades están en constante aumento, urgen estrategias para prevenir y controlar su ocurrencia (Marriot, 1997).

Los recientes brotes de ETA’s producidos por el consumo de frutas frescas contaminadas por microorganismos patógenos, demuestran la vulnerabilidad de estos productos; el Centro de Control y Prevención de enfermedades (CDC por sus siglas en inglés) reporta brotes que han sido relacionados con melón Cantaloupe producido en Estados Unidos causados por Salmonella Typhimurium (2012) y por Listeria monocytogenes (2011), así mismo con Salmonella Typhimurium en melón Cantaloupe importado desde Guatemala (2011).

La aplicación de tecnologías para lograr el aseguramiento de la inocuidad de los alimentos tiene un papel muy importante en la disminución de las ETA y además interviene en el aumento de la vida útil de los productos (Kopper et al., 2009). Los métodos más ampliamente utilizados para la desinfección de frutas y hortalizas se clasifican en dos grandes grupos: los que involucran procesos físicos como: remoción mecánica, tratamientos térmicos e irradiación y los que corresponden a tratamiento químicos que utilizan agentes desinfectantes superficiales (Garmendia & Méndez, 2006).

Los tratamiento térmicos, los de remoción mecánica y los que utilizan agentes químicos presentan en muchos casos un efecto negativo sobre ciertos componentes de los alimentos, reduciendo su contenido en vitaminas y otros nutrientes, además afectan las características sensoriales disminuyendo el atractivo en términos de color y propiedades de textura de los productos. Es por ello que la aplicación de radiaciones es una alternativa que se está estudiando y desarrollando con el fin de obtener un producto de mejor calidad sensorial, pero sin dejar de lado la seguridad microbiológica (Falguera et al., 2011).
Una de estas alternativas es la utilización de la radiación ultravioleta (UV). La radiación UV afecta el ADN de bacterias, virus, hongos y otros microorganismos expuestos a ella de tal manera que les impide la reproducción. La radiación ultravioleta corresponde a la porción del espectro electromagnético que se encuentra entre los rayos X y la luz visible. Se han definido cuatro regiones del espectro UV: UV-vacío entre 100 y 200 nm, UV-C entre 200 y 280 nm, UV-B entre 280 y 315 nm, y UV-A entre 315 y 400 nm (Blatchley & Peel, 2001). Las longitudes de onda más eficaces para la inactivación de microorganismos se encuentran entre 200 y 280 nm (UV-C), especialmente a 254 nm (Falguera et al., 2011).

La aplicación de radiación ultravioleta con efectos germicidas ha sido utilizada en tres áreas: desinfección del aire, esterilización de líquidos y la inhibición de microorganismos en superficies (Bintsis et al., 2000). En la industria alimentaria la irradiaión UV-C se ha aplicado principalmente en diversos procesos y productos tales como la desinfección del aire, en el procesamiento de carne o vegetales, sobre el agua que se utiliza en algunas etapas del proceso, en las superficies de productos frescos, pollo, pescado, huevos y varios alimentos líquidos como: leche, jugo de fruta o sidra (Falguera et al., 2011).

El efecto de la radiación en los microorganismos depende de diversos factores tales como fase de crecimiento del microorganismo, especie, cepa y cultivo (Falguera et al., 2011). Es debido a esto que en este trabajo se considera de suma importancia la evaluación de microorganismos con distintas características a saber, Salmonella spp., Listeria spp. y Fusarium spp. Además, los microorganismos elegidos son importantes para la inocuidad y calidad de las frutas tropicales en estudio.

En Estados Unidos la Salmonella spp. es la causa más común de las enfermedades transmitidas por alimentos (ETA) y se encuentra en las aves crudas, los huevos, la carne vacuna y algunas veces, en las frutas y vegetales sin lavar (Tortora et al, 2007). Listeria spp. es causante de una de las ETA’s de mayor interés para la salud pública por la gravedad y el alto índice de mortalidad que posee pues afecta a individuos con enfermedades inmunosupresivas, mujeres embarazadas y niños. Esta bacteria constituye una preocupación para la industria alimentaria por su capacidad para sobrevivir durante períodos prolongados en el ambiente, su capacidad para crecer a temperaturas muy bajas y sobrevivir en el interior o en la superficie del alimento en condiciones adversas (Doyle et al., 2001).

Los productos frescos, especialmente las frutas y verduras se ven afectados por mohos y levaduras que contribuyen con su deterioro y a la consecuente pérdida de calidad por daños

Otro factor que interviene en la eficacia de la radiación UV-C es el tipo y composición de la superficie de los alimentos que se irradian. En distintos estudios se ha demostrado la poca eficacia de los UV-C en superficies que no son lisas y que presentan variaciones en su relieve. Wong *et al.* (1998) demostraron que los rayos UV-C fueron más efectivos en la piel del cerdo que en el músculo debido a sus características de superficie lisa. Gómez *et al.* (2010) reporta la reducción de 1,9 ciclos logarítmicos de *Listeria innocua* en cubos de manzana tratados con radiación UV-C, mientras Shenk *et al.* (2011) realizó ensayos para la eliminación de este microorganismo pero en una superficie lisa no alimentaria logrando una reducción de 4,6 ciclos logarítmicos. Por lo tanto, es importante no sólo verificar la eficacia de esta tecnología en frutas, si no en frutas que posean diferentes superficies como lo son la piña, el melón y el banano, con el fin de evaluar si las características de dichas superficies afectan la eficacia de la tecnología.

Distintos estudios han evaluado la aplicación de UV-C para disminuir la cantidad de bacterias presentes en algunos alimentos; sin embargo, los cambios sensoriales que pueden sufrir por la exposición de una fruta a esta tecnología no se han estudiado a fondo. Esta información puede ser importante para las industrias exportadoras de frutas frescas, debido al requerimiento del consumidor de productos con las cualidades de un producto fresco pero con la transformación necesaria para su uso inmediato (Wiley, 1994).

La aplicación de UV-C a distintas frutas de exportación podría permitir la eliminación de microorganismos patógenos reduciendo los brotes de ETA’s, lograr un aumento en la vida útil de los productos frescos tras la eliminación de microorganismos de deterioro, optimizar recursos económicos al dejar de utilizar productos químicos para la desinfección y utilizar tecnologías más limpias para contribuir con el desarrollo de la agroindustria.
2. **Objetivos**

2.1. **General**

2.1.1. Evaluar el efecto de diferentes tiempos de exposición a radiaciones ultravioleta en las características sensoriales y en la reducción de bacterias patógenas y de deterioro de melón (*Cucumis melo*), piña (*Ananas comosus*) y banano (*Musa cavendish*).

2.2. **Específicos**

2.2.1. Determinar la reducción microbiológica de *Salmonella Typhimurium*, *Listeria innocua* y *Fusarium* spp. en melón (*Cucumis melo*), piña (*Ananas comosus*) y banano (*Musa cavendish*) debida a la exposición a diferentes tiempos de radiación ultravioleta.

2.2.2. Determinar el cambio en las características sensoriales de melón (*Cucumis melo*), piña (*Ananas comosus*) y banano (*Musa cavendish*) irradiadas por diferentes tiempos, para establecer el tiempo máximo de exposición a los rayos ultravioleta.

2.2.3. Evaluar mediante un estudio de almacenamiento el efecto de la radiación ultravioleta sobre la estabilidad de melón (*Cucumis melo*), piña (*Ananas comosus*) y banano (*Musa cavendish*)
3. Marco teórico

3.1. Importancia y mercado de frutas tropicales

El consumo de frutas tropicales, frescas o transformadas, ha crecido en los últimos años en muchos países y especialmente en los países desarrollados, dicho crecimiento se debe a la expansión geográfica de los productos gracias a un comercio cada vez más rápido, seguro y económico, al incremento experimentado por el turismo y al progreso de las técnicas de transformación y envasado de las frutas (Pavez & Alas, 2004).

La popularidad adquirida por las frutas tropicales ha cruzado las fronteras de los países donde se producen para formar parte del complemento alimenticio de muchos países, especialmente Estados Unidos y la Unión Europea (Pavez & Alas, 2004). Según la FAO (2009) el consumo de frutas frescas en la Unión Europea se estima en 81 kg per cápita, mientras en Estados Unidos corresponde a 132 kg/persona/año. El factor que más interviene en la demanda corresponde a una nueva tendencia: “los consumidores no compran una fruta, compran salud”, esta frase describe la tendencia actual que contempla una búsqueda de un estilo de vida más saludable (Pavez & Alas, 2004), enfocándose en estudios que han demostrado que las frutas contienen muchos factores promotores de la salud, como la fibra y grandes cantidades de minerales y vitaminas, flavonoides y ácidos fenólicos. Además, existe evidencia epidemiológica que sugiere que una dieta rica en frutas y vegetales puede ayudar a proteger enfermedades del corazón, cáncer, Alzheimer y otras enfermedades crónicas (Ribeiro et al., 2010).

El atractivo y el potencial mercado de las frutas tropicales en los países desarrollados ha obtenido la atención de los países productores, entre ellos se encuentra nuestro país Costa Rica. Ello se debe a que la producción, distribución y comercialización de frutas tropicales genera fuentes importantes de empleos y divisas (Pavez & Alas, 2004). En la Figura 1, se muestra las exportaciones correspondientes al sector agrícola para el periodo del 2008-2014. En promedio cada año el sector agrícola aporta aproximadamente un 20% de los ingresos generados por las exportaciones. Este porcentaje incluye los ingresos generados por frutas tropicales como: piña, banano, sandías frescas, melones y mangos, los principales países destino son Estados Unidos, Holanda, Reino Unido, Bélgica e Italia (PROCOMER, 2014).

La Figura 1 además demuestra el nivel de participación que tienen las frutas tropicales de mayor importancia (banano, piña y melón) en el porcentaje global del sector agrícola. En el recuadro azul aparece el porcentaje de la sumatoria del aporte de las tres, de manera que sea comparable con el aporte total del sector. Como se puede notar, en los últimos años las exportaciones de estas frutas constituyen más del 60% de todos los ingresos por el sector agrícola (PROCOMER, 2014), demostrando la importancia de estos cultivos para el país.

Según la FAO (2009), una cantidad importante de los productos agrícolas producidos en los países en desarrollo se pierden después de la cosecha. Las causas de las pérdidas post-cosecha, que algunas estimaciones sitúan entre el 15% y hasta el 50% de la producción, son muy diversas. Entre ellas se destaca la recolección en un momento inadecuado del proceso de maduración, una exposición excesiva a la lluvia, la sequía o las temperaturas extremas, la contaminación por microorganismos y los daños físicos que reducen el valor del producto. Los cultivos también pierden valor a causa de los derrames, los daños provocados por el uso de
herramientas inadecuadas, la contaminación química o un exceso de rudeza en la manipulación durante la recolección o las operaciones de carga, empaque y transporte (FAO, 2009).

Como quedó evidenciado anteriormente las frutas tropicales, frescas o procesadas, tienen una gran demanda en el mercado internacional, por lo que la fruticultura constituye una gran fuente de divisas para Costa Rica. Debido a los altos requisitos de calidad exigidos por las normas internacionales y al alto grado de perecibilidad que tienen los productos frescos, Costa Rica debe destinar recursos para mejorar el deficiente manejo post-cosecha que tiene actualmente, especialmente porque su calidad disminuye durante la comercialización, distribución y exportación provocando cuantiosas pérdidas económicas. Además dichos esfuerzos deben ir orientados a los productos de mayor demanda internacional, como lo son el banano, piña y melón (Figura 1).

3.1.1. Banano

El banano (Musa cavendish) originario del sureste de Asia y las islas del Pacífico, es una de las frutas más vendidas en el mundo ya que es reconocida por sus fuentes de nutrición y energía, es rico en carbohidratos y contiene poca grasa. Además ayuda a proveer vitaminas esenciales como la vitamina C, B6, B1, B2 y contiene grandes cantidades de potasio y magnesio. El mercado de banano en el mundo es el de consumo en fresco mientras una cantidad mínima se destina a procesos industriales para la obtención de productos alimenticios (Marín, Sutton & Barker, 2002).

La producción y comercialización de banano en Costa Rica es una de las actividades más importantes del sector agrícola. En el 2012 generó 815,3 millones de USD (PROCOMER, 2012). La variedad más cultivada es la Cavendish, esta se destina para el mercado internacional, cuyos niveles de exportación ascendieron a 1,87 millones de toneladas métricas provenientes de las 43,313 hectáreas establecidas en el 2009. Según PROCOMER, para el 2012 las exportaciones de banano correspondieron a un 32,5% de las exportaciones totales realizadas por el sector agrícola, manteniendo al banano como el principal producto agrícola de exportación.
3.1.2. Piña

La piña (*Ananas comosus*) es originaria del sureste de Brasil y Paraguay, es la fruta tropical de mayor demanda en el mundo, por su agradable sabor y alto contenido de fibra, pero, sobre todo porque es una fuente importante de vitaminas C, B1, B6, ácido fólico y minerales como el potasio. La producción de piña se encuentra distribuida alrededor de 83 países entre los que destaca Nigeria y Tailandia, mientras a nivel del continente americano Brasil se postula como el mayor productor seguido por Costa Rica. Según la FAO (2013), se espera que la producción de piña alcance 18,7 millones de toneladas en el 2014, representando el 23% de la cosecha mundial de frutas tropicales. Las exportaciones de piña fresca en el mundo se encuentran dominadas por Costa Rica, que produce el 29% de las exportaciones mundiales (Cerrato, 2013). La piña ocupa el segundo lugar entre los principales productos de exportación del sector agrícola, generando alrededor de 790,8 millones de USD durante el año 2012 (PROCOMER, 2012).

3.1.3. Melón

El melón (*Cucumis melo*) es una fruta originaria del las regiones tropicales y subtropicales de África Occidental y la zona Meridional Asiática, es una fruta con propiedades hidratantes y con alto contenido de vitamina B y C (Homoagrícola, 2011). Según datos de la FAO, la producción mundial de melón alcanzó las 28 millones de toneladas en el 2008. Los principales países productores de melón son China, Turquía, Irán, España y Estados Unidos, mientras de la región centroamericana el principal productor de melón es Guatemala, seguido por Costa Rica y Honduras (FAO, 2013). En Costa Rica el melón ocupa el quinto lugar entre los principales productos de exportación del sector agrícola en el período 2008-2014 (Figura 1), lo que corresponde a 65,1 millones de USD de ingresos por su exportación (PROCOMER, 2014).

3.2. Microbiología de las frutas

3.2.1. Inocuidad de las frutas frescas

El control de la inocuidad de frutas frescas es muy complejo, ya que se trata de productos que durante su procesamiento no llevan ningún tratamiento térmico, esto supone un mayor riesgo para la salud de los consumidores, ya que los tratamientos de descontaminación, aunque sean efectivos, no garantizan la inocuidad hasta el consumo.
(Rodríguez, 2013). Según lo reportado, el número de brotes de enfermedades causadas por productos frescos es bajo (en 1996 solamente seis de los aproximadamente 200 informes de enfermedades en el Reino Unido fueron asociadas con el consumo de frutas y vegetales); sin embargo, a medida que ha incrementado el consumo se ha observado una mayor incidencia de estos. Por ejemplo, en el caso de los Estados Unidos, en el período entre 1973-1979, sólo un 2% de brotes fueron asociados a productos agrícolas frescos, mientras que, durante el período 1990-1997, esta cifra había incrementado a 6% (Guzewich & Salsbury, 2000).

Los brotes han sido relacionados con productos importados; sin embargo, la proporción de enfermedades transmitidas por los alimentos asociadas con los productos importados no es mayor que la vinculada a los productos cultivados en los países importadores. Debido a la ausencia de investigación en los países en desarrollo muchos de estos brotes no son registrados oficialmente y las estadísticas registran, solamente, un 2% de brotes en América Latina relacionados con contaminación de frutas (FDA, 2002).

En el Cuadro I se evidencian algunos brotes relacionados con frutas tropicales en los últimos años. En él se describen los microorganismos asociados con la fruta que funciona como vehículo. En algunos de los brotes, además de las evidentes pérdidas económicas se presentaron personas infectadas y algunas muertes (CDC, 2014).

Todos estos casos de brotes de enfermedades han puesto en entredicho la inocuidad de las frutas frescas, de modo que instituciones de salud mundial están en alerta para vigilar más de cerca la calidad microbiológica del producto de exportación. Por ello, toman medidas para reducir riesgos de contaminación por microorganismos causantes de enfermedades en la población humana (Rodríguez, 2013). En el Cuadro I se observa que el melón es la fruta en estudio que más ha estado involucrada en brotes en Estados Unidos, esto refleja la importancia de realizar el presente estudio utilizando el melón como una fruta de análisis.

3.2.1.1. *Salmonella* spp.

Muchas enfermedades causadas por alimentos son relacionadas con las bacterias del género *Salmonella* de la familia Enterobacteriaceae, son bacilos Gram negativos, anaerobios facultativos y en su mayoría flagelados lo que les permite su movilidad. Como condiciones optimas de crecimiento presentan temperaturas entre 35-45°C, como límites de crecimiento se tienen los 7°C y 46,2°C. Además la *Salmonella* no crece por debajo de 0,94 y el pH mínimo
para su crecimiento es de 3,8 y no soporta valores superiores a 9,5, con un óptimo entre 7 y 7,5 (Downes & Keith, 2001).

Cuadro I. Ejemplos de brotes de enfermedades causadas por contaminación de frutas frescas. Fuente: Centers for Disease Control and Prevention.

<table>
<thead>
<tr>
<th>Inicio de Brote</th>
<th>Situación</th>
<th>Organismo</th>
<th>Vehículo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero 2011</td>
<td>99 casos de infección. Importadas desde México</td>
<td>Salmonella</td>
<td>Papaya</td>
</tr>
<tr>
<td>Julio 2012</td>
<td>261 personas infectadas en 24 estados. Producidas en granja de Indiana, EE.UU.</td>
<td>Salmonella Typhimurium</td>
<td>Melón Cantaloupe</td>
</tr>
<tr>
<td>Julio 2011</td>
<td>147 personas infectadas, 33 muertes. Producidas en granja de Colorado, EE.UU.</td>
<td>Listeria monocytogenes</td>
<td>Melón Cantaloupe</td>
</tr>
<tr>
<td>Febrero 2011</td>
<td>Se recolectó todo el producto sin ser consumido. Los melones se cultivan en Guatemala.</td>
<td>Salmonella Typhimurium</td>
<td>Melón Cantaloupe</td>
</tr>
<tr>
<td>Diciembre 2008</td>
<td>Se produjo entre las personas que habían comido en un restaurante en California.</td>
<td>Norovirus</td>
<td>Melón Cantaloupe</td>
</tr>
<tr>
<td>Octubre 2008</td>
<td>Brote en California.</td>
<td>Salmonella</td>
<td>Sandía</td>
</tr>
<tr>
<td>Agosto 2008</td>
<td>Se produjo entre las personas que habían comido en un restaurante en Colorado.</td>
<td>Salmonella Newport</td>
<td>Melón Cantaloupe y Sandía</td>
</tr>
<tr>
<td>Agosto 2003</td>
<td>Se produjo en Florida, EE.UU.</td>
<td>Norovirus</td>
<td>Melón Cantaloupe, Piña y bananos</td>
</tr>
<tr>
<td>Febrero 2001</td>
<td>Brote multiestatal en EE.UU. Importadas desde Perú</td>
<td>Salmonella</td>
<td>Mango</td>
</tr>
</tbody>
</table>

La *Salmonella* se encuentra ubicada en el tracto gastrointestinal de animales de sangre caliente (entre los cuales está el hombre, aves, cerdos y ganado vacuno) y aguas contaminadas con sus heces, las cuales son las principales contaminantes de frutas y hortalizas debido a contaminación cruzada, principalmente cuando no hay buenas prácticas agrícolas. Además, se puede establecer en el ambiente y utensilios y equipo contaminado de las plantas procesadoras (Tortora, Funke & Case, 2007). Los síntomas de la enfermedad
incluyen náuseas, vómitos, dolor abdominal, diarrea y fiebre.

Salmonella es sensible al calor y puede ser inactivada fácilmente mediante tratamientos térmicos, aunque existen algunas cepas que presentan resistencia (Downes & Keith, 2001).

A pesar de que el género *Salmonella* incluye más de 2300 serotipos, *Salmonella* Enteriditis y *Salmonella* Typhimurium son los serotipos más comúnmente identificados en la incidencia de salmonelosis (Mukhopadhyay & Ramaswamy, 2012). De acuerdo con la CDC, existe un estimado de 1,4 millones de casos de salmonelosis en Estados Unidos anualmente, de las cuales la mitad de los casos son causados por los 14 serotipos enteritidis o Typhimurium y 500 terminan en fatalidades. Según la CDC (2005), en el 2004 la salmonelosis fue la infección bacteriana más reportada (42%) en Estados Unidos, de acuerdo con lo anterior, en el presente estudio se decide utilizar una cepa de *Salmonella* Typhimurium.

3.2.1.2. *Listeria* spp.

El género *Listeria* está formado por seis especies diferentes: *L. monocytogenes*, *L. innocua*, *L. welshimeri*, *L. ivanovii*, *L. seeligeri* y *L. grayi*. De ellas sólo las especies, *L. monocytogenes* y *L. ivanovii* son patógenas. *L. monocytogenes* causa enfermedad severa en humanos y en animales, mientras que *L. ivanovii* se ha visto más asociada con infecciones en animales. La *L. monocytogenes* es uno de los principales patógenos causantes de enfermedades a nivel mundial. Es un bacilo gram positivo, dotado de movilidad por flagelos, psicrófilo, aerobio facultativo, catalasa positivo y oxidasa negativo, es capaz de crecer a temperaturas entre 0,4 y 50°C y a un pH mayor de 4,5, tiene la habilidad de crecer en ambientes con menos del 10% de cloruro de sodio y es resistente a varios desinfectantes que matan otros patógenos. La *L. monocytogenes* se halla en las aguas residuales, en las heces de los animales e incluso en las heces de persona (Aymerich *et al*., 2000).

La listeriosis es de interés principal para la salud pública a causa de la proporción elevada de casos de muerte (tasa de letalidad de 30%), un tiempo de incubación frecuentemente largo y una predilección por individuos de alta vulnerabilidad como niños, mujeres embarazadas, ancianos y personas con el sistema inmune comprometido (Aymerich *et al*., 2000). Las mujeres embarazadas resultan con una infección que puede ser asintomática o se puede caracterizar por una enfermedad parecida a la gripe con fiebre, mialgia o dolor de cabeza. Las consecuencias para el feto son más graves, incluyendo aborto espontáneo, muerte del feto, nacimiento prematuro, septicemia neonatal grave y meningitis (Doyle *et al*.,

La *Listeria innocua*, así como la *Listeria monocytogenes* es psicrófila. Ambos microorganismos tienen un crecimiento y características bioquímicas similares, por ello *L. innocua* ha sido reconocido como un sustituto seguro y no patógeno para la *L. monocytogenes* para poder realizar investigaciones o pruebas en planta con el fin de no comprometer a los colaboradores por el contacto con la cepa patógena Francis & O’Beirne, 1998). Dado lo anterior, en el presente estudio se utilizó una cepa de *Listeria innocua* para realizar las pruebas experimentales.

3.2.2. Calidad de las frutas frescas

Se estima que a nivel mundial las pérdidas poscosecha de frutas y hortalizas causadas por microorganismos, son del orden de 5-25% en países desarrollados y 20-50% en países en desarrollo. Los patógenos más importantes que causan pérdidas poscosecha de frutas y hortalizas son normalmente las bacterias y los hongos, siendo los mohos y las levaduras los principales causantes de deterioro de frutas tropicales durante el período post-cosecha (Garmendia & Méndez, 2006).

3.2.2.1. Microorganismos de deterioro: *Fusarium spp.*

Durante la cadena de exportación del banano, el ataque de hongos y bacterias a nivel post-cosecha provoca daños físicos y además aumenta la pérdida de agua y la respiración ocasionando pérdidas económicas para el exportador. Como agentes causales de la pudrición de la corona en banano se reportan los hongos: *Fusarium proliferatum* y *Colletotrichum musae*, mientras *Ralstonia solanacearum* ocasiona marchitez bacteriana (Marín, Sutton & Barker, 2002).

En el cultivo de piña se presentan algunas enfermedades que causan leves daños económicos, pero que es importante controlar para garantizar la calidad y evitar pérdidas post-cosecha ante la oportunidad de nuevos destinos de exportación. La podredumbre y fermentación del fruto incitada por bacterias del género *Erwinia*, la pudrición negra de los frutos relacionada con hongos del género *Penicillium* y *Fusarium*, así como la deformación por
levaduras son algunas de las enfermedades de mayor afectación en el cultivo de la piña (Montero & Cerdas, 2005).

Como todos los productos frescos, en la comercialización del melón también se sufren pérdidas de producto debido a daños post-cosecha causados por hongos y bacterias. Los más frecuentes son causados por *Alternaria*, *Penicillium*, *Cladosporium*, *Rhizopus* y *Fusarium*, de manera general se manifiestan como lesiones oscuras, húmedas o blandas, que pueden pasar de la piel a la pulpa (Ruiz & Russian, 2009).

Según lo descrito anteriormente, se concluye que uno de los principales causantes de deterioro en banano, piña y melón es el *Fusarium*. El *Fusarium* es un extenso género de hongos filamentosos. La mayoría de las especies son saprófitas y las esporas del hongo son fácilmente reconocibles al microscopio por su forma de media luna o de canoa. Además son fitopatógenos facultativos, capaces de sobrevivir en el agua y suelo alimentándose de materiales en descomposición (Carrillo, 2003).

Las colonias de los distintos tipos de *Fusarium* tienen diversos colores (blanco, rosado pálido, rojo, anaranjado, púrpura, celeste, verde aceituna o pardo). Además presentan el micelio denso, algodonoso y con una zona central de funículos. Algunos géneros crecen a temperaturas de -3°C y otros a 37°C pero la temperatura óptima de crecimiento es entre 22-28°C, mientras la actividad de agua óptima es 0.998 (Carrillo, 2003). Algunas especies son fitopatógenos causando la enfermedad conocida como fusariosis, estas pueden ser patógenas de los cereales y pueden formar micotoxinas en los granos aún antes de la cosecha, mientras otros pueden crecer en el refrigerador y aquellos con capacidad competitiva contribuir a la podredumbre de frutas y hortalizas almacenadas (Carrillo, 2003).

3.3. Aplicación de la desinfección UV

El uso de tratamientos fungicidas aplicados post-cosecha a las frutas tropicales se ha visto restringido por los residuos que dejan en el producto y su efecto en el consumidor, mientras los tratamientos térmicos causan cambios de calidad visual y sensorial del producto tales como: pérdidas de color, firmeza y sabores extraños. Dado lo mencionado anteriormente, el efecto germicida de la luz ultravioleta se ha empleado en diferentes alimentos como un método de desinfección superficial que no deja residuos en el producto, por lo que se considera una buena alternativa para la conservación de los alimentos. La luz ultravioleta se
ha utilizado en desinfección de aire, esterilización de líquidos y desinfección de superficies (Guerrero & Barbosa, 2004).

3.3.1. Fuentes de luz UV

La luz ultravioleta es la porción del espectro electromagnético que se encuentra entre los rayos X y la luz visible (Figura 2). Es una radiación no ionizante con una longitud de onda entre 100 a 400 nm. Se han definido cuatro regiones del espectro: UV-vacío entre 100 y 200 nm, UV-C entre 200 y 280 nm, UV-B entre 280 y 315 nm, y UV-A entre 315 y 400 nm. La aplicación práctica de la desinfección UV se basa en la capacidad germicida de UV-C (Phillips, 1983), que tiene su máximo pico de emisión a 254 nm y se ha comprobado que ha esta longitud de onda es donde presenta su mayor acción germicida (Artés & Allende, 2005).

La principal fuente de luz ultravioleta es el sol; sin embargo, la absorción de la radiación de onda corta por parte de la capa de ozono de la tierra impide que cantidades significativas de UV-B y UV-C alcancen la superficie de la Tierra. Por ello, las aplicaciones prácticas de desinfección UV dependen de fuentes artificiales, la fuente más común son lámparas de arco de mercurio de baja y mediana presión (Phillips, 1983).

3.3.2. Mecanismo de desinfección

Cuando se habla de la capacidad de inactivación microbiológica de luz UV-C, se debe realizar una distinción entre inactivar y matar los microorganismos. Para los desinfectantes químicos se puede utilizar como sinónimo inactivar y matar, ya que éstos destruyen las estructuras celulares, que interfieren con el metabolismo, la biosíntesis y el crecimiento. En
contraste, la UV-C no destruye o daña las estructuras celulares, sino que impide que los microorganismos se reproduzcan. Los microorganismos que no se pueden reproducir no pueden infectar y son por lo tanto inactivados (Phillips, 1983).

Los microorganismos son inactivados por la UV-C como resultado de la dimerización de ADN. El ADN es un polímero largo compuesto por una doble cadena que comprende combinaciones de cuatro nucleótidos (citosa (C), timina (T), adenina (A), guanina (G). En el proceso de dimerización ocurre un daño fotoquímico a sus ácidos nucleídos y los nucleótidos absorben la luz UV según la longitud de onda. La UV-C absorbida promueve la formación de enlaces entre nucleótidos adyacentes, con lo que se crean moléculas dobles o dímeros (Figura 3). La formación de un número suficiente de dímeros dentro de un microorganismo impide que éste replique su ADN y ARN, lo que imposibilita su reproducción (Phillips, 1983; Koutchma, Forney & Moraru, 2009).

3.3.3. Factores que afectan la inactivación microbiana

La inactivación microbiana que tiene la UV-C se ve influenciado por una serie de factores que es importante detallar para considerar su efecto en la eficiencia del método.

3.3.3.1. Microorganismo

Las tasas de inactivación microbiológica logradas por la UV-C varían dependiendo de muchos factores relacionados con el microorganismo en estudio; por ejemplo, considerando los tipos de microorganismos, Koutchma, Forney & Moraru (2009) lograron demostrar que las bacterias son menos resistentes a la UV-C que los virus y éstos a su vez son menos resistentes que los mohos y levaduras. Por otro lado, se requieren dosis más altas de UV-C cuando la bacteria tiene un exterior excepcionalmente protector que limita su absorción, como es el caso de algunas esporas bacterianas o de las bacterias Gram-positivas, las cuales requieren dosis mucho más altas que las bacterias Gram-negativas debido a la protección que realiza la gruesa capa de peptidoglucano que constituye su pared celular (Koutchma, Forney & Moraru, 2009).

Muchos autores reportan otros factores relacionados con el microorganismo:

- La variabilidad del efecto germicida dentro de una misma especie (Shama, 1999)
- La variabilidad dada por cepas distintas (Koutchma, Forney & Moraru, 2009)
• La etapa del ciclo de vida en la que se encuentra el microorganismo en el momento de realizar el estudio. En general, las células en su fase de crecimiento logarítmico son más sensibles que en la fase estacionaria (Shama, 1999)

• La concentración de microorganismos. Una alta concentración causa una disminución en la acción germicida (Barbosa-Canovas, Cano & Tapia, 2004)

• El tipo de nucleótidos que componen el ADN. En general, existe una correlación positiva dada por la cantidad de timina presente en el ADN de los microorganismos (Koutchma, Forney & Moraru, 2009)

![Figura 3. Estructura de ADN (Fuente: Koutchma, Forney & Moraru, 2009) antes y después de la absorción de un fotón de UV-C](image)

3.3.3.2. Características de la superficie

En el caso de los tratamientos UV-C de una superficie, es importante darse cuenta que la luz UV-C es fuertemente absorbida por la mayoría de los materiales y no puede penetrar más allá de la superficie de objetos sólidos. Según Sharma (2007), la eficacia del tratamiento de la superficie UV será fuertemente influenciada por su topografía. Las grietas, aberturas y características similares, de dimensiones comparables con el tamaño de los microorganismos (es decir, unas pocas micras) pueden ejercer una protección contra la luz ultravioleta.
3.3.3.3. Parámetros de tratamiento

A pesar de la fabricación de fuentes de radiación estándar, cuando éstas se emplean para la desinfección de alimentos, existen muchas variables que pueden afectar la eficacia del tratamiento. El tiempo de exposición, la intensidad de la fuente de radiación y el tipo de tratamiento, son algunas de ellas (Haro & Guerrero, 2013). La radiación emitida se mide en Watts (W) y la intensidad de la radiación en W/m². Para una desinfección eficaz es importante conocer la dosis de radiación necesaria para reducir la carga del microorganismo, la cual es el producto entre la intensidad de la radiación (I), expresada como energía por unidad de área y el tiempo de residencia o contacto con la luz UV-C (t) en segundos. La dosis (D) se mide en J/m² (1 Joule = 1 Watt x segundo):

\[D \text{ (J/m}^2\text{)} = I \text{ (W/m}^2\text{)} \times t \text{ (s)} \]

También suele expresarse en mJ/cm² = μW s/cm²

Como el tratamiento con radiación UV-C tiene tantas variables es difícil establecer parámetros respecto a la intensidad del tratamiento, ya que cada alimento necesita una dosis específica de radiación; debido a ello, para un mismo alimento se puede tener rangos de dosis muy diversos. Por lo que el tiempo de exposición se debe ajustar para alcanzar los niveles de energía apropiados. Otro factor que se debe considerar para lograr el efecto desinfectante de la radiación ultravioleta es que la unidad o equipo de UV-C se debe colocar tan cerca como sea posible del producto a tratar para evitar pérdidas energéticas por la absorción de otros elementos (Haro & Guerrero, 2013).

3.3.3.4. Mecanismos de reparación

Muchos microorganismos tienen un sistema metabólico con varios mecanismos de reparación de los ácidos nucleicos dañados. Este mecanismo es conocido como fotoreactivación, sucede cuando dos timinas adyacentes que se encuentran dimerizadas se invierten por acción de una enzima fotoreactivada. De modo que, es posible que ocurra una reactivación dado que el ADN puede ser reparado por factores proteínicos cuando las células dañadas se exponen a longitudes de onda superiores a 300 y 500 nm para activar la partición del dímero (Guerrero & Barbosa, 2004).
Es importante aclarar que un ambiente oscuro puede evitar la fotoreactivación de productos tratados con radiación UV-C o restaurar las células expuestas. Estas células fotoactivadas pueden ser más resistentes a la radiación UV cuando se aplica un segundo tratamiento de UV-C. Se observó que sería necesaria una dosis mayor de radiación para lograr una reducción 4-log de células fotoreactivadas, previo al tratamiento de agua con UV-C (Guerrero & Barbosa, 2004).

3.3.4. Efecto sobre la calidad

La aplicación de UV-C en las frutas genera una serie de cambios bioquímicos que inciden directamente en la calidad del producto:

3.3.4.1. Síntesis de compuestos protectores

Los fenoles o compuestos fenólicos son compuestos orgánicos constituyentes de las plantas, muchos son productos de defensa ante herbívoros y patógenos. El tratamiento de UV-C ha estimulado la síntesis de la enzima fenilalanina amonio-liasa, que es clave en la síntesis de fenilpropanoides, y da lugar a la formación de fenoles, fitoalexinas y ligninas con capacidad antifúngica.

En adición a lo anterior, se ha demostrado que la radiación UV-C ejerce efectos positivos en el contenido de licopeno de sandía fresca (Artéz-Hernández et al., 2010). Una de las razones por las cuales es conocida la producción de terpenos en alimentos es porque origina fitoalexinas, las cuales protegen a las plantas contra ataques de herbívoros, infecciones u organismos polinizadores. Se sabe que la radiación UV-C favorece la generación de terpenos en alimentos. Beaulieu (2007) trató de identificar el efecto que ejerce la radiación UV-C en la producción de terpenos y ésteres en rebanadas de melón. Este autor encontró que la exposición a la radiación UV-C aumenta la concentración de terpenos en el tejido de las rebanadas. Ryalls et al. (1996) reportaron un incremento en la síntesis de las fitoalexinas: escoporona y escopoletina en naranja (Citrus sinensis Osbeck) y otros cítricos, en respuesta al tratamiento con UV-C con lo que aumentó la resistencia del fruto a diversos patógenos.
3.3.4.2. Valor nutricional agregado

La radiación UV-C además de poseer un efecto germicida, también puede alterar algunas de las propiedades nutricionales del producto, como lo es el contenido de vitamina C, la actividad y los compuestos antioxidantes y el contenido de terpenos de algunos alimentos.

Se han reportado casos en los que la UV-C ha modificado las propiedades nutricionales de frutas y hortalizas. Yong-Gui & He (2012) evaluaron los efectos de la radiación UV-C en la calidad de rebanadas de piña frescas. Las rebanadas se trataron a 4,5 kJ/m² con tiempos de exposición de 60 y 90 segundos. Estos autores observaron que todos los tratamientos redujeron de manera importante el contenido de vitamina C en el producto. Del mismo modo, Allende et al. (2007) encontraron que la radiación UV-C podía disminuir el contenido de vitamina C en fresas.

En mango fresco cortado e irradiado con UV-C se reportó un incremento significativo de la actividad antioxidante (ORAC), el cual puede correlacionarse con aumentos en los contenidos de fenoles y flavonoides totales (González-Aguilar et al., 2007). El tratamiento de UV-C indujo la síntesis de antocianinas en frutos de fresa y manzana, con lo que se mejoró la calidad nutricional del producto (Baka et al., 1999; Dong et al., 1995). Se ha sugerido entonces la aplicación de UV-C para la producción de alimentos funcionales.

3.3.4.3. Atributos sensoriales

Uno de los atributos más importantes en los alimentos son sus características sensoriales, ya que estas dotan a los productos de un conjunto de factores particulares que permiten identificarlos y en la medida en que estos sean afectados o no, se podrá decidir si la calidad del producto es aceptable (Haro & Guerrero, 2013). La susceptibilidad del tejido vegetal al tratamiento de irradiación difiere significativamente entre variedades, estados fisiológicos, composición y grosor de la piel del fruto. Por tanto, la irradiación de UV-C puede tener efectos adversos cuando la intensidad es superior a la tolerada por el producto (Guerrero & Barbosa, 2004).

3.3.4.3.1. Color

La producción de color es probablemente el atributo más importante que determina la calidad global, ya que afecta la percepción inmediata del consumidor a la hora de la compra.
Si bien es cierto que los métodos de medición instrumental ofrecen un resultado cuantitativo concluyente, la calidad del color está dada por la capacidad del ser humano de percibir diferencias. Dado lo anterior los métodos instrumentales se combinan con paneles sensoriales, fotografías u observaciones visuales a lo largo del estudio.

En general, el principal efecto dañino ocurre con dosis muy altas y se manifiesta como manchado y decoloración de la piel, y su intensidad varía con el tiempo de exposición a la UV-C. Yong-Gui & He (2012) encontraron mediante un panel sensorial que al aumentar el tiempo de exposición a UV-C se da lugar a un aumento del pardeamiento en las piñas recién cortadas y se induce al pardeamiento cada vez mayor durante todo el período de almacenamiento, Marquenie et al. (2002) trataron fresas con altas dosis las cuales afectaron la apariencia del cáliz y causaron oscurecimiento y deshidratación de las hojas.

3.3.4.3.2. Sabor

El parámetro de sabor en cuanto a frutas tropicales se refiere es de suma importancia y está relacionado directamente con la calidad. La determinación del efecto de la radiación UV-C se puede realizar mediante análisis sensorial discriminativo pues se busca determinar cualquier cambio general en el sabor de un producto tratado. El análisis sensorial discriminativo es utilizado para comprobar si hay diferencias entre productos o muestras. Al panel se le consulta cuánto difiere un producto que se sabe diferente de un control o producto típico, pero no sobre sus propiedades o atributos ya que se buscar realizar un juicio global. Por ejemplo, ante una muestra A y una B, se pregunta ¿cuál es la más dulce? o ante A, B y C, donde dos son iguales y una tercera es diferente ¿cuál es distinta?.

Manzocco et al. (2011) determinaron que la radiación UV-C no ocasionó el posible desarrollo de sabores extraños en rodajas de manzana fresca. Este resultado contradice los informes previos que sugieren que el perfil de aroma volátil de fruta puede ser fuertemente afectadas por la irradiación UV facilitando la diferenciación de frutos tratados (Lamikanra et al., 2002; Beaulieu, 2007). Dado lo anterior se comprueba la necesidad de realizar la revisión de los efectos sensoriales para cada fruta.

3.3.4.3.3. Textura

El efecto de la radiación UV-C sobre la textura cobra importancia al considerar la pérdida de vida útil por un mayor ataque de microorganismos causado por ablandamiento. Los
resultados son positivos si se logra determinar la dosis adecuada según cada tipo de alimento; por ejemplo, se logró retardar el reblandecimiento en rebanadas de piña y fresa al inhibir la acción enzimática de las pectinasas, cuando se aplicaron dosis de 4,5 kJ/m2 (Pombo et al., 2011; Yong-Gui & He, 2012); sin embargo, con dosis inadecuadas se presenta un efecto dañino en el producto.

La pared y membrana celular son las estructuras blanco de la radiación UV-C, ya que los componentes de la membrana (fosfolípidos y glicolípidos) y de la pared (proteínas y ligninas), absorben energía en el rango ultravioleta. Al mismo tiempo la UV-C genera especies reactivas de oxígeno que causan estrés oxidativo el cual afecta la estabilidad de la pared y la membrana celular. Una respuesta de defensa a este efecto involucra el aumento o activación de compuestos antioxidantes (como poliaminas) y la inactivación de enzimas en algunos sistemas vegetales (poligalacturononas) (Foyer et al., 1994), lo cual provoca un retraso en la maduración y la senescencia del fruto.

Lu et al. (1991) reportaron que el tratamiento de UV-C en frutos de manzana y durazno retrasa el proceso de maduración, retraso que sugieren está íntimamente relacionado a una mayor resistencia al deterioro. Maharaj et al. (1999) sostienen que las poliaminas suprinen la degradación de la pared celular y la actividad de la poligalacturonasa en tomate, mediante un mecanismo similar al del calcio, al involucrar la formación de enlaces catiónicos cruzados con ácido péctico y otros polisacáridos. Se encontró que trozos de melón procesados bajo radiación UV-C retienen mejor la firmeza que los frutos testigos, al parecer por un mecanismo similar al encontrado en tomate y relacionado con la inactivación de enzimas de degradación de pared celular (Lamikanra et al., 2005). La aplicación de UV-C en duraznos aumenta la síntesis de fenilalanina amonio-amasia y disminuye la síntesis de etileno, lo cual prolonga la vida de anaquel del fruto al retrasar la maduración (Stevens et al., 1997).
4. Materiales y métodos.

4.1. Localización.

Las pruebas microbiológicas se realizaron en el Laboratorio de Microbiología del Centro Nacional de Ciencia y Tecnología de Alimentos (CITA) y las pruebas sensoriales en el Laboratorio de Análisis Sensorial del Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), ubicados en la Ciudad Universitaria Rodrigo Facio, San José, Costa Rica.

4.2. Materia prima.

La materia prima utilizada corresponde a tres frutas tropicales. Como éstas constituyen productos muy variables en cuanto a maduración homogénea, zona de cultivo, variedad del fruto, entre otros, se trató de controlar al máximo el efecto de dichas variables en cada fruta a estudiar.

El banano (Musa cavendish) utilizado fue cultivado en Tacares de Alajuela; según la escala de maduración expuesta en la Figura 4 se utilizaron los frutos con el grado de maduración 4 y se pidió al proveedor los frutos cultivados en una misma finca. Como el banano es un fruto climatérico se almacenó bajo condiciones controladas hasta alcanzar la maduración necesaria.

![Figura 4](image)

Figura 4. Escala de maduración del banano (Musa cavendish). Fuente: Piña *et al.*, 2006.
La piña (*Ananas comosus*) utilizada fue cultivada en La Hacienda Ojo de Agua ubicada en Siquirres, Limón; según la escala de maduración expuesta en la Figura 5 se utilizaron los frutos con color 2 y se pidió al proveedor los frutos cultivados en una misma finca.

![Imagen de piña](image1)

Figura 5. Escala de maduración de piña (*Ananas comosus*). Fuente: FIFFES GOLD, 2011.

El melón cantalupe (*Cocumis melo*) utilizado fue cultivado en la Estación Experimental Agrícola Fabio Baudrit Moreno de la Universidad de Costa Rica ubicada en Alajuela. Según la escala de maduración expuesta en la Figura 6 se utilizaron los frutos con color 3.0. Como en el caso del melón la escala de maduración es interna se solicitó al proveedor los frutos cultivados en una misma finca. Al escogerlos se tomaron muestras, se abrieron para ver la maduración y se asumió que los demás se encontraban en el mismo grado de maduración.

![Imagen de melón cantalupe](image2)

Figura 6. Escala de maduración del melón cantalupe (*Cocumis melo*). Fuente: Homoagricola, 2011.
4.3. Metodología.

4.3.1. Pruebas preliminares

4.3.1.1. Evaluación microbiológica a diferentes tiempos de exposición a radiación UV-C

Para cumplir con el objetivo de determinar la reducción microbiológica de *Salmonella Typhimurium*, *Listeria innocua* y *Fusarium* spp. en banano, melón y piña causada por la exposición a diferentes tiempos de radiación ultravioleta, se definieron cinco tiempos establecidos utilizando la literatura. Esta prueba preliminar pretendía corroborar que los tiempos elegidos iban a proporcionar resultados de reducción concluyentes por ello se utilizó el tiempo máximo y el tiempo mínimo; es decir, se buscaba evaluar preliminarmente si existía diferencia significativa en la reducciones logarítmicas con el tiempo máximo y el tiempo mínimo.

Se preparó la muestra de la fruta marcando sobre la superficie sin pelar un área de 25 cm². A esa sección se le inocular los microorganismos a estudiar y posteriormente se trataron con radiación ultravioleta aplicando 5 y 180 s. Los recuentos microbiológicos se realizaron utilizando la técnica, según cada microorganismo, que se describe en la sección 4.4.1.

Diseño Experimental

Se utilizó un diseño irrestricto aleatorio con un arreglo factorial 2×3×3. Los factores evaluados fueron: tiempo de exposición, tipo de microorganismo y tipo de fruta. El factor tiempo tiene dos niveles (5 y 180 s), el factor microorganismo tres (*Salmonella Typhimurium*, *Listeria innocua* y *Fusarium* spp.) y el factor tipo de fruta tres (melón, banano y piña); para tener un total de 18 tratamientos. La variable respuesta fue la reducción logarítmica en la población de microorganismos lograda por cada tratamiento, cada tratamiento se aplicó a un solo lote con tres repeticiones.

Análisis de resultados

Se aplicó un análisis de varianza (ANDEVA) con el fin de determinar si alguno de los factores tiene un efecto en la disminución del microorganismo inoculado, utilizando el paquete estadístico JMP 7.0. El factor tiempo se indicó como una variable nominal. El análisis se enfocó en las interacciones tiempo*microorganismo, tiempo*fruta y microorganismo*fruta para determinar su significancia utilizando un nivel de confianza del 95%.
4.3.1.2. Evaluación de los cambios de sabor

Las frutas frescas se expusieron a la radiación ultravioleta por un tiempo máximo de 15 minutos. La prueba se realizó colocando la fruta sin cortar y con cáscara en la lámpara ultravioleta. Para cada fruta se tomó 5 unidades y además se tenía una fruta adicional que se consideró como control porque no fue irradiada. Las frutas tratadas fueron analizadas cada día durante 5 días por un panel informal de tres personas que evaluaron su sabor.

4.3.1.3. Evaluación de los cambios de color

Las frutas frescas se expusieron a la radiación ultravioleta por un tiempo máximo de 15 minutos, la prueba se realizó colocando la fruta sin cortar y con cáscara en la lámpara ultravioleta. Para cada fruta se tomaron 3 unidades y además se tenía una fruta adicional que se consideró como control porque no fue irradiada. Durante 5 días las frutas fueron observadas para evaluar los cambios de coloración y se registró su cambio mediante la toma de fotografías comparando con la fruta sin tratamiento.

4.3.1.4. Evaluación del cambio de la fuerza de corte

Esta prueba preliminar se realizó para definir las condiciones adecuadas en la prueba de fuerza de corte según cada una de las frutas a analizar. Para ello se utilizó el Texturómetro Instron y se realizaron pruebas con los diferentes accesorios o aditamentos del equipo. Esto se realiza porque al analizar frutas tan grandes como piña y melón es difícil lograr la penetración del accesorio en el fruto. Una vez definido el accesorio, se definió la velocidad de compresión y la distancia de compresión.
4.3.2. Pruebas definitivas

4.3.2.1. Determinación de la reducción microbiológica de *Salmonella Typhimurium*, *Listeria innocua* y *Fusarium* spp. en melón (*Cocumis melo*), piña (*Ananas comosus*) y banano (*Musa cavendish*) debida a la exposición a diferentes tiempos de radiación ultravioleta

Se estudió el efecto de la intensidad de radiación sobre la reducción de microorganismos patógenos y de deterioro en las superficies de frutas frescas. Para ello, se utilizó una cabina de desinfección y esterilización de radiación UV-C. Dicho equipo cuenta con un soporte de rejilla donde se colocó la muestra y posee una compuerta con apertura frontal con agarradera. Las dimensiones de la cabina se muestran en la Figura 7. La rejilla posee un área de 1049 cm² y la intensidad de emisión es de 620 µW*s/cm².

![Figura 7. Cabina de desinfección y esterilización de radiación UV-C.](image)

Debido a que la intensidad de radiación de la lámpara no se puede modificar, la diferencia en la intensidad del tratamiento se logró con el cambio en el tiempo de exposición. Se evaluaron seis tiempos: 5, 20, 45, 90, 180 y 360 s. Estos tiempos fueron determinados mediante el análisis de la literatura donde se reporta la dosis de radiación ultravioleta requerida para la destrucción del 99,9 % de la población según el microorganismo irradiado (Cuadro II).
Cuadro II. Dosis de radiación ultravioleta necesarias para destruir el 99,9 % de la población según microorganismo (Bioagrícolas de Costa Rica, s.f.).

<table>
<thead>
<tr>
<th>Microorganismo</th>
<th>Dosis (µW*s/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listeria innocua</td>
<td>3400</td>
</tr>
<tr>
<td>Salmonella Typhimurium</td>
<td>7000</td>
</tr>
<tr>
<td>Mohos</td>
<td>11000-330000</td>
</tr>
</tbody>
</table>

Los tres microorganismos mencionados en el Cuadro II son los elegidos para el análisis del efecto del tiempo, estos se inocularon en la superficie de las frutas como se explica a continuación.

Tratamiento de la muestra

Se prepararon las muestras de las tres frutas marcando sobre la superficie sin pelar un área de 25 cm². Esta sección se recortó con una profundidad de 2 cm. A dicha sección se le inoculó un microorganismo de la siguiente forma:

a) Se preparó un inóculo de concentración conocida, en el caso de las bacterias se realizó una solución comparando con un patrón Mc Farland 0,5 y se realizó un recuento para calcular su concentración. En el caso del moho se preparó una disolución de esporas cuya concentración se determinó haciendo uso de una Cámara de Neubauer (Benítez, 2012)

b) Las muestras ya marcadas se inocularon hasta alcanzar una concentración aproximada de 10^8 UFC/cm² (bacterias) y 10^8 esporas/cm² (mohos). Se tomaron 10 µL del inóculo, se distribuyeron uniformemente (“por micro-goteo”) en la superficie de 25 cm² para cada fruta y se dejo secar para permitir su adherencia a la superficie.

c) Se procedió a realizar el tratamiento con ultravioleta a cada una de las muestras en los tiempos definidos anteriormente.

d) Al finalizar el tratamiento se determinó el recuento final de cada uno de los microorganismos. Esto se realizó homogenizando 25 cm² de la muestra en 225 ml de diluyente y preparando diluciones decimales, las cuales se platearon según el método de análisis (Sección 4.4.1)

e) Con el recuento final se calculó la reducción logarítmica lograda en cada fruta. La reducción se calculó de la siguiente manera:

$$\log_{10} \left[\frac{\text{UFC/cm}^2_{\text{final}}}{\text{UFC/cm}^2_{\text{inicial}}} \right]$$
Diseño Experimental

Se utilizó un diseño irrestricto aleatorio con un arreglo factorial $6 \times 3 \times 3$. Los factores a evaluar son: el tiempo de exposición, tipo de microorganismo y tipo de fruta. El factor tiempo tiene seis niveles (5, 20, 45, 90, 180, 360 s), el factor microorganismo tres (*Salmonella Typhimurium, Listeria innocua* y *Fusarium spp.*) y el factor tipo de fruta tres (melón, piña y banano); para un total de 54 tratamientos. La variable respuesta fue la reducción logarítmica en la población de microorganismos lograda por cada tratamiento. Cada tratamiento se aplicó a un solo lote de cada fruta con tres repeticiones independientes.

Análisis de resultados

Se aplicó un análisis de varianza (ANDEVA) con el fin de determinar si alguno de los factores tiene un efecto en la disminución del microorganismo inoculado, utilizando el paquete estadístico JMP 7.0. El factor tiempo se indicó como una variable nominal. El análisis se enfocó en las interacciones tiempo*microorganismo, tiempo*fruta y microorganismo*fruta para determinar su significancia a un nivel de confianza del 95%. Al ser la interacción tiempo*microorganismo*fruta significativa se realiza un análisis de varianza (ANDEVA) por separado para cada microorganismo enfocado en la interacción tiempo*fruta. Además, se realizó un ANDEVA para analizar la interacción microorganismo*fruta para los datos obtenidos en el tiempo de 360 s.

4.3.2.2. **Determinación del cambio en las características sensoriales de banano, melón y piña, irradiadas por diferentes tiempos, para establecer el tiempo máximo de exposición a los rayos ultravioleta.**

Se estudió el efecto de la radiación ultravioleta sobre el sabor, el color y la textura de banano, melón y piña. Según las pruebas preliminares se definieron tres tiempos de exposición a radiación ultravioleta (30, 90 y 150 s) los mismos se comparan contra un control sin tratamiento UV-C (0 s).
Pruebas de sabor

Se realizó una prueba triangular con los tres tiempos de exposición definidos en la prueba preliminar (30(B), 90(C) y 150 s (D)) todos los tiempos se comparan contra una muestra sin tratamiento UV-C (A) para determinar si existe alguna diferencia entre el sabor del control y el de las muestras irradiadas. Al panelista se le presentaron tres set de la prueba elegida (uno por cada tiempo de exposición de cada fruta). Debido a que las frutas constituyen un alimento poco homogéneo, a los panelistas se les presentó un puré de las frutas con igual grado de maduración, a excepción del banano el cual se presentó media fruta. Las muestras se entregaron a los jueces codificadas y aleatorizadas debidamente.

![Figura 8. Esquema de bandejas de triángulos presentadas a los jueces durante el panel sensorial.](image)

Análisis de resultados

Los datos obtenidos en el panel sensorial para la prueba triangular fueron analizados mediante las tablas de análisis binomial (Roessler et al. 1978; ISO 4120:2007).

Prueba de color

La evaluación de color se realizó a las frutas según los tres tiempos definidos (0, 30, 90, 180 s). Se determinó por medio del uso de un colorímetro que utiliza el Sistema Hunter Lab si existe alguna diferencia en el color, siempre realizando la comparación con el control sin radiación. Se prepararon las muestras de las tres frutas marcando sobre la superficie sin pelar un área de 25 cm2. Estas fueron tratadas según el tiempo establecido y dicha sección se recortó posterior al tratamiento con una profundidad de 2 cm y se realizó la prueba de color.
Aunado a la medición instrumental se tomaron fotografías de todos los tratamientos, para comparar las diferencias detectadas por el equipo con la percepción del ojo humano.

Diseño Experimental

Se utilizó un diseño irrestricto aleatorio con un arreglo factorial 4×3. Los factores evaluados son: tiempo de exposición y tipo de fruta; el factor fruta tiene tres niveles (melón, banano y piña) y el factor tiempo cuatro niveles (0, 30, 90 y 150 s) para un total de 12 tratamientos. Como variables respuesta se analizaron los valores L, a^* y b^*. Cada tratamiento se aplicó a un solo lote de cada fruta con tres repeticiones independientes.

Análisis de resultados

Se aplicó un análisis de varianza (ANDEVA) con el fin de determinar si alguno de los factores tiene un efecto en el color del fruto, utilizando el paquete estadístico JMP 7.0. El tiempo se indicó como variable nominal. El análisis busca determinar si la interacción fruta*tiempo es significativa a un nivel de confianza del 95%.

Prueba de Textura

La prueba de textura se realizó a las frutas aplicando los tiempos definidos (0,30, 90, 180 s). El objetivo es determinar la fuerza requerida para causar una deformación, las condiciones definidas para el Instrom fueron: celda de 50 kg y una velocidad de cuchilla de 50 mm/min, utilizando como aditamento la cuchilla de corte. La firmeza del fruto se expresa como la fuerza en Newton requerida para comprimir la fruta una distancia específica en mm. Se prepararon las muestras de las tres frutas marcando sobre la superficie sin pelar un área de 25 cm2 y fueron tratadas según el tiempo establecido. Dicha sección se recortó con una profundidad de 2 cm y se realizó la medición de textura.

Diseño Experimental

Se utilizó un diseño irrestricto aleatorio con un arreglo factorial 4×3. Los factores a evaluar son: tiempo de exposición y tipo de fruta. El factor tiempo tiene cuatro niveles (0, 30, 90, 150 s) y el factor fruta tres niveles (melón, piña y banano) para tener un total de 12 tratamientos. La variable respuesta es la fuerza de corte. Cada tratamiento se aplicó a un solo lote de cada fruta con tres repeticiones independientes.
Análisis de resultados

Se aplicó un análisis de varianza (ANDEVA) con el fin de determinar si alguno de los factores tiene un efecto sobre la fuerza de corte del fruto, utilizando el paquete estadístico JMP 7.0. El tiempo se indicó como variable nominal. El análisis buscó determinar si la interacción fruta*tiempo fue significativa a un nivel de confianza del 95%.

4.3.2.3. Estudio de almacenamiento para evaluar el efecto de la radiación ultravioleta sobre la estabilidad de banano, melón y piña.

Se estudió el efecto de la radiación ultravioleta sobre la estabilidad de banano, melón y piña. Para ello se realizó un estudio de almacenamiento utilizando los tiempos en los que, según los objetivos anteriores, se obtiene menor efecto negativo sobre las características de cada fruta. Es decir, en el estudio de almacenamiento se aplicó el tiempo de exposición a la radiación ultravioleta que logró reducir la carga microbiológica en mayor magnitud sin cambiar las características sensoriales de cada fruta. Las muestras se almacenaron por 12 días y el tiempo de tratamiento para todas las frutas fue de 90 s como se determinó en experimentos anteriores.

Tratamiento de la muestra

a) Se preparó la muestra de las tres frutas realizando un lavado superficial con agua.

b) Se aplicó el tratamiento colocando el fruto entero en la lámpara UV-C por 90 s. Para evaluar el efecto del tiempo sobre la estabilidad se realizó una comparación entre los frutos tratados y frutos no tratados. Además, para asegurar que todo el fruto recibiera la misma intensidad de radiación, se realizó una rotación del mismo a la mitad del tiempo de exposición.

c) A las muestras tratadas y no tratadas se les realizó un recuento total aerobio y un recuento de mohos y levaduras al inicio (0 días).

d) Se tomaron los frutos tratados y los frutos no tratados y se almacenaron en la cámara de post-cosecha de la planta piloto del CITAS bajo condiciones de temperatura controladas; melón 7-10°C, piña 7-8°C y banano 12-14°C.

e) A las muestras tratadas y no tratadas se les realizó un recuento total aerobio y un recuento de mohos y levaduras a los 0, 3, 6, 9 y 12 días de almacenamiento.
f) Además se tomaron fotografías para hacer observaciones visuales

Diseño Experimental

Se utilizó un diseño irrestricto aleatorio con un arreglo factorial $2 \times 3 \times 5$. Los factores evaluados fueron: tratamiento aplicado (con tratamiento y sin tratamiento), fruta (melón, piña y banano) y tiempo de almacenamiento (0, 3, 6, 9 y 12 días); como se observa el factor tratamiento tiene dos niveles, el factor fruta tres niveles y el factor tiempo de almacenamiento cinco niveles; para tener un total de 30 tratamientos. Las variables respuesta fueron el recuento total aerobio y el recuento de mohos y levaduras. Cada tratamiento se aplicó a un solo lote para cada fruta con tres repeticiones independientes.

Análisis de resultados

Se aplicó un Modelo Lineal general utilizando el tiempo como factor continuo con el paquete estadístico JMP 7.0, para determinar si la radicación UV-C aplicada tiene un efecto al transcurrir el tiempo de almacenamiento a un nivel de confianza del 95%.

4.4. Métodos de análisis.

4.4.1. Microbiológicos.

4.4.1.1. Recuento de *Listeria innocua*

A las muestras inoculadas se les determinó el recuento de *L. innocua* utilizando los agares descritos por la FDA en el Bacteriological Analytical Manual (2011). Se toman 25 cm2 de muestra y se colocan en una bolsa de Stomacher donde se agregan 225 mL de agua peptonada, se mezcla por 1 ó 2 minutos, se hacen diluciones decimales de esta disolución, se realiza el vaciado de 1 mL sobre placas, luego se agrega agar Oxford marca OXOID (CM0856B-G), se incuban a 35°C por 48±2 h para posteriormente realizar el recuento y expresarlo en UFC/cm2.
4.4.1.2. Recuento de *Salmonella Typhimurium*

A las muestras inoculadas se les determinó el recuento de *Salmonella Typhimurium* utilizando los agares descritos por la FDA en el Bacteriological Analytical Manual (2014). Se toman 25 cm2 de muestra y se colocan en una bolsa de Stomacher donde se agregan 225 mL de agua peptonada, se mezclan por 1 o 2 minutos, se preparan diluciones decimales de esta disolución, se realiza el vaciado de 1 mL sobre placas, luego se agrega agar XLD marca OXOID (CM0469B), se incuban a 35°C por 48±2 h para posteriormente realizar el recuento y expresarlo en UFC/cm2.

4.4.1.3. Recuento de mohos y levaduras

A las muestras inoculadas se les determina el recuento de mohos y levaduras utilizando los agares descritos por la FDA en el Bacteriological Analytical Manual (2001). Se toman 25 cm2 de muestra y se colocan en una bolsa de Stomacher donde se agregan 225 mL de agua peptonada, se mezclan por 1 ó 2 minutos, se realizan diluciones decimales de esta disolución, se esparcen con varilla de vidrio 0,1 mL sobre placas secas de agar papa dextrosa acidificado marca OXOID (CM0139B), se incuban en la oscuridad a 25°C por 5 días y se realiza el recuento el cual se expresa en UFC/cm2 cuando se realiza el recuento de *Fusarium* spp. y en UFC/g cuando es mohos y levaduras en general.

4.4.1.4. Recuento Total Aerobio

A las muestras se les determina el recuento total aerobio utilizando los agares descritos por la FDA en el Bacteriological Analytical Manual (2001). Se pesan 25 g de muestra y se colocan en una bolsa de Stomacher donde se agregan 225 mL de agua peptonada, se mezclan por 1 o 2 minutos, se realizan diluciones decimales de esta disolución, se montan mediante el método de vaciado utilizando agar Standard marca OXOID (CM0463), se incuban a 35°C por 48 horas y se realiza el recuento el cual se expresará en UFC/g.
4.4.2. Físicos

4.4.2.1. Color

Se analizó el color bajo los parámetros L*, a* y b*, bajo las condiciones establecidas en el Cuadro III.

Cuadro III. Datos del equipo de medición del color

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Colorímetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca</td>
<td>HunterLab</td>
</tr>
<tr>
<td>Modelo</td>
<td>Color Flex</td>
</tr>
<tr>
<td>Ángulo de abertura</td>
<td>10º</td>
</tr>
<tr>
<td>Tipo de luz</td>
<td>D65</td>
</tr>
</tbody>
</table>

El equipo se calibró según las indicaciones del fabricante (Hunter Associates Laboratory, Inc, 2003).

4.4.2.2. Textura

Se analizó la textura de las frutas realizando una prueba de fuerza de corte en el Instron Testing Machine modelo 1000. El equipo se calibró según las indicaciones del fabricante (Instron Corp., n.d.).

4.4.2.3. Prueba de Discriminación Sensorial

Se realizó una prueba triangular, con al menos 20 panelistas, a quienes en cada sesión de evaluación se les presentó un set con tres triángulos, en los que se compararon el control "sin tratamiento" con una muestra tratada el tiempo determinado. A los panelistas se les presentó un trío de muestras por duplicado ordenado aleatoriamente y se le pidió que las pruebe en el orden presentado pidiendo al juez que indique la muestra que posee sabor diferente.
5. Resultados y discusión

5.1. Pruebas preliminares

5.1.1. Evaluación microbiológica para los tiempos de exposición elegidos

Con el propósito de evaluar la elección del tiempo mínimo (5 s) y tiempo máximo (180 s) se realizó un ensayo microbiológico para analizar la reducción para cada microorganismo y cada fruta. Los promedios de las reducciones se presentan en el Cuadro IV.

Cuadro IV. Reducciones logarítmicas de *S. Typhimurium*, *L. innocua* y *Fusarium spp* después del tratamiento de ultravioleta, según fruta y tiempo de tratamiento.

<table>
<thead>
<tr>
<th>Fruta</th>
<th>Tiempo (s)</th>
<th>Reducción (Log UFC/cm²)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Salmonella Typhimurium</td>
<td>Listeria innocua</td>
<td>Fusarium spp</td>
<td></td>
</tr>
<tr>
<td>Piña</td>
<td>5</td>
<td>2±1</td>
<td>1,7±0,4</td>
<td>1±1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>2,44±0,02</td>
<td>1,82±0,03</td>
<td>2,8±0,9</td>
<td></td>
</tr>
<tr>
<td>Banano</td>
<td>5</td>
<td>2,3±0,3</td>
<td>2,8±0,9</td>
<td>0,8±0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>3,8±0,1</td>
<td>3,2±0,2</td>
<td>1,7±0,4</td>
<td></td>
</tr>
<tr>
<td>Melón</td>
<td>5</td>
<td>1±1</td>
<td>0,6±0,8</td>
<td>1,38±0,04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>1,6±0,2</td>
<td>0,7±0,8</td>
<td>1,9±0,1</td>
<td></td>
</tr>
</tbody>
</table>

1. Promedios con intervalos de confianza al 95% (n=2)

El tiempo tiene un efecto significativo sobre la reducción microbiológica (p=0,0447) y es dependiente de la fruta en estudio (p=0,0406). En este caso se observa en el Cuadro IV que en general las reducciones a 5 segundos son menores que a 180 s lo cual coincide con lo esperado ya que se pretende que con un mayor tiempo de exposición sea mayor la reducción respecto a la carga bacteriana inoculada. A pesar de que estadísticamente las reducciones son significativamente diferentes para los tiempos analizados, se concluye que se debe agregar otro tiempo de 360 s debido a que en la mayoría de los casos la diferencia entre el tiempo de 5 s y el tiempo de 180 s no supera 1 log.

Según la FDA (1998), desinfectar significa tratar los productos mediante un proceso eficaz para destruir o reducir sustancialmente las cantidades de microorganismos que implican un riesgo para la salud pública, así como otros microorganismos no deseados, sin afectar la calidad del producto o su seguridad para el consumidor. A pesar de que la reducción de 5 log
es el objetivo en la desinfección, puede no ser directamente aplicado o requerido para la desinfección de frutas y hortalizas (Sapers, 2003). En 1997, la recomendación de un Panel Auditor Científico de la Agencia de Protección Ambiental de los Estados Unidos (EPA, por sus siglas en inglés), fue que un desinfectante redujera como mínimo 2 log (99%) de la población de patógenos de frutas y hortalizas (Beauchat et al., 2001). Dado lo anterior, se puede concluir nuevamente que es necesario agregar el tiempo de 360 s debido a que en algunos casos no se obtuvieron reducciones mayores a 2 log, por ejemplo, con el melón ningún microorganismo alcanzó reducciones de 2 log.

5.1.2. Evaluación de los cambios de sabor

Las frutas frescas se expusieron a la radiación ultravioleta por un tiempo de 15 minutos, para cada fruta se tomaron 5 unidades y además se tenía una fruta adicional que se consideró como control. Las frutas tratadas fueron analizadas durante 5 días por tres personas que no estaban entrenadas para evaluar su sabor; es decir, tres consumidores habituales de las frutas que constituyen un panel informal.

Después de realizar el análisis cualitativo del sabor de la piña, el melón y el banano las tres personas que las degustaron manifestaron que no percibieron ningún cambio en el sabor de ninguno de los frutos tratados. Con los resultados encontrados en la prueba preliminar para todas las frutas, se estableció que no resulta necesario realizar una prueba sensorial con un grupo de consumidores mayor ya que no se manifiesta un cambio de sabor causado por el tratamiento, de modo que se decidió utilizar un panel entrenado de 25 personas en la prueba definitiva.

5.1.3. Evaluación de los cambios de color

Prueba con piña:

Los resultados que se presentaron en la prueba realizada con la piña, se registran en el Cuadro V.
Cuadro V. Registro de fotografías de la piña con y sin tratamiento de radiación UV –C aplicado por 15 min, según tiempo de almacenamiento (días)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Tiempo de Almacenamiento (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Piña Control</td>
<td></td>
</tr>
<tr>
<td>Piña UV</td>
<td></td>
</tr>
</tbody>
</table>
Como primera impresión no resulta perceptible un cambio o diferencia entre la fruta control (no tratada) y la fruta con tratamiento. La piña es un fruto no climatérico por ello no continúa su maduración al ser separado de la planta, de modo que no se espera un aumento en la coloración amarilla que poseen los ojos situados en la cáscara de la fruta producto de maduración sino producto del marchitamiento como consecuencia de la reacciones de senescencia de la fruta.

Inicialmente las piñas presentaron un estado normal y similar entre sí; sin embargo, cuatro días después de aplicado el tratamiento la fruta se empezó a ver marchita en las hojas de la corona y los ojos presentaron un daño similar al de una quemadura (Figura 9).

Figura 9. Fotografías ampliadas de la cáscara de piña no tratada y piña tratada con radiación UV-C (de izquierda a derecha).

Una piña con ese tipo de daño en la cáscara puede provocar rechazo de parte del consumidor e impedir su comercialización como producto fresco. Considerando que se aplicó un tratamiento de radiación por 15 min, se redujo el tiempo de exposición de la fruta con el fin de buscar disminuir el daño causado en la cáscara.

Prueba con banana:

Las fotografías que registran los cambios ocurridos al banano se encuentran en el Cuadro VI. Resulta evidente que los cambios sufridos por el banano son aún más notorios que los de la piña. La cáscara de los bananos tratados presenta un oscurecimiento gradual que aumenta con los días de almacenamiento, terminando el día cuatro con un banano pardo
y sin las pecas usuales del proceso de maduración de un banano no tratado. Debido a los cambios ocurridos en la prueba en la que se aplicó 15 min de tratamiento UV-C, se decidió realizar una segunda prueba para el banano pero aplicando tiempos menores de exposición.

En el Cuadro VII se presentan las fotografías tomadas según los tiempos empleados, además se tomó una muestra mucho más grande para tener mayor representación de los cambios ocurridos. Pese a la reducción en el tiempo los frutos tratados presentaron el mismo oscurecimiento.

Prueba con Melón

En el Cuadro VIII se presentan el registro fotográfico realizado al melón tratado y no tratado, según lo expuesto no se presentó ningún tipo de cambio externo en la coloración de la cáscara o algún tipo de marchitamiento como en el caso de los demás frutos.

Según los resultados de las pruebas preliminares de color y específicamente los resultados obtenidos con el banano, se decide realizar la prueba definitiva utilizando los siguientes tiempos; 0,5 – 1,5 y 2,5 min (3, 90 y 150 s).
Cuadro VI. Registro de fotografías del banano con y sin tratamiento de radiación UV –C aplicado por 15 min, según tiempo de almacenamiento (días)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Tiempo de almacenamiento (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Banano Control</td>
<td></td>
</tr>
<tr>
<td>Banano UV</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro VII. Registro de fotografías del banano con y sin tratamiento de radiación UV –C aplicado por distintos tiempos, según tiempo de almacenamiento (días)

<table>
<thead>
<tr>
<th>Tiempo UV-C (min)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cuadro VIII. Registro de fotografías del melón con y sin tratamiento de radiación UV –C aplicado por 15 min, según tiempo de almacenamiento (días)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Tiempo de almacenamiento (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Melón Control</td>
<td></td>
</tr>
<tr>
<td>Melón UV-C</td>
<td></td>
</tr>
</tbody>
</table>
5.2. Pruebas definitivas

5.2.1. Determinación de la reducción microbiológica de *Salmonella Typhimurium*, *Listeria innocua* y *Fusarium* spp. en melón (*Cocumis melo*), piña (*Ananas comosus*) y banano (*Musa cavendish*) debida a la exposición a diferentes tiempos de radiación ultravioleta

Los Cuadros IX, X y XI muestran las reducciones logarítmicas obtenidas para los diferentes tiempos de tratamiento UV-C, según la fruta tratada para, *S. Typhimurium*, *L. innocua* y *Fusarium* spp, respectivamente.

Cuadro IX. Reducciones logarítmicas promedio para *S. Typhimurium* por tiempo de tratamiento según la fruta evaluada

<table>
<thead>
<tr>
<th>Tiempo de tratamiento (s)</th>
<th>Reducción Logarítmica Promedio (Log UFC/ 25 cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Piña</td>
</tr>
<tr>
<td>5</td>
<td>3,4±0,8 B,C,D</td>
</tr>
<tr>
<td>20</td>
<td>3,3±0,5 B,C,D</td>
</tr>
<tr>
<td>45</td>
<td>3,2±0,3 B,C,D</td>
</tr>
<tr>
<td>90</td>
<td>3,74±0,04 B,C,D</td>
</tr>
<tr>
<td>180</td>
<td>4,0±0,4 A,B,C,D</td>
</tr>
<tr>
<td>360</td>
<td>5,8±0,1 A</td>
</tr>
</tbody>
</table>

Nota: Promedios con intervalos de confianza al 95% (n=3). En las columnas promedios con al menos una letra igual indican que no hay diferencia significativa (p<0,05)
Cuadro X. Reducciones logarítmicas promedio para *L. innocua* por tiempo de tratamiento según la fruta evaluada

<table>
<thead>
<tr>
<th>Tiempo de tratamiento (s)</th>
<th>Reducción Logarítmica Promedio (Log UFC/ 25 cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Piña</td>
</tr>
<tr>
<td>5</td>
<td>$2,2\pm0,4^{C,D,E}$</td>
</tr>
<tr>
<td>20</td>
<td>$3\pm1^{C,D}$</td>
</tr>
<tr>
<td>45</td>
<td>$2,4\pm0,3^{C,D,E}$</td>
</tr>
<tr>
<td>90</td>
<td>$2,1\pm0,3^{C,D,E}$</td>
</tr>
<tr>
<td>180</td>
<td>$3,1\pm0,2^{B,C}$</td>
</tr>
<tr>
<td>360</td>
<td>$2,9\pm0,6^{C}$</td>
</tr>
</tbody>
</table>

Nota: Promedios con intervalos de confianza al 95% (n=3). En las columnas promedios con al menos una letra igual indican que no hay diferencia significativa (p<0,05)

Cuadro XI. Reducciones logarítmicas promedio para *Fusarium* spp por tiempo de tratamiento según la fruta evaluada

<table>
<thead>
<tr>
<th>Tiempo de tratamiento (s)</th>
<th>Reducción Logarítmica Promedio (Log UFC/ 25 cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Piña</td>
</tr>
<tr>
<td>5</td>
<td>$1,5\pm0,7^{D,E,F,G,H}$</td>
</tr>
<tr>
<td>20</td>
<td>$1,2\pm0,8^{E,F,G,H}$</td>
</tr>
<tr>
<td>45</td>
<td>$0,8\pm0,2^{G,H}$</td>
</tr>
<tr>
<td>90</td>
<td>$0,79\pm0,04^{G,H}$</td>
</tr>
<tr>
<td>180</td>
<td>$0,6\pm0,5^{H}$</td>
</tr>
<tr>
<td>360</td>
<td>$0,9\pm0,6^{E,F,G,H}$</td>
</tr>
</tbody>
</table>

Nota: Promedios con intervalos de confianza al 95% (n=3). En las columnas promedios con al menos una letra igual indican que no hay diferencia significativa (p<0,05)

Para todos los microorganismos analizados, se obtuvo una interacción significativa entre los factores fruta y tiempo de tratamiento, lo que indica que existe suficiente evidencia para afirmar que el efecto del tiempo depende de la fruta en estudio (*S. Typhimurium* *p*=0,0043, *L. innocua* spp *p*=0,0148 y *Fusarium* *p*=0,004).
En el Cuadro IX se puede observar por columna los resultados de cada fruta. En el caso de S. Typhimurium no se obtuvo diferencia significativa entre la reducción logarítmica obtenida en banano y melón en todos los tiempos, mientras en el caso de la piña la reducción obtenida a los tiempos de 180 s y 360 s resultaron significativamente diferentes de los demás tiempos.

Aplicando el mismo análisis en el Cuadro X para L. innocua no se encontró diferencia significativa en la reducción microbiológica para ninguno de los tiempos estudiados en ninguna de las frutas; sin embargo, las reducciones encontradas en banano resultan significativamente diferentes de las reducciones en melón y piña, es decir, L. innocua se redujo más en banano.

Finalmente, los resultados de Fusarium spp, reportados en el Cuadro XI, demuestran que tampoco se encontró diferencia significativa entre los seis tiempos estudiados en las tres frutas. Además, se obtuvieron mayores reducciones en banano, resultado que coincide con el comportamiento encontrado para L. innocua.

La FDA estipula que una desinfección debe reducir como mínimo 2 log (99%) de la población de patógenos de frutas y hortalizas (Beauchat et al., 2001). Como se observa en los cuadros anteriores la reducción microbiológica en banano para los tres microorganismos supera los 2 log suponiendo cualquiera de los seis tiempos como método de desinfección. Según las reducciones para melón se consideran desinfección el tiempo de 360 s debido a que en él se obtuvieron reducciones mayores a 2 log. En el caso de la piña no se obtuvieron reducciones de 2 log con Fusarium spp para ninguno de los tiempos estudiados, mientras las reducciones de L. innocua y S. Typhimurium sí superan los 2 log.

A nivel industrial, generalmente se utiliza el cloro en concentraciones entre 50 y 200 ppm durante 1 ó 2 min alcanzando reducciones máximas de 2 log (FDA, 2001). Si realizamos una comparación con el método UV-C nuevamente observamos mayores reducciones con el método en estudio, aunado al hecho de ser un método mucho más limpio, sin la generación de efluentes y sin la presencia de residuos químicos en la fruta (Falguera et al., 2011).

Basados en los resultados obtenidos con los tres microorganismos se puede recomendar la utilización de un tiempo de tratamiento de 180 s para piña, mientras para melón y banano un tiempo de 5 s, esto debido a que en piña a los 180 s se obtuvieron las mayores reducciones y con melón y banano no se obtuvo diferencia entre los tiempos. Por otro lado, un tiempo de tratamiento UV-C de 5 s a 180 s (3 min) es una importante ventaja
para fines de eficiencia del tiempo en un flujo de producción, sin considerar el tiempo que se utiliza en la preparación de los insumos y materiales utilizados en una etapa desinfección por otros métodos (por ejemplo cloro) el cual se reduce con la utilización de lámparas UV-C.

El Cuadro XII expone los promedios de las reducciones logarítmicas y el resultado obtenido en el análisis de varianza de los datos para un tiempo de exposición de 360 s a radiación UV-C.

Cuadro XII. Reducciones logarítmicas promedio de *S. Typhimurium, L.innocua, Fusarium* spp según la fruta evaluada

<table>
<thead>
<tr>
<th>Frutas</th>
<th>Reducción Logarítmica promedio (Log UFC/g)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Typhimurium</td>
<td>L.innocua</td>
</tr>
<tr>
<td>Piña</td>
<td>7,8±0,1<sup>A</sup></td>
<td>5,0±0,6<sup>B</sup></td>
</tr>
<tr>
<td>Banano</td>
<td>6,9±0,5<sup>A</sup></td>
<td>7,71±0,05<sup>A</sup></td>
</tr>
<tr>
<td>Melón</td>
<td>5±1<sup>B</sup></td>
<td>4,2±0,4<sup>B</sup></td>
</tr>
</tbody>
</table>

Nota: Promedios con intervalos de confianza al 95% (n=3). En las columnas y filas los promedios con al menos una letra igual indican que no hay diferencia significativa (p<0,05).

El factor microorganismo*fruta tiene un efecto significativo sobre la reducción logarítmica promedio obtenida (p<0,0001). Analizando el Cuadro XII por fila podemos observar el efecto de los microorganismos para una misma fruta. En el caso de la piña se obtuvo mayor reducción para *S. Typhimurium*, seguida de *L.innocua* y por último *Fusarium spp*; en banano las reducciones resultaron sin diferencia significativa para *S. Typhimurium* y *L.innocua* siendo estas mayores que las observadas para *Fusarium spp*, mientras en melón no se determinó diferencias significativa entre los microorganismos analizados.

La mayoría de autores están de acuerdo en que la sensibilidad a la UV-C varía significativamente entre los diferentes tipos de microorganismos. Las bacterias Gram-negativas son más sensibles que las Gram-positivas, seguidas por levaduras, esporas bacterianas, hongos, virus y protozoos (Hijnen et al, 2006; López-Malo & Palou, 2005). Con base en lo anterior, los resultados generales concuerdan con lo esperado: mayores reducciones para *S. Typhimurium* bacteria Gram-negativa, seguida de *L. innocua* una bacteria Gram-positiva, mientras que para *Fusarium spp* se observaron menores reducciones por tratarse de un moho.
Las bacterias Gram-positivas son más resistentes debido a que éstas tienen una capa más gruesa y compacta de peptidoglucanos comparada con las Gram-negativas (Koutchma, Forney & Moraru, 2009). Dicha capa limita o dificulta la adsorción de los fotones UV-C dentro de las células (Gayán, García, Álvarez & Condón, 2014). En general, los mohos y levaduras son más resistentes que las bacterias porque su material genético posee menor cantidad de bases pirimidinas, especialmente timina, lo que imposibilita la formación de dímeros de pirimidina y por lo tanto su inactivación (Koutchma, Forney & Moraru, 2009). Además, la disposición de ADN dentro del núcleo, empacado alrededor de las proteínas histonas, puede tener un efecto sobre la diferente sensibilidad de las células eucariotas (mohos y levaduras), en comparación con las procariotas (bacterias) (Muller, Stahl, Graef, Franz & Huch, 2011; Koutchma, Forney & Moraru, 2009).

Por otro lado, si se analiza el Cuadro XII por columna se observa que para S. Typhimurium no hay diferencia significativa entre las reducciones de banano y piña, siendo éstas mayores comparadas con melón; en el caso de L. innocua las reducciones mayores se determinaron en banano, seguida de piña y melón las cuales no tienen diferencia significativa entre sí; por último, Fusarium spp no resulto con diferencia significativa entre las reducciones de banano y melón; sin embargo, las mismas son mayores comparadas con las de piña.

Este resultado refuerza lo descrito anteriormente ya que nuevamente se observa como los valores de reducción de banano resaltan al compararlos con las demás. Según lo descrito por Sharma (2007), las grietas, aberturas y características similares presentes en la topografía de la superficie a tratar, pueden ejercer una protección permitiendo la sobrevivencia de los microorganismos, dicha situación explica porque el banano presenta mayores reducciones ya que corresponde a una superficie lisa comparada con el melón y la piña que presentan rugosidades en su superficie.

Sharma (2007) describe el efecto que tienen las asperezas sobre la penetración y eficiencia de la UV-C, con base en ello se esperaba que la piña al ser una superficie más rugosa presentara menores reducciones que el melón en todos los microorganismos; sin embargo, esto no sucedió. Como se mencionó en el marco teórico, existen numerosos factores que influyen en la eficacia de la UV-C. Se ha demostrado que algunos frutos tienden a acelerar la formación de fenoles, fitoalexinas y ligninas, compuestos protectores con capacidad antifúngica y bactericida como respuesta a un tratamiento de luz UV-C (Rivera, Gardea, Martínez, Rivera & González, 2007). Una teoría posible es que la piña tiene la
capacidad de producir este tipo de compuestos, situación que contribuyó a obtener una mayor reducción en piña.

Se debe recordar que la radiación UV-C es un tratamiento superficial y no penetra más allá que unos pocos milímetros (Sharma, 2007). Partiendo de esto podemos considerar otra teoría de lo ocurrido: es posible que el material ceroso de la cáscara de la piña imposibilitara la absorción del microorganismo inoculado quedando todo en la superficie, mientras en la superficie porosa del melón se absorbió con mayor profundidad y al aplicar el tratamiento UV-C se redujo el efecto de adsorción de los fotones UV-C resultando en reducciones logarítmicas menores.

5.2.2. Determinación del cambio en las características sensoriales de banano, melón y piña, irradiadas por diferentes tiempos, para establecer el tiempo máximo de exposición a los rayos ultravioleta

Pruebas de sabor

El Cuadro XIII muestra el número de aciertos de parte de los jueces para cada tiempo de tratamiento con luz UV-C según cada una de las frutas evaluadas.

Cuadro XIII. Número de aciertos por juez para cada tiempo de tratamiento UV-C, según fruta tratada

<table>
<thead>
<tr>
<th>Fruta</th>
<th>Tiempo de tratamiento (s)</th>
<th>30</th>
<th>90</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aciertos</td>
<td>Total</td>
<td>Aciertos</td>
</tr>
<tr>
<td>Banano</td>
<td>30</td>
<td>11</td>
<td>36</td>
<td>14</td>
</tr>
<tr>
<td>Piña</td>
<td>30</td>
<td>18</td>
<td>38</td>
<td>16</td>
</tr>
<tr>
<td>Melón</td>
<td>30</td>
<td>13</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

Nota: Se presenta diferencia significativa entre tratamientos según las tablas binomiales (Roessler et al., 1978) (p ≤ 0,05), 1-β = 0,80

Como se observa se encontró diferencia significativa únicamente en el tratamiento de 150 s aplicado a melón, mientras en los demás tratamientos no se registra evidencia de que los jueces lograrán percibir alguna diferencia que les permitiera detectar el producto tratado. Manzocco et al (2011) realizaron un análisis sensorial para evaluar cubos de melón tratados con UV-C. En su estudio determinaron que las puntuaciones de “sabor melón” para las muestras tratadas resultaron superiores a las del control durante todo el almacenamiento.
Dicho estudio concuerda con la presente investigación, ya que en ambas se encuentra diferencia significativa en el sabor de las frutas control y las frutas tratadas. Es importante mencionar que el estudio utilizó una dosis de 1200 J/m² mientras la detección del cambio por parte de los panelistas en el presente estudio se dio a los 150 s (930 J/m²).

Lamikanra et al (2002) determinaron en su estudio del perfil de aroma volátil, que el melón puede ser fuertemente afectado por la irradiación UV-C. Los terpenoides, tales como geranilacetona, β-ciclocitral, β-ionona entre otros, pueden ser significativamente aumentados en respuesta directa a los rayos UV-C, facilitando la diferenciación de un producto tratado UV-C con un control como en el presente estudio o dando razón a puntuaciones más altas de “sabor melón” como en el estudio de Manzocco et al (2011).

No se cuenta con evidencia para afirmar que la diferencia detectada por los panelistas fue causada por un sabor desagradable o agradable ya que el planteamiento del estudio solo nos permite determinar si existe una diferencia o no. Por su parte, Manzocco et al (2011), para comprobar si hay alteración del perfil aromático volátil deseable, pidió a los jueces indicar la eventual presencia de sabores desagradables en la muestra tratada y control mediante una prueba de preferencia; sin embargo, después del almacenamiento de 4 y 7 días, los cubos de melón tratados UV-C se prefirieron significativamente sobre los no tratados. En conclusión, la prueba sensorial señala la elección del tiempo de 90 s como el tratamiento que mejor resultado permite obtener en el caso del melón, mientras al banano y a la piña se les puede aplicar 150 s de tratamiento UV-C.

Pruebas de textura

El Cuadro XIV presenta la fuerza de corte obtenida para cada tiempo de tratamiento UV-C aplicado a melón, piña y banano.

Cuadro XIV. Fuerza de corte (N/cm²) para cada tiempo de tratamiento UV-C aplicado, según fruta

<table>
<thead>
<tr>
<th>Tiempo (s)</th>
<th>Fuerza de corte (N/cm²)</th>
<th>Melón</th>
<th>Piña</th>
<th>Banano</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5,6±0,6⁰</td>
<td>25,9±0,6⁰</td>
<td>1,8±0,3⁰</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6,1±0,6⁰</td>
<td>25±2³</td>
<td>2,0±0,6⁰</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>7±1³</td>
<td>25±2³</td>
<td>2,2±0,5³</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>6,8±0,4³</td>
<td>22±2⁰</td>
<td>2,1±0,5³</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Promedios con intervalos de confianza al 95% (n=10), en cada columna letras diferentes indican diferencia significativa
El factor fruta tiene un efecto significativo sobre la fuerza de corte (p<0,0001) lo cual resulta esperable ya que son frutas diferentes y a simple vista se conoce que su textura es diferente. Se obtuvo una interacción entre los factores fruta y tiempo (p=0,0263), lo que indica que existe suficiente evidencia para afirmar que el efecto del tiempo depende de la fruta en estudio; es decir, el comportamiento de la fuerza de corte con respecto al tiempo es diferente para al menos una fruta.

En el caso del banano y el melón la fuerza de corte no fue significativamente diferente para ninguno de los tiempos de tratamientos aplicados, mientras para la piña si se observa que los tiempos 0, 30 y 90 s son significativamente diferentes del tiempo de 150 s (Cuadro XIV).

La firmeza es una cualidad sensorial, con un rol muy relevante en la aceptabilidad por parte de los consumidores. En las frutas está influenciada por factores estructurales y químicos: los constituyentes bioquímicos de los orgánulos celulares, el contenido de agua y la composición de la pared celular. El tejido vegetal puede ser muy susceptible a la UV-C dependiendo de variedades, estados fisiológicos, composición y grosor de la piel del fruto. Por tanto, la irradiación de UV-C puede tener efectos adversos cuando la intensidad es superior a la tolerada por el producto, en cuyo caso se evidencia un deterioro en la firmeza de la piña posiblemente causado porque la UV-C genera especies reactivas al oxígeno que causan estrés oxidativo y afectan la estabilidad de la pared celular y de la membrana celular (Pan & Zu, 2012).

Lo anterior permite concluir que, tomando en cuenta los resultados de textura y los tiempos de tratamiento en estudio, se recomienda utilizar un tratamiento de 90 s para el caso de la piña ya que a los 150 s se tiene una menor fuerza de corte situación que podría ocasionar ingreso de microorganismos que causarían problemas de deterioro, mientras que para el melón y el banano el tratamiento de 150 s se puede aplicar sin alterar su textura.

Pruebas de color

La prueba de color se basó en la evaluación del parámetro de color considerando los valores L*, a* y b* determinados a melón, piña y banano tratados con radiación UV-C para los tiempos de tratamiento 0, 30, 90 y 150 s.
Según el análisis de los resultados el factor fruta tiene un efecto significativo sobre el color según los valores L* (p<0,0001), a* (p<0,0001) y b* (p<0,0001), lo cual concuerda con lo esperado ya que son frutas diferentes cuyo color es distinto a simple vista. Se obtuvo además una interacción significativa entre el factor fruta y el factor tiempo de tratamiento para el valor L* (p=0,0358), mientras no hubo significancia de interacción para el valor a* (p=0,5831, 1-β=0,78) y b* (p=0,1877, 1-β=0,54). El Cuadro XV muestra los valores promedio obtenidos para cada tiempo de tratamiento UV-C aplicado para banano, melón y piña.

Cuadro XV. Valores L* obtenidos para cada tiempo de tratamiento UV-C aplicado a banano, melón y piña

<table>
<thead>
<tr>
<th>Tiempo (s)</th>
<th>Valor L* promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Banano</td>
</tr>
<tr>
<td>0</td>
<td>64±1a</td>
</tr>
<tr>
<td>30</td>
<td>64±3a</td>
</tr>
<tr>
<td>90</td>
<td>63±4a</td>
</tr>
<tr>
<td>150</td>
<td>65±2a</td>
</tr>
</tbody>
</table>

Nota: Promedios con intervalos de confianza al 95% (n=10), por columna letras diferentes indican diferencia significativa

En el Cuadro XV, se observa que no hay diferencia en los valores L* obtenidos en los tiempos 0, 30, 90 y 150 s para ninguna de las frutas estudiadas, de modo que tomando en cuenta el resultado de color todos los tiempos de tratamiento pueden ser utilizados. Los resultados obtenidos en la prueba Tukey determinaron que no existe diferencia significativa entre el valor L* para ninguno de los tiempos, la diferencia significativa encontrada se puede relacionar con la diferencia natural de las tres frutas perceptible al ojo humano.

5.2.3. Estudio de almacenamiento para evaluar el efecto de la radiación ultravioleta sobre la estabilidad de banano, melón y piña.

De acuerdo con los resultados obtenidos en los objetivos anteriores, se determinó utilizar un tiempo de 90 s que corresponde a una dosis UV-C de aproximadamente 600 J/m2 para tratar las frutas que se evaluaron en el estudio de almacenamiento.

Las Figuras 10, 11 y 12 presentan la tendencia del recuento total aerobio (RTA) y el recuento de mohos y levaduras en función de los días de almacenamiento para banano, melón y piña; para fruta tratada con UV-C y fruta control.
Figura 10. Recuento Total Aerobio y recuento de mohos y levaduras en función del tiempo para banano sin tratamiento UV-C (CONTROL) y banano con tratamiento UV-C (UV-C)

Figura 11. Recuento Total Aerobio y recuento de mohos y levaduras en función del tiempo para melón sin tratamiento UV-C (CONTROL) y melón con tratamiento UV-C (UV-C)
El tiempo de almacenamiento tuvo un efecto significativo sobre el recuento total aerobio (RTA) \((p<0,0001)\) y sobre el recuento de mohos y levaduras \((p<0,0001)\); sin embargo, tanto para el RTA \((p=0,6352, 1-\beta=0,07)\), como el recuento de mohos y levaduras \((p=0,3567, 1-\beta=0,15)\) no obtuvieron una interacción entre los factores tratamiento y tiempo de almacenamiento, lo que indica que no existe suficiente evidencia para afirmar que el efecto del tiempo de almacenamiento depende del tratamiento aplicado. De modo que, tanto en melón, piña y banano se presentó el mismo comportamiento entre frutos control y frutos tratados en ambos tipos de recuento.

La fruta y el tiempo de almacenamiento presentan una interacción significativa sobre el RTA \((p<0,0001)\) y el recuento de mohos y levaduras \((p<0,0001)\); es decir, su comportamiento con respecto al tiempo de almacenamiento difiere según la fruta. En las gráficas se observa que en el caso del banano y la piña el RTA y el recuento de mohos y levaduras tienen una tendencia creciente en el tiempo, mientras que en el melón disminuye.

El desarrollo de la flora natural es la principal causa de deterioro en las frutas; este crecimiento de microorganismos se debe a la destrucción del tejido y la subsecuente...
liberación de nutrientes, por ello es esperable un aumento en ambos recuentos. De hecho varios autores encontraron un aumento en diferentes recuentos microbiológicos en estudios de almacenamiento realizados a frutos tratados con radiación UV-C, entre los que se destaca melón, mango, piña y mamey (Márquez & Prettell, 2013; Manzocco et al. (2011). Con base en lo anterior, no se encuentra lógico el resultado obtenido en el caso del melón. Lamikanra et al. (2002) determinó que el melón tratado con UV-C presenta una acelerada producción de terpenoides, tales como geranilacetona, β-ciclocitrinal y β-ionona, los cuales inciden en una significativa reducción microbiológica, obteniendo mejores resultados en mohos y levaduras sobre los obtenidos en bacterias.

El efecto del tratamiento sobre el recuento de mohos y levaduras fue significativo \(p=0.0428 \) y además no es dependiente de la fruta estudiada \(p=0.5619, 1-\beta=0.14 \). Por lo tanto, según los resultados obtenidos bajo las condiciones evaluadas, el comportamiento del recuento de mohos y levaduras con respecto al tratamiento es equivalente para cualquier fruta analizada. Las gráficas demuestran que tanto para banano, melón y piña el recuento de mohos y levaduras fue menor en las frutas tratadas con UV-C comparado con la fruta control para todos los tiempos. El resultado anterior es muy importante para la investigación ya que demuestra que el tratamiento UV-C tiene un efecto de reducción sobre los mohos y las levaduras que son la principal causa de deterioro a nivel post-cosecha, confirmando el efecto antifúngico encontrado por Márquez & Pretell (2013).

Por otro lado, en el caso del RTA la interacción entre el tratamiento y la fruta fue significativa \(p=0.0216 \), de modo que su comportamiento con respecto al tratamiento UV-C difiere según la fruta. La piña y el melón presentaron mayor RTA en las frutas tratadas con UV-C comparadas con el control, mientras el banano si presentó mayor RTA en la fruta control tal como se esperaba.

Guerrero & Barbosa (2004) sostienen que en algunos casos se puede dar una fotoreparación de las células dañadas por UV-C, la cual es más frecuente en bacterias y ocasiona que estas sean más resistentes a un segundo tratamiento UV-C. Es posible que este mecanismo se activara en el caso de la piña y el melón ya que a pesar de que el almacenamiento se dio en condiciones oscuras al tomar la muestra evidentemente el fruto se exponía a la luz.

Las diferentes floras microbiológicas naturalmente presentes en la superficie de las tres frutas evaluadas constituyen un factor muy importante que influye en la efectividad del tratamiento UV-C (Koutchma, Forney & Moraru, 2009; Shama, 1999). Este factor constituye
una de las posibles razones de los resultados obtenidos en piña y melón. Comparando entre gráficas se puede observar que en el caso del banano, los recuentos iniciales de bacterias son de aproximadamente 5 Log y los recuentos de mohos y levaduras de 3 Log, mientras para piña y melón en ambos casos son de 5 Log.

Se ha observado que cuando los mohos y levaduras se encuentran en mayor concentración con respecto a la flora bacteriana, influyen en su inactivación mediante radiación UV-C. Un zumo de manzana con una población inicial de mohos y levaduras de 1 Log consigue reducir 5,4 ciclos la población de E. coli O157:H7, pero normalmente la población de hongos y levaduras de los zumos no procesados es mayor a 1 logaritmo UFC/mL, de forma que la tasa de inactivación disminuye, siendo necesario aumentar la dosis expuesta. Esto se debe a que las células de los mohos y levaduras son más grandes y absorben los fotones de energía UV-C antes que las bacterias de menor tamaño (Ribeiro, Lage & Borges, 2010).

En la Figura 13 se presenta la tendencia de la fuerza de corte en función del tiempo de almacenamiento determinada en piña, melón y banano.

![Gráfico de fuerza de corte en función del tiempo](image)

Figura 13. Fuerza de corte (N/cm²) en función del tiempo según fruta sin tratamiento UV-C (CONTROL) y con tratamiento UV-C (UV-C).

Se determinó que el tiempo de almacenamiento sobre la fuerza de corte fue significativo (p<0,0001). Además no se obtuvo una interacción entre los factores tratamiento y tiempo.
almacenamiento, lo que indica que no existe suficiente evidencia para afirmar que el efecto del tiempo de almacenamiento depende del tratamiento aplicado (p=0.3052, 1-β=0,18); es decir, el comportamiento de la fuerza de corte con respecto al tiempo es equivalente para cualquier tratamiento analizado, tanto en melón, piña y banano se presentó el mismo comportamiento entre frutos control y frutos tratados.

El factor fruta tiene un efecto significativo sobre la fuerza de corte (p<0.0001) pero este efecto es dependiente del tiempo de almacenamiento (p<0.0001), de modo que, el comportamiento de la textura es distinto para cada fruta. En la Figura 13 se observa que el melón y el banano presentan una disminución en la fuerza de corte tanto para el fruto tratado como el fruto control, mientras la fuerza de corte de la piña se mantiene constante.

El comportamiento obtenido corresponde a cambios de textura en frutas y hortalizas que se relacionan a ciertos procesos enzimáticos y no enzimáticos. La pectina, es primero, parcialmente desmetilada por la enzima pectinmetil-esterasa y, luego, despolimerizada por la poligalacturasa en ácido poligalacturónico causando la pérdida de firmeza; también está relacionada con la producción de radicales libres como resultado del avance en la senescencia lo cual afecta la pared celular (Pan y Zu, 2012). La piña naturalmente presenta mayor vida útil comparada con el melón y banano, probablemente relacionado con una cáscara más gruesa y compuesta por una mayor cantidad de estructuras fibrosas. Probablemente por eso, dentro de los 12 días analizados presentó un comportamiento constante.

El efecto del tratamiento sobre la fuerza de corte no es dependiente de la fruta estudiada (p=0.3994, 1-β=0,20), por lo tanto, según los resultados obtenidos bajo las condiciones evaluadas, el comportamiento de la fuerza de corte con respecto al tratamiento es equivalente para cualquier fruta analizada y no hay un efecto significativo del tratamiento sobre la fuerza de corte (p=0.7356, 1-β=0,06).

Se esperaba que el tratamiento UV-C retuviera la firmeza en comparación con las muestra control, como reportan distintos autores. Por ejemplo, Pan & Zu (2012) reportaron que las rebanadas de piña tratada durante 90 s con irradiación UV-C durante su almacenamiento por 12 días a 10 °C retuvieron mejor la firmeza, en comparación con una muestra control; Márquez et. al. (2012) encontraron una mayor retención de la firmeza en rebanadas de carambola tratadas con UV-C y almacenada a 5 °C durante 16 días, en comparación con una muestra control y González-Aguilar et al., (2007) indicaron que las rebanadas de mango tratadas con UV-C durante 10 min denotaron mayor retención de la
firmeza comparados con una muestra control durante 14 días de almacenamiento a 5 °C, sin embargo, es importante el hecho de no obtener diferencia significativa en la fuerza de corte según los tratamientos evaluados, ya que se demuestra que se puede aplicar UV-C sin temor de tener efectos negativos en la textura como sucedió en los tiempos de tratamiento evaluados anteriormente.

En la Figura 14, se expone la tendencia del color medida como valor L* en función del tiempo de almacenamiento determinado a las frutas en estudio.

Figura 14. Valor L* en función del tiempo según fruta sin tratamiento UV-C (CONTROL) y con tratamiento UV-C (UV-C).

Se demostró que el efecto del tiempo sobre el valor L* fue significativo (p<0,0001). No se obtuvo una interacción entre este factor y el factor tratamiento (p=0,6505, 1-β=0,07), lo que indica que según los resultados obtenidos bajo las condiciones evaluadas, el comportamiento del valor L* con respecto al tiempo es equivalente para cualquier tratamiento aplicado, entonces melón, piña y banano presentan el mismo comportamiento entre frutos control y frutos tratados.

Por otro lado, la fruta tiene un efecto significativo sobre el valor L* (p<0,0001), lo cual resulta lógico por los diferentes colores que podemos ver a simple vista, además la fruta es
dependiente del tiempo de almacenamiento; esto indica que el comportamiento del valor L^* con respecto al tiempo es distinto para cada fruta evaluada. En la Figura 14 se evidencia que el melón y la piña se mantienen constantes, pero en el banano el valor L^* disminuye con respecto al tiempo de almacenamiento. Durante la maduración los frutos climatéricos como el banano sufren cambios de coloración, mientras los frutos no climatéricos como piña y melón cambian de color como resultado de las reacciones de senescencia. En el caso de la maduración los cambios de color son perceptibles en menor tiempo comparado con los cambios causados por senescencia, esto aplica especialmente para un fruto como el banano.

El efecto del tratamiento sobre el valor L fue significativo ($p=0.0016$) y es dependiente de la fruta estudiada ($p=0.0206$); es decir, el comportamiento entre tratamientos es diferente para cada fruta. En la Figura 14 se puede observar que las líneas de tendencia para el valor L^* medido a melón y piña tratada con UV-C se superponen con la línea de tendencia de las frutas control, indicando que los valores son prácticamente iguales entre ambos frutos. Las fotografías presentes en los Cuadros XVII y XVIII para piña y melón, respectivamente, refuerzan los resultados obtenidos en el análisis experimental, ya que instrumentalmente no se detectó una diferencia y tampoco se detectó una diferencia perceptible por el ojo humano.

En el caso del banano los valores L^* son menores para los frutos tratados UV-C comparados con los frutos tratados. El parámetro L^* corresponde a la luminosidad de la muestra, donde valores cercanos a 0 indican color negro y valores cercanos a 100 indican color blanco. En el Cuadro XV las fotografías confirman el ennegrecimiento sufrido por la cáscara del banano tratado con UV-C, el cual dista mucho de las pecas naturales de la maduración observadas en los frutos control.

No se registra en la literatura un efecto negativo sobre la luminosidad en frutos similar al encontrado, al contrario, muchos autores demostraron un efecto positivo del tratamiento UV-C. Márquez et al. (2012) encontraron mayores valores de luminosidad en rebanadas de carambola mínimamente procesadas tratadas con UV-C, en comparación con una muestra control; Artés-Hernández et al. (2010) mencionan que los cubos de sandía mínimamente procesada tratados con irradiación UV-C denotaron mayores valores de luminosidad comparados con una muestra control durante 11 días de almacenamiento. Por su parte, Manzocco et al. (2011) indicaron que las rodajas de manzana mínimamente procesada tratadas con irradiación UV-C presentaron mayores valores de luminosidad comparados con una muestra control.
Este resultado demuestra que no es posible utilizar las condiciones del tratamiento aplicado para el banano. En las fotografías se observa que a partir del día 6 ya se aprecia una diferencia entre los frutos tratados y no tratados que este corresponde a un problema de la calidad que conlleva a un rechazo por parte del consumidor. Pese a ello, lejos de utilizar el tratamiento para frutos de consumo fresco se puede utilizar para frutos de calidad menor usados para elaborar pastas, jugos, pulpas y demás subproductos, especialmente por los resultados positivos obtenidos a nivel de desinfección.
Cuadro XVI. Fotografías tomadas según día de almacenamiento de piña sin tratamiento UV-C (CONTROL) y con tratamiento UV-C (UV-C).

<table>
<thead>
<tr>
<th>Tiempo (días)</th>
<th>Tratamiento</th>
<th>Control</th>
<th>UV-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cuadro XVII. Fotografías tomadas según día de almacenamiento de melones sin tratamiento (CONTROL) y con tratamiento UV-C (UV-C).

<table>
<thead>
<tr>
<th>Tiempo (días)</th>
<th>Tratamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro XVIII. Fotografías tomadas según día de almacenamiento de banano sin tratamiento UV-C (CONTROL) y con tratamiento UV-C (UV-C).

<table>
<thead>
<tr>
<th>Tiempo (días)</th>
<th>Tratamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
6. Conclusiones y recomendaciones

6.1. Conclusiones

En banano y melón se lograron las mismas reducciones logarítmicas utilizando tiempos de tratamiento UV-C de 5, 20, 45 y 90 s, esto implica un menor consumo de tiempo para obtener mismos resultados.

Según los resultados en los tiempos de tratamiento UV-C estudiados en los que se obtuvo una reducción de más de 2 log son cualquiera de los seis tiempos para banano y para melón el tiempo de 360 s, estableciendo los tratamientos como una etapa de desinfección.

Bajo las condiciones evaluadas en este estudio, se determinó que S. Typhimurium es el microorganismo estudiado menos resistente a la aplicación de radiación UV-C.

Bajo las condiciones evaluadas en este estudio, se determinó que Fusarium spp es el microorganismo estudiado más resistente a la aplicación de radiación UV-C.

La fruta evaluada tiene un efecto significativo sobre las reducciones logarítmicas de las bacterias estudiadas, siendo la superficie del banano donde se obtienen mayores reducciones.

La prueba sensorial señala la elección del tiempo de tratamiento de 90 s como el tratamiento que no afecta el sabor de piña, melón y banano.

El tiempo de aplicación de UV-C de 90 s es el mayor tiempo de aplicación que permite conservar mejor las características de fuerza de corte de las tres frutas estudiadas.

Los valores de color L*, a* y b* no presentaron diferencia significativa al aumentar el tiempo de tratamiento UV-C.

En el estudio de almacenamiento se determinó que tanto en melón, piña y banano se presentó el mismo comportamiento del RTA y recuento de mohos y levaduras entre frutos control y frutos tratados.

Al aplicar el tratamiento de 90 s tanto para banano, melón y piña el recuento de mohos y levaduras evaluado en los 12 días de almacenamiento fue menor en las frutas tratadas con UV-C comparado con la fruta control, lo que demuestra que el tratamiento UV-C tiene un efecto de reducción sobre los mohos y las levaduras.
Al aplicar el tratamiento de 90 s sobre banano, el recuento total aerobio evaluado en los 12 días de almacenamiento fue menor en las frutas tratadas con UV-C comparado con la fruta control, en las demás frutas no se encontró efecto.

El tratamiento de 90 s no produce ningún efecto en la fuerza de corte evaluada durante 12 días en ninguna de las frutas estudiadas.

El valor L* cambia significativamente con el tiempo de almacenamiento para el banano, mientras en piña y melón presenta un comportamiento constante.

El tratamiento UV-C causa un oscurecimiento en la cáscara de banano, lo que demuestra que no es posible utilizar los tratamientos a banano para consumo fresco.

6.2. Recomendaciones

Los resultados de esta investigación otorgan información valiosa para comprender los factores que afectan la desinfección con radiación UV-C; sin embargo, todavía se requiere de más investigación para eventualmente aplicar esta tecnología a nivel industrial. Algunas de las recomendaciones que surgen a raíz del presente estudio son:

- Investigar el efecto de los tratamientos ultravioleta y su eficacia en la reducción de microorganismos patógenos y de deterioro en otras frutas tropicales de importancia comercial en Costa Rica como: mango, papaya, noni, limón, guayaba, café, cas, entre otros.
- Ampliar el estudio del efecto del tipo de superficie sobre la efectividad del tratamiento UV-C con respecto a la reducción microbiológica lograda en cada superficie, utilizando frutas con mayor variabilidad en cuanto a grietas y rugosidad.
- Evaluar la factibilidad de la industria nacional de absorber la tecnología de aplicación de la radiación UV-C con respecto a: costos de instalación, costos de mantenimiento, facilidad de adquisición de materiales, parámetros de seguridad ocupacional, consumo energético, entre otros.
- Realizar investigaciones subsecuentes acerca de la aplicación de un tratamiento ultravioleta con luz pulsada comparada con tratamientos de luz continua sobre diferentes microorganismos, variando la frecuencia de las pulsaciones y el tiempo total de aplicación.
o Reforzar las evaluaciones de las características sensoriales utilizando un tamaño de muestra mayor para reducir la variabilidad introducida por la naturaleza de las frutas, con el fin de obtener un resultado más veraz sobre el efecto de la radiación UV-C sobre dichas características.

o Evaluar el efecto de la radiación UV-C sobre la reducción de otros tipos de microorganismos que se pueden encontrar como parte de la flora natural de frutas tropicales, tales como: esporas, parásitos, virus y levaduras.

o Escalar los resultados obtenidos en la presente investigación, a nivel semiindustrial, con el fin de comprobar si estos son extrapolables y avanzar hacia una aplicación industrial de la UV-C.

o Correlacionar los resultados obtenidos con cambios bioquímicos provocados por el tratamiento ultravioleta; como por ejemplo, contenido de vitaminas, capacidad antioxidante, contenido de carotenoides, entre otros.
7. Bibliografía

7.1. Citada.

CERRATO, I. 2013. Estudio de Mercado para la comercialización de piña. PRONAGR. Honduras.

ISO 4120: 2007 Sensory analysis Methodology Triangle Test.

7.2. Consultada.

ARGUEDAS, N. 2010. Determinación de la sobrevivencia del cultivo probiótico *Lactobacillus paracasei* subsp. *paracasei* (LC-01®) en un queso crema durante su almacenamiento y influencia sobre la aceptación por consumidores, el pH, la textura y los costos variables. Trabajo final de graduación para optar por el título de Tecnólogo de Alimentos con el grado de Licenciatura. Universidad de Costa Rica. San Pedro de Montes de Oca, Costa Rica.

GONZALEZ, M. 2008. Efecto antibacteriano del extracto de una fermentación láctica de pulpa de banano sobre *Listeria innocua* y bacterias psicrófilas pertenecientes a la flora normal del palmito, y en la sobrevivencia de estas bacterias durante el almacenamiento en refrigeración de palmito fresco. Trabajo final de graduación para optar por el título de Tecnólogo de Alimentos con el grado de Licenciatura. Universidad de Costa Rica. San Pedro de Montes de Oca, Costa Rica.

8. Anexos

Anexo 1. ANDEVA de la evaluación microbiológica de los tiempos de exposición elegidos

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>34,72</td>
<td>73,15</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Microorganismo</td>
<td>2</td>
<td>5,90</td>
<td>12,44</td>
<td>0,0002*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>1</td>
<td>1,07</td>
<td>4,53</td>
<td>0,0447*</td>
</tr>
<tr>
<td>Fruta*Microorganismo</td>
<td>4</td>
<td>41,03</td>
<td>43,22</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Fruta*Tiempo</td>
<td>2</td>
<td>1,76</td>
<td>3,72</td>
<td>0,0406*</td>
</tr>
<tr>
<td>Microorganismo*Tiempo</td>
<td>2</td>
<td>0,82</td>
<td>1,73</td>
<td>0,2002</td>
</tr>
</tbody>
</table>

Anexo 2. ANDEVA de la determinación de la reducción microbiológica de Salmonella spp., Listeria monocytogenes y Fusarium spp. en melón (Cucumis melo), piña (Ananas comosus) y banano (Musa cavendish) debida a la exposición a diferentes tiempos de radiación ultravioleta

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>141,36</td>
<td>178,32</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Microorganismo</td>
<td>2</td>
<td>95,69</td>
<td>120,71</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>5</td>
<td>7,46</td>
<td>3,76</td>
<td>0,0032*</td>
</tr>
<tr>
<td>Fruta*Microorganismo</td>
<td>4</td>
<td>80,59</td>
<td>50,83</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Fruta*Tiempo</td>
<td>10</td>
<td>8,65</td>
<td>2,18</td>
<td>0,0226*</td>
</tr>
<tr>
<td>Microorganismo*Tiempo</td>
<td>10</td>
<td>3,42</td>
<td>0,86</td>
<td>0,5681</td>
</tr>
</tbody>
</table>

Anexo 3. ANDEVA Salmonella Typhimurium

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>15,833</td>
<td>18,23</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>5</td>
<td>7,16</td>
<td>3,30</td>
<td>0,0148*</td>
</tr>
<tr>
<td>Fruta*Tiempo</td>
<td>10</td>
<td>14,15</td>
<td>3,26</td>
<td>0,0043*</td>
</tr>
</tbody>
</table>

Anexo 4. ANDEVA Listeria monocytogenes

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>173,98</td>
<td>261,22</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>5</td>
<td>2,24</td>
<td>1,34</td>
<td>0,2682</td>
</tr>
<tr>
<td>Fruta*Tiempo</td>
<td>10</td>
<td>8,90</td>
<td>2,67</td>
<td>0,0148*</td>
</tr>
</tbody>
</table>
Anexo 5. ANDEVA Fusarium spp

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>32,14</td>
<td>127,12</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>5</td>
<td>1,48</td>
<td>2,35</td>
<td>0,0605</td>
</tr>
<tr>
<td>Fruta*Tiempo</td>
<td>10</td>
<td>4,17</td>
<td>3,30</td>
<td>0,0040*</td>
</tr>
</tbody>
</table>

Anexo 6. ANDEVA de la prueba de textura

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>11355,79</td>
<td>2011,41</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>3</td>
<td>27,09</td>
<td>3,1990</td>
<td>0,0263*</td>
</tr>
<tr>
<td>Fruta*Tiempo</td>
<td>6</td>
<td>81,74</td>
<td>4,8259</td>
<td>0,0002*</td>
</tr>
</tbody>
</table>

Anexo 7. ANDEVAs de la prueba de color para cada valor \(L^* \)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>14479,20</td>
<td>492,92</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>3</td>
<td>34,617</td>
<td>0,7857</td>
<td>0,5045</td>
</tr>
<tr>
<td>Fruta*Tiempo</td>
<td>6</td>
<td>207,142</td>
<td>2,3506</td>
<td>0,0358*</td>
</tr>
</tbody>
</table>

a*

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>510,11</td>
<td>49,767</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>3</td>
<td>2,895</td>
<td>0,1883</td>
<td>0,9041</td>
</tr>
<tr>
<td>Fruta*Tiempo</td>
<td>6</td>
<td>24,156</td>
<td>0,7856</td>
<td>0,5831</td>
</tr>
</tbody>
</table>

b*

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>13877,94</td>
<td>344,31</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>3</td>
<td>105,306</td>
<td>1,7418</td>
<td>0,1628</td>
</tr>
<tr>
<td>Fruta*Tiempo</td>
<td>6</td>
<td>180,416</td>
<td>1,4920</td>
<td>0,1877</td>
</tr>
</tbody>
</table>
Anexo 8. ANDEVAs del estudio de almacenamiento para evaluar el efecto de la radiación ultravioleta sobre la estabilidad de banano, melón y piña.

RECUENTO TOTAL AEROBIO

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>1,3445</td>
<td>1,7705</td>
<td>0,1768</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>1</td>
<td>0,2950</td>
<td>0,7770</td>
<td>0,3807</td>
</tr>
<tr>
<td>Tiempo</td>
<td>1</td>
<td>9,6932</td>
<td>25,529</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Fruta * Tratamiento</td>
<td>2</td>
<td>3,0560</td>
<td>4,0243</td>
<td>0,0216*</td>
</tr>
<tr>
<td>Fruta * Tiempo</td>
<td>2</td>
<td>8,1680</td>
<td>10,7561</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tratamiento * Tiempo</td>
<td>1</td>
<td>0,0861</td>
<td>0,2268</td>
<td>0,6352</td>
</tr>
</tbody>
</table>

RECUENTO MOHOS Y LEVADURAS

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>24,507</td>
<td>43,558</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>1</td>
<td>1,1921</td>
<td>4,2376</td>
<td>0,0428*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>1</td>
<td>6,0341</td>
<td>21,449</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Fruta * Tratamiento</td>
<td>2</td>
<td>0,3266</td>
<td>0,5806</td>
<td>0,5619</td>
</tr>
<tr>
<td>Fruta * Tiempo</td>
<td>2</td>
<td>28,6343</td>
<td>50,894</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tratamiento * Tiempo</td>
<td>1</td>
<td>0,2417</td>
<td>0,8595</td>
<td>0,3567</td>
</tr>
</tbody>
</table>

TEXTURA

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>1526,4922</td>
<td>369,4432</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>1</td>
<td>0,2372</td>
<td>0,1148</td>
<td>0,7356</td>
</tr>
<tr>
<td>Tiempo</td>
<td>1</td>
<td>74,6267</td>
<td>36,1225</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Fruta * Tratamiento</td>
<td>2</td>
<td>3,8359</td>
<td>0,9284</td>
<td>0,3994</td>
</tr>
<tr>
<td>Fruta * Tiempo</td>
<td>2</td>
<td>46,3919</td>
<td>11,2278</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tratamiento * Tiempo</td>
<td>1</td>
<td>2,2001</td>
<td>2,2001</td>
<td>0,3052</td>
</tr>
</tbody>
</table>

COLOR

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Grados de Libertad</th>
<th>Sumatoria de cuadrados</th>
<th>Cuadrado medio del error</th>
<th>Probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruta</td>
<td>2</td>
<td>2205,4570</td>
<td>105,7765</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>1</td>
<td>110,9778</td>
<td>10,6453</td>
<td>0,0016*</td>
</tr>
<tr>
<td>Tiempo</td>
<td>1</td>
<td>1268,2936</td>
<td>121,6579</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Fruta * Tratamiento</td>
<td>2</td>
<td>84,9585</td>
<td>4,0747</td>
<td>0,0206*</td>
</tr>
<tr>
<td>Fruta * Tiempo</td>
<td>2</td>
<td>2797,8672</td>
<td>134,1892</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tratamiento * Tiempo</td>
<td>1</td>
<td>2,1561</td>
<td>0,2068</td>
<td>0,6505</td>
</tr>
</tbody>
</table>