

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA

(Proyecto final de graduación)

DISEÑO DE UN SISTEMA DE PROTECCIÓN CONTRA INCENDIOS PARA EL MUSEO REGIONAL DE SAN RAMÓN, ALAJUELA

Proyecto Final de Graduación sometido a la consideración de la

UNIVERSIDAD DE COSTA RICA

Como parte de los requisitos para aspirar al título y grado de

LICENCIATURA EN INGENIERÍA MECÁNICA CON ÉNFASIS EN PROTECCIÓN CONTRA INCENDIOS.

Diana Vega Valerio

Sede Interuniversitaria de Alajuela Septiembre, 2023

Hoja del Tribunal

Carné: B67668

Este proyecto de graduación fue aceptado por la Comisión de Trabajos Finales de Graduación de la Escuela de Ingeniería Mecánica de la Universidad de Costa Rica, como requisito parcial para optar por el grado y título de Licenciatura en Ingeniería Mecánica con Énfasis en Protección Contra Incendios.

JOX "	Representante de la Dirección
Mag. Hazel Aragón O'connor	
Escuela de Ingeniería Mecánica	
Mr ease 1	Asesor director
Lic. Miguel Ángel Vega Fallas	
Escuela de Ingeniería Mecánica	
enllov	Asesor interno
Lic. Manuel Corella Vargas	
Escuela de Ingeniería Mecánica	Asesor externo
Lic. David Carballo Jarquín	
Escuela de Ingeniería Mecánica	Evaluador externo
Lic. Luis Andrés Flores Quirós	
Escuela de Ingeniería Mecánica	
Diama Vega V	Ponente
Diana Vega Valerio	

Agradecimientos

Agradezco a mi familia por el apoyo incondicional durante toda la etapa universitaria, a los profesores que dedicaron tiempo en mi trayecto de crecimiento profesional. A todas las personas y empresas que estuvieron involucradas en este proyecto, quienes siempre permanecieron para ayudarme. A a la Universidad de Costa Rica, por darme las herramientas para alcanzar esta meta.

Gracias totales.

Dedicatoria

Le dedico mi proyecto a mi gato, Niko.

Muchas gracias.

Índice general

Hoja de T	Tribunal	ii
Agradeci	cimientos	iii
Dedicator	oria	iv
Índice ge	eneral	v
Índice de	e Ilustraciones	X
Índice de	e cuadros	xii
Siglas y a	abreviaturas	xiii
Resumen	n	xiv
Abstract	t	xvi
CAPÍTU	JLO 1	17
1. In	ntroducción	17
1.1	Descripción General	17
1.2	Modalidad del trabajo final de graduación	18
1.3	Justificación	18
1.4	Objetivos	20
1.4	.4.1 Objetivo general	20
1.4	.4.2 Objetivos específicos	20
1.5	Metodología general	20
1.6	Alcance y limitaciones	22
1.7	Aportaciones y productos esperados	22
1.8	Comité asesor propuesto y terceras partes interesadas	23
CAPÍTU	ULO 2	24
2. M	// Aarco teórico	24
2.1	Museo Regional de San Ramón	24

2.	1.1	Historia del Museo	24
2.	1.2	Colecciones del museo	26
2.	1.3	Patrimonio arquitectónico y cultural	27
2.2	Anál	isis de riesgos	28
2.	2.1	Metodologías de análisis de riesgos	29
2.3	Defi	nición y clasificación de riesgos	44
2.	3.1	Definición de riesgo leve	44
2.	.3.2	Definición de riesgo ordinario (Grupo I y Grupo II)	45
2.	.3.3	Definición de riesgo extra (Grupo I y Grupo II)	46
2.4	Norn	nativa de referencia de NFPA	47
2.	4.1	NFPA 1. Código de incendios	47
2.	4.2	NFPA 10. Norma para extintores portátiles contra incendios	47
2.	4.3	NFPA 13. Norma para la instalación de sistemas de rociadores	47
	.4.4 rivada	NFPA 22. Norma para tanques de agua para protección contra incendi 48	ios
	4.5	NFPA 24. Norma para la instalación de tuberías para servicio privado s y sus accesorios	
2.	4.6	NFPA 25. Norma para la inspección, prueba, y mantenimiento de sistemas	de
pı	rotecció	on contra incendios a base de agua	48
2.	4.7	NFPA 72. Código nacional de alarmas de incendio y señalización	48
2.	4.8	NFPA 101. Código de seguridad humana	48
	4.9 auseos,	NFPA 909. Código para la protección de bienes de recursos culturale bibliotecas y lugares de culto	
2.	4.10	NFPA 914.Código para la protección de estructuras históricas	49
2.5	Legis	slación nacional aplicable al museo	49
2	.5.1	Reglamento Nacional de Protección Contra Incendios	49

2.5.2	Ley 7555	49
2.5.3	Decreto ejecutivo N° 32749	50
2.6 El fu	ego	50
2.6.1	Factores que intervienen en la producción del fuego	51
2.6.2	Clasificación del fuego	54
2.6.3	Productos de la combustión	55
2.7 Siste	ma de protección contra incendios	55
2.7.1	Sistema de protección pasiva contra incendios	55
2.7.2	Sistema de protección activa contra incendios	59
2.7.3	Sistema de soportes	68
CAPÍTULO 3.		70
3. Diseño		70
3.1 Selec	cción de los métodos de análisis de riesgo	70
3.2 Anál	isis de la protección pasiva	70
3.2.1	Recorrido de seguridad humana en el museo	72
3.3 Ruta	s de evacuación	73
3.4 Selec	cción del sistema de supresión contra incendios para el museo	74
3.4.1	Sistema de enclavamiento único con base de agua	74
3.4.2	Tanque de agua enterrado en sala 3	75
3.5 Mue	stra de cálculos para el sistema de supresión contra incendios	76
3.6 Presi	upuesto del sistema de supresión de incendios	77
CAPÍTULO 4.		78
4. Resultad	dos y discusión	78
4.1 Ries	gos presentes en el Museo Regional de San Ramón	78
4.2.1	Recorrido de seguridad humana en el museo	79

	4.	2.2	Compartimentación	80
	4.	3.1	Sistema de supresión de incendios de enclavamiento único	80
	4.4	Presi	upuesto del sistema de supresión de incendios	83
CA	PÍTU	LO 5.		85
(Concl	usiones	s y recomendaciones	85
5	5. C	onclus	iones	85
	5.1	Reco	omendaciones	86
Re	ferenc	cias		87
An	exos	•••••		94
An	exo A	. Colec	cciones del museo regional de San Ramón	94
		Anexo	A.1 Clasificación por tipo de material	94
An	exo B	. Infor	mación para el análisis de riesgo	95
		Anexo	B.1 Modelo de tabla del método HAZOP	95
		Anexo	B.1.1 Secuencia operativa del método HAZOP	96
		Anexo	B.1.2 Clasificación de zonas sísmicas en Costa Rica	97
An	exo C	. Análi	sis de riesgos de los métodos seleccionados	98
		Anexo	C.1 Análisis de riesgos para el museo regional de San Ramón, Alajuela	98
An	exo D	. Prote	cción pasiva contra incendios	99
		Anexo	D.1 Distancia de recorrido total	99
An	exo E	. Datos	del sistema de supresión de incendios	101
		Anexo	E.1 Cuarto de máquinas	101
		Anexo	E.1.1 Especificaciones del equipo y los materiales	103
An	exo F	. Mues	tra de cálculos	104
		Anexo	F.1 Cálculos hidráulicos del sistema de enclavamiento único elaborad	o en

A	Anexo F.1.1 Soportería antisísmica	111
Anexo G. (Cotización del sistema de supresión de incendios	114
A	Anexo G.1 Cotizaciones	114
A	Anexo G.1.1 Presupuesto del sistema de supresión de incendios	132
Anexo H.	Guía con recomendaciones para diseño de un sistema de protección con	ıtra
incendios e	en inmuebles declarados patrimonio arquitectónico y cultural	136
A	Anexo H.1 Guía con recomendaciones	136
Anexo I. P	Planos del sistema de supresión contra incendios	138
A	Anexo I.1 Planos del sistema de supresión de incendios para el Museo Regional	l de
S	San Ramón	138

Índice de Ilustraciones

Ilustración 2.1 Palacio Municipal de San Ramón. Fuente: (Villalobos Cubero, 2014) 25
Ilustración 2.2 Gestión del riesgo. Fuente: (Cortés Díaz, 2018)
Ilustración 2.3 Desviaciones como fallos FMEA. Fuente: (Camacho López, et al., Seguridad
funcional en instalaciones de proceso, 2013)
Ilustración 2.4 Análisis FMEA. Fuente: (Camacho López, et al., Seguridad funcional en
instalaciones de proceso, 2013)
Ilustración 2.5 Símbolos lógicos más usuales en FTA. Fuente: (Camacho López, et al.,
Seguridad funcional en instalaciones de proceso, 2013)
Ilustración 2.6 Significado de las palabras guía. Fuente: (Camacho López, et al., Seguridad
funcional en instalaciones de proceso, 2013)
Ilustración 2.7 Riesgo leve para Museos. Fuente: (National Fire Protection Association, 2019a)
44
Ilustración 2.8 Tetraedro del fuego. Fuente: (García Ruiz, 2020)
Ilustración 2.9 Límite de inflamabilidad. Fuente: (Barreneche, 2020)
Ilustración 2.10 Detector de humo por aspiración de aire. Fuente: (Barreneche, 2020) 60
Ilustración 2.11 Colocación típica de un sistema de alarma de incendio local. Fuente: (National
Fire Protection Association, 2009a)
Ilustración 2.12 Sistema de enclavamiento para rociadores. Fuente: (Barreneche, 2020) 67
Ilustración 2.13 Bomba de eje vertical impulsada por motor. Fuente: (National Fire Protection
Association, 2009b)
Ilustración 2.14 Zonas sísmicas de Costa Rica. Fuente: (Colegio Federado de Ingenieros y de
Arquitectos de Costa Rica, 2010)
Ilustración 3.1 Sistema de supresión de incendios para el museo. Fuente: (Autora ,2023) 70
Ilustración 3.2 Recorrido común en el museo. Fuente: (Autora, 2022)
Ilustración 3.3 Rutas de evacuación. Fuente: (Autora, 2022)
Ilustración 4.1 Protección del equipo. Fuente: (National Fire Protection Association, 2019c)
Ilustración 4.2 Sistema común de rociadores de enclavamiento único. Fuente: (National Fire
Protection Association 2000h)

Ilustración B.1. Modelo de tabla HAZOP. Fuente: (Camacho López, et al., 2013)	95
Ilustración B.2. Secuencia operativa de un estudio HAZOP. Fuente: (Camacho Lóp	ez, et al.,
2013)	96
Ilustración B.3. Clasificación de las zonas sísmicas de Alajuela. Fuente: (Colegio Federal)	derado de
Ingenieros y de Arquitectos de Costa Rica, 2010)	97

Índice de cuadros

Cuadro 2.1 Niveles de criticidad subjetivos. Fuente: (Camacho López, et al., Seguridad
funcional en instalaciones de proceso, 2013)
Cuadro 2.2 Resistencia al fuego de elementos estructurales. Fuente: (Barreneche, 2020) 58
Cuadro 3.1 Carga de ocupantes total y cantidad de medios de egreso del museo
Cuadro 3.2 Sistemas alternativos de extinción. Fuente: (Autora, 2022)
Cuadro 4.1 Distancia de la ruta total. Fuente: (Autora, 2023)
Cuadro 4.2 Resultados del sistema de supresión de incendios. Fuente: (Autora, 2023)
Cuadro A.1. Clasificación por tipo de material. Fuente: (Rodríguez, 2022)

Siglas y abreviaturas

FM: Factory Mutual.

IVA: Impuesto sobre el valor agregado.

RNPCI: Reglamento Nacional de Protección Contra Incendios.

NFPA: National Fire Protection Association.

SPCI: Sistemas de Protección Contra Incendios.

UL: Underwriters Laboratories.

Resumen

En el presente trabajo se realizó el diseño de un sistema de protección contra incendios para el Museo Regional de San Ramón, ya que este es de gran valor histórico tanto para la región de Occidente como para Costa Rica. El Museo resguarda tres grandes colecciones de fotografías, documentos y objetos donados, además fue declarado patrimonio arquitectónico y cultural en 1982.

Este proyecto ayudó a que el Museo cuente con el diseño: de un sistema de supresión contra incendios, además se indicaron los medios de egreso para el edificio, las rutas de evacuación, al mismo tiempo se realizaron recomendaciones para el sistema de detección y alarma de incendios, de esta forma cumplir los cinco objetivos de la protección contra incendios, los cuales se fundamentan en salvaguardar la vida, salvar los bienes materiales, devolver a la normalidad las actividades, proteger el medio ambiente y conservar el patrimonio histórico.

Para cada uno de los diseños que se llevaron a cabo se aplicaron las normativas de la National Fire Protection Association (NFPA, por sus siglas en inglés), por lo tanto, se usaron normas como la NFPA 1, NFPA 10, NFPA 13, NFPA 22, NFPA 24, NFPA 25, NFPA 72, NFPA 101, NFPA 909 y la NFPA 914.De esta forma se cubrieron temas de seguridad humana y de sistemas de protección contra incendios, además se aplicó el Reglamento Nacional de Protección Contra Incendios del Benemérito Cuerpo de Bomberos.

Cítese este trabajo como:

Vega, V. D. (2023). Diseño de un sistema de protección contra incendios para el Museo Regional de San Ramón, Alajuela. [Proyecto final de graduación de Licenciatura]. Universidad de Costa Rica.

Abstract

In the present work, the design of a fire protection system for the Regional Museum of San Ramón was carried out, since has an important historical value for both, the Western region and Costa Rica. The Museum shelters three large collections of photographs, documents and donated objects, also it was declared architectural and cultural heritage in 1982.

This project helped the Museum have the design of: a fire suppression system, the means for egressing the building, the evacuation routes were indicated, at the same time recommendations were made for the detection and alarm system, thus fulfilling the five objectives of fire protection, which are based on safeguarding life, saving material goods, returning activities to normal, protecting the environment and conserving historical heritage.

For each of the designs that were carried out, the regulations of the National Fire Protection Association (NFPA) were applied, therefore, standards such as NFPA 1, NFPA 10, NFPA 13, NFPA 22, NFPA 24, NFPA 25, NFPA 72, NFPA 101, NFPA 909 and NFPA 914 will be used. In this way, issues of human safety and fire protection systems were covered. In addition, the National Fire Protection Regulations of the Meritorious Fire Department will also be considered.

CAPÍTULO 1

1. Introducción

En este capítulo se mencionan los apartados que constituyen el proyecto final de graduación, como son la justificación, los objetivos, la metodología, el alcance y las limitaciones, las aportaciones y productos esperados, el comité asesor y terceras partes interesadas, además se incluyen los derechos de propiedad intelectual.

1.1 Descripción General

El Museo Regional de San Ramón se ubica al costado norte del parque Alberto Manuel Brenes, Avenida 1, en el cantón de San Ramón de la provincia de Alajuela. El edificio cuenta con tres grandes colecciones de: fotografías, documentos y objetos donados, además de ser patrimonio arquitectónico y cultural.

El inmueble se seleccionó con el propósito de realizar el diseño de un sistema de protección contra incendios tanto pasivo como activo. Para el sistema de detección y alarma instalado en el Museo se realizó un análisis para considerar si cumplía con el Código Nacional de Alarmas de Incendio y Señalización (en adelante NFPA, por sus siglas en inglés).

Para alcanzar los objetivos se hizo un análisis del riesgo, el cual indicó los peligros y las áreas de mayor exposición en un incendio, de esta forma se conoció cuál sistema de protección contra incendios es el adecuado para cubrir las necesidades del lugar. Se aplicaron los siguientes reglamentos y normativas: Reglamento Nacional de Protección Contra Incendio (en adelante RNPCI) y la NFPA.

Se realizó una guía con recomendaciones para diseños de sistemas de protección contra incendios en ediciones declaradas patrimonio arquitectónico y cultural. Además, se hizo un estudio sobre el diseño más adecuado para este tipo de edificios, en el cual se consideró preservar la integridad de la infraestructura y de los bienes del Museo.

1.2 Modalidad del trabajo final de graduación

Se decidió llevar a cabo un proyecto final de graduación de carácter teóricopráctico que se enfoca en el diseño de un sistema de protección contra incendios para el Museo Regional de San Ramón. Esta medida se adoptó debido a la necesidad de mejorar las condiciones de seguridad humana y reducir el riesgo de incendios en dicha estructura. Además, este proyecto es particularmente adecuado para aplicar los conocimientos adquiridos durante la formación universitaria en la carrera de Ingeniería Mecánica con Énfasis en Sistemas de Protección Contra Incendios.

Se considera de gran importancia compartir este diseño con la comunidad de San Ramón, ya que cumple con uno de los objetivos del proyecto final de graduación, el cual consiste en: "Fomentar la responsabilidad social que todos los(as) profesionales deben tener, en beneficio de la sociedad costarricense."

1.3 Justificación

El interés en proporcionar un diseño adecuado de un sistema de protección contra incendios para el Museo Regional de San Ramón surge debido a la naturaleza del edificio. Este inmueble es antiguo y posee un alto valor histórico para Costa Rica, ya que está construido con el método tradicional de calicanto. Además, alberga colecciones de gran valor histórico y cultural, que incluyen libros, negativos fotográficos, pinturas, esculturas y otros objetos.

Es crucial destacar que estos materiales son altamente susceptibles a la rápida propagación de incendios, y dado que el museo carece de cualquier sistema de supresión de incendios, la situación de riesgo se vuelve aún más grave. En caso de que se produzca un incendio en el museo, es altamente probable que se produzcan pérdidas tanto en el edificio como en los valiosos objetos que se encuentran en su interior. Además, es de suma importancia garantizar la seguridad de las personas que puedan estar en el museo en ese momento.

Para desarrollar el diseño del sistema de protección contra incendios, se identificaron los peligros que representan una amenaza para la infraestructura. En este sentido, se llevó a cabo un análisis de riesgos utilizando diversos métodos, que incluyeron una lista de verificación, escenarios de "¿Qué pasa si...?" y un análisis histórico.

Con la finalidad de que el Museo Regional de San Ramón cumpla con las normativas NFPA y el RNPCI se buscó tener medios de egreso adecuados para las personas y asimismo rutas de evacuación en caso de emergencia. También se diseñó un sistema de supresión de incendios apropiado para resguardar el patrimonio histórico y arquitectónico, además de saber cuáles son los riesgos que se determinaron en el análisis de riesgos.

A través de la implementación del sistema de supresión de incendios y la protección pasiva, se buscó incrementar la seguridad en el Museo Regional de San Ramón en lo que respecta a la protección de las personas y la mitigación de los riesgos de incendio. Además, se consideraron detenidamente los costos asociados con la adquisición e instalación de estos sistemas de protección contra incendios.

1.4 Objetivos

A continuación, se muestra el objetivo general y los objetivos específicos del presente proyecto final de graduación.

1.4.1 Objetivo general

Diseñar un sistema de protección contra incendios para el Museo Regional de San Ramón basado en las normativas NFPA y el Reglamento Nacional de Protección Contra Incendios, con el propósito de salvaguardar la vida, el patrimonio, los bienes y el medio ambiente.

1.4.2 Objetivos específicos

- a) Identificar los riesgos de incendio, así como analizar el sistema de detección y alarma instalado, definir el alcance y detalles que se precisan para las recomendaciones.
- b) Definir los parámetros y requisitos en cuanto a los sistemas de protección requeridos y de seguridad humana, para salvaguardar a las personas y los bienes del Museo como patrimonio histórico nacional.
- c) Aplicar recursos de dibujo asistido por computadora para la elaboración de los planos que se necesitan del sistema de protección contra incendios.

1.5 Metodología general

A continuación, se muestran los pasos metodológicos que se desarrollaron para el proyecto final de graduación.

Bloque I: Preparación de los fundamentos del PFG

- ➤ Búsqueda de referencias bibliográficas recientes relacionadas con el tema de sistemas de protección contra incendios para museos y edificios declarados como patrimonio nacional.
- ➤ Visitas al museo para levantar información de los bienes que custodia, detalles generales de la edificación, espacio físico, entre otros.
- Estudio de normativas nacionales y de la NFPA relacionadas con patrimonios y museos.

Bloque II: Identificación y definición

- Identificación de los riesgos de incendio presentes en toda la edificación del Museo, mediante el uso de herramientas de análisis.
- > Definición de las normativas a utilizar para el diseño.
- Determinar el sistema de protección contra incendios a diseñar.

Bloque III: Ejecución del trabajo

- Elaboración de un boceto del diseño preliminar.
- Preparación de los modelos matemáticos y sistemas de cálculo, así como las mediciones requeridas.
- > Realización de los cálculos.
- > Selección de equipos y materiales.
- Elaboración de planos en ®Revit 2022.
- Realizar cotizaciones de materiales y equipo, mano de obra y todo lo necesario para la construcción del proyecto, basado en estimaciones realizadas por proveedores nacionales e internacionales

Bloque IV: Documentación

- ➤ Informe que identifique los riesgos de incendio presentes en el Museo.
- > Elaboración de la memoria de cálculo.
- Listado de especificaciones de materiales y equipo requeridos.
- > Elaboración del presupuesto de proyecto.
- Redacción de una guía con recomendaciones para diseños de sistemas de protección contra incendios en ediciones declaradas patrimonio arquitectónico y cultural.
- Elaboración de un manual de operación del sistema de protección contra incendios para el uso u operación y mantenimiento correcto de este.

1.6 Alcance y limitaciones

En el presente proyecto se realizó el diseño de un sistema de protección contra incendios para el Museo Regional de San Ramón, basado en las normativas NFPA relacionadas con museos y patrimonios. Para el sistema de detección y alarma de incendio solo se hicieron recomendaciones.

El proyecto abarcó la elaboración de los planos, en programas de dibujo asistido por computadora, se incluyeron las especificaciones de los materiales y equipos, así como el detalle del presupuesto requerido.

1.7 Aportaciones y productos esperados

A continuación, se presenta una serie de aportaciones y entregables que se realizaron:

- a) Un informe que identifique los riesgos presentes en el Museo.
- b) Una memoria de los cálculos realizados para el diseño.
- c) Planos del sistema de supresión de incendios y de las rutas de evacuación.

d) Presupuesto del sistema de protección contra incendios, asimismo un documento con especificaciones del equipo y los materiales que se requieren, además de la instalación de cada uno de ellos.

e) Manual con el protocolo para el sistema de protección contra incendios, igualmente una guía con recomendaciones para diseños de sistemas de protección contra incendios en edificios declarados patrimonio arquitectónico y cultural.

1.8 Comité asesor propuesto y terceras partes interesadas

Posteriormente, se indica el comité asesor del PFG y la persona interesada que está a cargo de la dirección del Museo Regional de San Ramón:

Director: Lic. Miguel Ángel Vega Fallas,

Escuela de Ingeniería Mecánica, UCR (Sede Interuniversitaria de Alajuela).

Asesor: Lic. Manuel Corella Vargas,

Escuela de Ingeniería Mecánica, UCR (Sede Interuniversitaria de Alajuela).

Asesor: Lic. David Carballo Jarquín,

Escuela de Ingeniería Mecánica, UCR (Sede Interuniversitaria de Alajuela).

Interesado: Andrés Badilla Agüero, director del Museo.

Museo Regional de San Ramón (San Ramón, Alajuela).

CAPÍTULO 2

2. Marco teórico

En este capítulo se muestra la revisión de la literatura consultada para el desarrollo del proyecto, se recopiló información sobre normativas nacionales e internacionales, proyectos de graduación, entre otros documentos que lograron enriquecer las bases teóricas del presente trabajo.

2.1 Museo Regional de San Ramón

En esta sección se brindará información relacionada con la historia del Museo Regional de San Ramón, sus colecciones y porqué es declarado patrimonio arquitectónico y cultural.

2.1.1 Historia del Museo

En 1878 se creó el Palacio Municipal en San Ramón. Su fachada fue diseñada por el ingeniero Cristoph Conrad Runnebaum¹, estaba pensado como un estilo neoclasicista desde su inicio (Villalobos Cubero, 2014).

En 1924 no se había terminado la construcción, cuando se produce el terremoto de Orotina el 4 de marzo, en donde la segunda planta del edificio sufrió graves daños, por lo tanto, el cabildo abierto decidió derribar lo que quedaba y dejar el Palacio con una sola planta (Villalobos Cubero, 2014).

24

¹ Era conocido como "don Carlos", nació en Dorpel, Alemania, el 19 de marzo de 1846.

En la ilustración 2.1 se puede ver el Palacio Municipal de San Ramón, antes del terremoto de Orotina de 1924.

Ilustración 2.1 Palacio Municipal de San Ramón

El Palacio fue usado dos veces como cuartel militar, en 1917 cuando San Ramón fue la primera ciudad del país en revelarse contra la dictadura de los hermanos Tinoco, más tarde en 1948 durante la guerra civil (Cartin, 2020).

En los años posteriores al terremoto el Palacio fue usado como oficina de telégrafos, de correos y como Biblioteca Pública de San Ramón². En 1969 el edificio fue usado como la primera Sede Regional de Occidente de la Universidad de Costa Rica y en 1977, por medio del TCU "El Museo de San Ramón y la comunidad" pasó a ser el Museo Regional de San Ramón (Cartin, 2020).

-

² Primera Biblioteca Pública del país.

El Museo Regional de San Ramón fue declarado patrimonio arquitectónico y cultural en 1982, por ser de gran valor histórico, artístico, cultural e identitario de la Región de Occidente.

2.1.2 Colecciones del museo

El Centro de Documentación SCP³, contiene tres grandes colecciones de carácter patrimonial, que han sido abastecidas históricamente por medio de las donaciones realizadas por la comunidad de Occidente a lo largo de 35 años de funcionamiento del Museo Regional de San Ramón.

Colección de documentos

El museo cuenta con un total de 1 110 documentos impresos, esta colección incluye libros, recortes de periódicos, fotocopias de investigación y libros, entre otros. Además, tiene un catálogo de materiales conocidos como "opacos". Igualmente, cuenta con 198 de planos y mapas registrados en inventario de distintos componentes como: papel, pergaminos, filminas, entre otros. Por último, tiene publicaciones que datan de 1894 hasta 1996 en la colección de Gacetas de la República, se encuentra en proceso de restauración y no se cuenta con el número exacto de Gacetas registradas.

Colección de fotografías

El Museo dispone de 2 782 fotografías impresas, también tiene 2 782 fotografías escaneadas y 2 129 fotografías en negativo.

Colección de objetos donados

Esta colección es la más grande en cantidad, ya que contiene una serie de objetos que se asocian con el patrimonio cultural, económico y educativo que ha sido parte del desarrollo de la Región de Occidente. Cuenta con objetos de madera, metálicos, de

³ Sección de Colecciones Patrimoniales.

papel, de vidrio, entre otros componentes. De igual forma, hay botellas, máquinas de coser y escribir, pupitres escolares, escaños de iglesias, Santos tallados en madera, textiles, pinturas, entre otros.

La SCP tiene 655 objetos donados. El Anexo A.1 muestra una clasificación por el tipo de material del conjunto.

2.1.3 Patrimonio arquitectónico y cultural

Las paredes del Palacio Municipal de San Ramón son fabricadas con arena y cal, que es conocido como calicanto, estas se construyeron en el siglo XIX, fueron recubiertas con repello y pintadas, pero pasó un periodo extenso antes de terminarse. Los arcos y balcones exteriores son elaborados en cemento armado. Además, hay uso de maderas en los cielos, en el piso, las ventanas y las puertas y un área del piso tiene mosaicos.

Para que la cal se pueda usar en repello, tiene que pasar por un proceso de apagado, ya que puede quemar la piel al contacto, por lo tanto, se mezcla con agua y entre más se apague tiene una mejor adherencia.

El siguiente autor indica la composición química de la cal con el agua:

La cal quemada se puede tratar con agua para proporcionar cal hidratada que es hidróxido de calcio [Ca(OH)₂] o una mezcla de hidróxido de calcio e hidróxido de magnesio [Mg(OH)₂]. Este producto se llama cal hidratada, cal apagada o cal de constructores. (E. Boyd, 2017)

2.2 Análisis de riesgos

El análisis de riesgos tiene como objetivo el establecer los accidentes que pueden ocurrir en el sitio, así como las consecuencias y los daños ocasionados. Es fundamental para cualquier proyecto de protección contra incendios, ya que busca conocer cuáles son las amenazas que pueden afectar el edificio y el grado de protección que se le puede asignar a cada área en el lugar. El análisis del riesgo es para Cortés Díaz (2018): "comprendiendo las fases de identificación de peligros y estimación de los riesgos" (p.128).

Se espera conocer también la valoración de riesgos, la cual permite tasar si los peligros identificados resultan admisibles. De esta forma poder hacer una correcta deducción sobre las amenazas (Cortés Díaz, 2018).

La evaluación de los riesgos abarca las siguientes etapas:

- 1. Identificar los peligros.
- 2. Reconocer cuáles trabajadores o visitantes están expuestos a riesgos.
- 3. Evaluar cualitativa o cuantitativamente los riesgos que hay.
- 4. Analizar si el riesgo puede ser eliminado y si no es posible, aprobar nuevas medidas para prevenir o reducir la exposición.

A continuación, se muestra la ilustración 2.2, en la cual se puede ver un esquema con las fases de la evaluación de los riesgos.

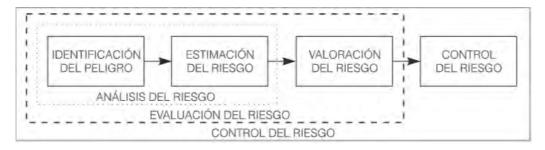


Ilustración 2.2 Gestión del riesgo

Se deben reconocer los peligros, considerando las operaciones, fallos técnicos, errores humanos, intervenciones no autorizadas, entre otros. Además, realizar el cálculo de las consecuencias fundamentado en la estimación de los valores que puedan alcanzar las distintas variables que forman parte de los fenómenos peligrosos y el cálculo de la vulnerabilidad de los acontecimientos dañinos para las personas, el medio ambiente y los bienes.

2.2.1 Metodologías de análisis de riesgos

Los métodos de análisis de riesgos buscan identificar las situaciones peligrosas en actividades en las que se manipulan materiales que representan una amenaza, por lo tanto, se busca examinar el diseño y hacer medidas correctoras o preventivas. También distinguir los escenarios en los que pueden ocurrir accidentes, con el propósito de evaluarlos y cuantificarlos en un análisis de riesgos (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Para la evaluación de riesgos se requiere de métodos cualitativos y cuantitativos como: Hazard and Operability Study (HAZOP, por sus siglas en inglés), árbol de fallos y errores, entre otros. Además, en situaciones de riesgo más específicos se usan: Gretener, Gustav Purt, Coeficiente K, Índice Mond, Índice Dow, Riesgo intrínseco, entre otros (Cortés Díaz, 2018).

Metodologías cualitativas de los riesgos

Los métodos cualitativos tienen como objetivo plantear la identificación de los riesgos en el origen, al igual que la conformación y el orden con el cual se presentan en un accidente (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

El objetivo de un análisis cualitativo es conocer los riesgos, los efectos (incidentes y accidentes que suceden cuando el riesgo se concreta) y las causas (los

orígenes o fuentes de los riesgos) (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

A continuación, se describe uno de los métodos de identificación de riesgos cualitativos, posterior se indicaron casos reales.

Bases de datos o análisis histórico de accidentes: se puede tener acceso a los accidentes más usuales, que hayan sucedido en relación con un proceso o sustancia peligrosa definida, de esta forma se conocen sus causas y consecuencias, por lo tanto, se pueden hacer conclusiones y recomendaciones (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Seguidamente se muestra una lista de incidentes ocurridos a lo largo de la historia en museos y/o patrimonios de la humanidad.

Museo Regional de San Ramón: en el 2012, en una actividad nocturna existían unas luces incandescentes conectadas, al lado de unas bolsas de basura estas comenzaron a quemarse, pero una persona se dio cuenta y lograron controlar el fuego (se desconoce cómo lo apagaron).

Museo Nacional de Brasil: el 2 de septiembre del 2018 el edificio se quemó por completo en un incendio que casi terminó totalmente con las colecciones de antropología e historia natural que albergaba el museo. Se recuperó alrededor de un 10% de los artículos (Museo Nacional de Brasil en Río de Janeiro: ¿qué causó el incendio que lo destruyó?, 2018).

El incendio en el lugar se originó debido a un problema con el aire acondicionado, ya que este no cumplía con las recomendaciones del fabricante. Los

disyuntores y los dispositivos de puesta a tierra fallaron, lo que provocó que el equipo recibiera una corriente eléctrica superior a su capacidad de diseño. (Unidad de aire acondicionado defectuosa provocó un incendio en el museo de Brasil).

El edificio no contaba con rociadores contra incendio ni tenía puertas corta fuego. Los hidrantes cercanos al museo no suministraron el caudal necesario para combatir el fuego (Unidad de aire acondicionado defectuosa provocó un incendio en el museo de Brasil).

Biblioteca de Alejandría: el 2 de marzo del 2003 aproximadamente 40 personas resultaron intoxicadas por el humo en el incendio que perjudicó un área de la biblioteca. El fuego comenzó por un cortocircuito en el cuarto piso y se logró contener una hora más tarde por los bomberos.

El sistema de alarma de protección contra incendios se activó y el edificio se evacuó previo a que el humo se propagara por el sistema de aire acondicionado. El fuego no llegó a la colección de libros y documentos históricos (Incendio en Alejandría, 2003).

Museo Egipcio de El Cairo: el 2 de febrero del 2011 En el patio del museo, dos cócteles Molotov fueron arrojados, lo que desencadenó un incendio que requirió la intervención del ejército para extinguir las llamas. Este incidente ocurrió en medio de un enfrentamiento entre seguidores y opositores de Mubárak, el siniestro dejó daños a 70 artículos. (Incendio en el museo Egipto de el Cairo, 2011).

Catedral de Notre Dame: el 15 de abril del 2019 el incendio ocurrido en la catedral parisina empezó a las 18:20 de la tarde cuando se dio la primera alarma, se realizó una inspección, pero no se encontró fuego, luego de 23 minutos se produjo la segunda alarma y se localizaron llamas en la zona superior del sitio, de esta forma se

evacuaron las personas. Se combatieron las flamas por aproximadamente nueve horas y se evitó la destrucción total de la catedral ("Notre Dame se salvó por 30 minutos": lo que se sabe del devastador incendio que causó graves daños a la catedral de París, 2019).

El arquitecto encargado mencionó que la madera de roble ardió más rápido de lo que tenían previsto. Se mantienen dos hipótesis: la colilla de un cigarrillo prendido o un cortocircuito, ya que ese día se realizaban reformas en el edificio.

Escuela de Arte de Glasgow: el 23 de mayo del 2014 un incendio se originó en la escuela, en el sótano del edificio, los testigos indicaron que un proyector defectuoso estalló. No hubo heridos.

Un nuevo siniestro sucedió en el edificio el 15 de junio del 2018, no hubo heridos, pero el incendio fue mucho peor, ya que todos los niveles fueron dañados. La escuela estaba siendo renovada del pasado desastre y se desconoce la causa que produjo el incidente (Un nuevo incendio daña la prestigiosa escuela de arte de Glasgow, 2018).

Museo Marítimo de la isla normanda de Tatihou: el 18 de julio del 2017 se quemaron los tres cuadros que el Museo del Louvre prestó al Museo Marítimo de la isla normanda de Tatihou en un incendio que solo ocasiono pérdidas materiales. Se indica que el fuego comenzó por un rayo.

TOP Mountain Motorcycle Museum Crosspoint: el 18 de enero del 2021 comenzó un incendio que destruyó 320 motocicletas clásicas de alto valor histórico y económico. Lo que provocó el fuego se desconoce, además el museo se quemó por completo y solo unas pocas motos en exhibición se salvaron.

Museo de Ciencias Naturales de Rosario: el 1 de julio del 2003 por medio de la explosión de una bomba, comenzó un incendio que destruyó el museo. Se resguardaban trece mil animales embalsamados, por lo cual el fuego se propagó muy rápido (Un incendio destruyó el museo de ciencias naturales de Rosario, 2003).

Museo Violeta Parra: el 7 de febrero del 2020 el museo sufrió un siniestro por parte del enfrentamiento de policías y protestantes que llegaron a tirar bombas a la edificación. No hubo heridos y la colección no sufrió daños, ya que se encontraba en un depósito, el cual no estaba dentro del museo.

Museo de cera ubicado en la Colonia Juárez, México: en 1992 por un cortocircuito, el fuego devastó todas las estatuas que había dentro.

Museo del Hombre, Honduras: el 30 de noviembre del 2017 un transformador de la zona explotó y el fuego se extendió a un hotel, a cuatro negocios y al museo. El edificio se destruyó en su totalidad. Este contenía colecciones sobre la época colonial, entre otras. Se lograron recuperar unas pocas piezas (Incendio en el centro de Honduras destruye museo del hombre, 2017).

Museo Getty de California: el museo se protegió de un incendio forestal ocurrido en el 2017, en Skirball, el fuego estuvo muy cerca, pero como la tierra estaba húmeda debido a un sistema de riego (que está alimentado por un tanque con un almacenamiento de hasta un millón de galones de agua), se impidió que este avanzara. Además, tiene una red de tuberías subterráneas que se activa si cae una chispa en el terreno que circunda el museo (Museo getty de California: ¿por qué es especial su arquitectura para protegerlo de incendios?, 2018).

Asimismo, el edificio tiene paredes internas hechas con concreto reforzado y las externas son de mármol travertino, el techo está protegido por piedras machacadas.

Cuenta con un sistema de filtración de aire que puede expulsar el humo y las cenizas de los salones para evitar las altas temperaturas. Tiene puertas automáticas contra incendio, entre otros sistemas (Museo getty de California: ¿por qué es especial su arquitectura para protegerlo de incendios?, 2018).

Seguidamente, se mencionan los otros métodos de identificación de riesgos cualitativos y la definición de cada uno de ellos.

Análisis HAZID o análisis preliminar de riesgos: el análisis Hazard identification (HAZID, por sus siglas en inglés) se aplica para el reconocimiento de escenarios y se usa en programas de defensa, que buscan hacer una identificación previa de los riesgos en la primera etapa del diseño, de esta forma evitar el costo que involucra un rediseño o una modificación en la fase de operación (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

El análisis HAZID tiene como objetivo obtener información sobre materiales y operaciones preparadas, determinar si es posible aplicar similitudes con otros procesos u operaciones experimentados previamente, investigar las operaciones y equipos cuya criticidad se necesita conocer (por ejemplo, toxicidad, corrosión, carga energética, entre otros), examinar los aspectos técnicos identificados y considerar medidas técnicas para reducir el riesgo asociado a los aspectos críticos.

El análisis "What if?" es un método que identifica riesgos y busca establecer posibles consecuencias ante un fallo específico mediante preguntas. Estas interrogantes, basadas en un evento inicial, conducen a un análisis de deducciones probables que implica comprender el comportamiento del sistema, culminando en recomendaciones en forma de medidas correctivas. (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013)

Camacho López, et al. (2013) indica algunos ejemplos de aplicación del *What if*?:

¿Qué ocurriría si el operador cierra mal la válvula?

¿Qué ocurriría si la tubería se obstruye?

¿Qué ocurriría si la temperatura ambiental supera los 30°C?

¿Qué ocurriría si se produce fuego exterior involucrando al tanque?

Para aplicar el método *What if?* primero se escoge una perspectiva o alcance para cada parte del estudio (seguridad de las personas, seguridad eléctrica, defensa contra incendios u otros) o se propone llevar el estudio de forma global con nada más que la narración de la secuencia del proceso; se aclara el funcionamiento del desarrollo y se da inicio, se proponen y anotan todas las preguntas *What if?* que surjan (No se contestan inmediatamente si no que se comprueba que si hay preguntas adicionales.), se contestan las preguntas *What if.* Algunas van a necesitar estudio independiente, o el aporte de especialistas, luego se considera para cada pregunta *What if?* qué disposiciones existen y cules considerar para prevenir el riesgo, conjuntamente disminuir su origen o suprimirlo (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Análisis por *checklist*: la lista de chequeo es un método de reconocimiento aplicable para la valoración de equipos, materiales o procedimientos y se usa en cualquiera de las fases del desarrollo de un proyecto (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Para la aplicación de la *checklist* se tiene que examinar la normativa y los estándares de empleo o referencia de uso, se hacen las listas de chequeo y por último se realizan los controles y valoración de la lista sobre la instalación de objeto de estudio.

Análisis de los Modos de Fallo y Efectos (FMEA, por sus siglas en inglés): se comienza por una lista de equipos y componentes de la instalación que puedan provocar un fallo (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Para hacer el análisis FMEA se deben plantear los fallos que pueden ocurrir en todos los elementos del equipo (proceso y control), se examinan las secuelas de los fallos, para localizar cuales pueden iniciar un accidente y fundamentar medidas de protección que puedan evitar los errores significativos.

En la ilustración 2.3 se pueden ver algunos ejemplos sobre desviaciones como fallos.

DEBE	FALLO
Estar cerrado	Estar abierto
Estar abierto	Estar cerrado
Flujo	No fluir
En marcha	Parado
Estanco	Fuga
Señal de indicación o mando	Falta de señal
Accionamiento	Sin accionamiento
Refrigeración	Sin refrigeración
Abrir	No abrir
Cerrar	No cerrar
Sin fuga	Fuga
Etc.	No etc.

Ilustración 2.3 Desviaciones como fallos FMEA

El procedimiento de aplicación del análisis FMEA consiste en separar la instalación en secciones de estudio, además de listar todos los componentes de equipo (de proceso y de control) dentro de una división del protocolo en la planta; establecer la operación de cada elemento de equipo, puntualizar los fallos posibles, explicar los efectos de los fallos definidos, definir si los fallos establecidos y las consecuencias planteadas que perjudican a otros elementos del equipo. Distinguir y proponer medidas

preventivas viables que puedan evitar los fallos establecidos, que puedan ser significativos como resultado de seguridad y hacer un informe del análisis (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

En la ilustración 2.4 se observa un análisis FMEA:

FECHA: PLANTA: SISTEMA:			PÁGINA DE REFERENCIA:		
Item.	Descripción	Modo de fallo	Detección	Efectos	Medidas correctoras

Ilustración 2.4 Análisis FMEA

Análisis de Árbol de Fallos (FTA, por sus siglas en inglés): este método empieza con el reconocimiento de un accidente ocurrido. A partir de ese incidente se define por medio de un proceso inductivo, el suceso iniciador, tal como se muestra en la ilustración 2.5.

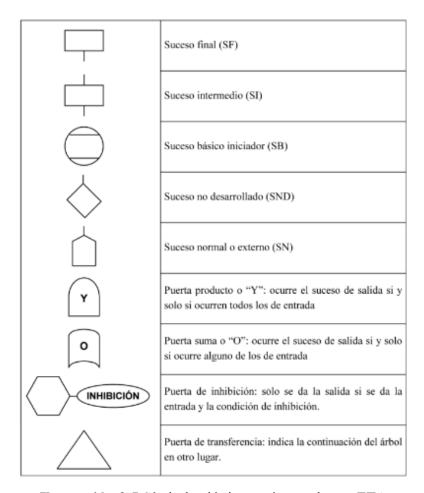


Ilustración 2.5 Símbolos lógicos más usuales en FTA

Para aplicar el análisis FTA se comienza por una lista los sucesos finales (SF), por ejemplo, una explosión de un recipiente a presión, explosión e incendio en un horno, entre otros. Cada SF es el comienzo de un árbol de fallos independiente; luego se pueden agrupar los accidentes como: las emisiones, incendio, explosión, entre otros, se hace una lista de los sucesos intermedios (SI) y básicos (SB) por medio del cuestionamiento inductivo y las preguntas:¿Por qué ocurre el SF?: acontecimientos intermedios y básicos; relaciones efecto-causa, ¿Son alternativos?: puertas OR; ¿Son concurrentes?: puertas AND; se dibuja el árbol de fallos, usando los símbolos de la ilustración 2.5 y por último se establecen los conjuntos mínimos de fallos (cmf), por medio de algebra de booleo y el método matricial (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Análisis de árbol de sucesos: los árboles de suceso (*Event Tree*, ET), examinan las posibles secuelas asociadas con el fallo en un equipo o modificación en el proceso. Su uso permite conocer cuáles accidentes puntuales, mayores o catastróficos pueden ocurrir por medio de un único acontecimiento iniciador.

Para emplear el análisis del árbol de sucesos se deben reconocer los acontecimientos básicos iniciadores (SB). Se contesta la pregunta ¿Qué puede fallar de este elemento y de sus partes?, por ejemplo, en un compresor puede fallar la válvula de seguridad, lubricación, sellos, accionamiento, entre otros, se emplea el (si/no o fracaso/éxito) al suceso básico del árbol, se deduce el hecho intermedio, sobre las alternativas de las situaciones, ejemplos: ignición, rotura del eje, entre otros.

Se usa el factor condicionante (FC) que puede repercutir sobre las alternativas de las situaciones determinadas en dos, por ejemplo: alarma, intervención humana o automática, parada de emergencia, entre otros, se utiliza el (si/no o fracaso/éxito) en cada caso intermedio y/o factor limitante dispuesto en secuencia lógica de ocurrencia; ejemplo: ignición (sí/no)-detección (sí/no)-alarma (sí/no)-actuación (sí/no)-extinción(sí/no),se realiza una gráfica de: suceso básico (SB), sucesos intermedios (SI), factores condicionantes (FC) creando el árbol de sucesos. Se analizan todas las situaciones definidas, de esta forma plantearse más SI y más FC que se deban tener en cuenta, además se plantean y analizan las consecuencias, puede ser que haya una "sin secuelas", finalmente se especifican y registran por escrito las recomendaciones provenientes del análisis (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Estudios de riesgos y operabilidad (HAZOP, por sus siglas en inglés): los estudios de riesgos y operabilidad HAZard and operability studies (HAZOP) componen una de las técnicas más estructuradas para distinguir los peligros relacionados con una planta de proceso (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

A continuación, se especifican algunas de las definiciones más usadas por

Camacho López, et al. (2013) en la metodología del análisis HAZOP.

Nodo: es un punto del proceso (como un equipo) en el que se estiman las posibles

desviaciones del proceso.

Intención: describir como se espera que actúe el proceso en un preciso nodo.

Desviación: configuración en que las condiciones del proceso se distancian de

su propósito.

Parámetro: es un elemento significativo para la condición del proceso,

ejemplos: presión, temperatura, composición, entre otros.

Palabra guía: simboliza la desviación de la intención. Las más habituales: no,

más alta, más baja, diferente, parte de, e inverso, demasiado pronto, demasiado tarde,

entre otras.

Causa: son propósitos mediante los cuales podría suceder una desviación.

Consecuencias: son los resultados de las desviaciones, si llegaran a suceder.

Salvaguardia: son instrumentos o protecciones del sistema que pueden

contribuir a disminuir la frecuencia de acontecer de la desviación o reducir su impacto.

40

Recomendación: labores reconocidas durante el análisis HAZOP para su continuación.

Comentarios: son explicaciones al momento de hacer las recomendaciones o las sugerencias, a lo largo de las sesiones HAZOP.

El procedimiento de ejecución del método HAZOP se lleva a cabo por medio de los puntos específicos del proceso o los NODOS, en donde se van a valorar las respectivas desviaciones. Esto se realiza por medio de las palabras guía, como se especifica en la siguiente ilustración 2.6:

PALABRAS GUÍA	SIGNIFICADO		
NO	NEGACIÓN O AUSENCIA DE LAS ESPECIFICACIONES DE DISEÑO		
MÁS MENOS	AUMENTO O DISMINUCIÓN CUANTITATIVA Se refiere a variables de proceso como caudal, presión, temperatura, o a actividades (calentar, reaccionar, etc.).		
MÁS DE o ASÍ COMO	AUMENTO CUALITATIVO Si bien se realiza la función deseada, junto a ella tiene lugar una actividad adicional.		
PARTE DE	DISMINUCIÓN CUALITATIVA Se realiza solamente una parte de la función deseada.		
INVERSO	OPOSICIÓN A LA FUNCION DESEADA Utilizable preferentemente para actividades (flujo de retroceso, inversión de reacción química, etc.).		
DE OTRA FORMA	SUSTITUCIÓN COMPLETA DE LA FUNCIÓN DESEADA		

Ilustración 2.6 Significado de las palabras guía

En el Anexo B.1 y Anexo B.1.1 se adjuntaron ilustraciones como guía para la elaboración del análisis HAZOP.

Metodologías cuantitativas de los riesgos

Los métodos cuantitativos buscan inspeccionar el progreso probable del accidente desde el origen (fallos en equipos y operaciones) hasta plantear la variación del riesgo (R) con la distancia.

Es una técnica de análisis crítico que involucra estructuras y cálculos para plantear la probabilidad de sucesos complejos (siniestros) desde los valores individuales de la posibilidad de fallo que concierne a los elementos (equipo y humanos) involucrados en los procesos (industriales) (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Este método utiliza la lógica matemática (estructuras lógicas y relaciones entre elementos), estadísticas de frecuencias de posibilidad de fallos y fiabilidad de los equipos y los cálculos de probabilidades de interacciones entre acontecimientos (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Datos para métodos cuantitativos

Para la interpretación de los datos probabilísticos, surgen las siguientes preguntas: ¿Es mi equipo igual de confiable que el modelo probabilístico?, ¿cómo mejora su confiabilidad al incrementar el mantenimiento?, ¿están condicionados los datos de confiablidad con datos provenientes de países no desarrollados? (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Análisis mediante árbol de fallos: se aplica el método cuantitativo de los árboles de fallo y una vez que se encuentran las probabilidades de acontecer de los sucesos básicos iniciadores, se logra cuantificar en términos probabilísticos la frecuencia de producirse el acontecimiento final (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Análisis mediante árbol de sucesos: se agrega el método probabilístico por medio de la utilización de las probabilidades de acontecimiento de la elección de los incidentes básicos iniciadores, los intermedios y los factores condicionantes (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Análisis de riesgos en el entorno: el resultado de un análisis cuantitativo de riesgos en el medio considera la aprobación o rechazo de los proyectos para instalaciones nuevas, modificadas / ampliadas. Además de las disposiciones de autoprotección, intervención para lograr ver los planes de emergencia exterior (PEE) (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

Metodología semicuantitativa de los riesgos

Son técnicas de análisis crítico que aplica índices globales de la probabilidad de riesgo valorado en función de las estadísticas. Estas pueden ser de suficiencia general o proveniente de la experiencia de las compañías en el diseño y el procedimiento de plantas similares a las que se busca examinar.

Análisis de los modos de fallo, efectos y consecuencias (FMCEA): este análisis sigue los mismos principios que el método FMEA, la diferencia es que en el FMECA a cada modo de fallo se le asigna un nivel de criticidad, tal como se observa en el cuadro 2.1.

Cuadro 2.1 Niveles de criticidad subjetivos

EFECTO	NIVEL DE CRITICIDAD
- Ninguno	1
- Leves perturbaciones	2
- Importantes perturbaciones	3
- Peligro inminente	4

2.3 Definición y clasificación de riesgos

En este apartado se va a describir la clasificación de los riesgos mencionados en la normativa NFPA.

2.3.1 Definición de riesgo leve

La NFPA (2019a) menciona "Espacios con poca cantidad y en baja combustibilidad de los contenidos" (p.38). Considerando la cita anterior un riesgo leve son sitios en donde la posibilidad que haya un incendio sea muy baja.

En la ilustración 2.7 se muestra un extracto de la NFPA 13, en la cual se indica el tipo de riesgo que se va a considerar para el Museo Regional de San Ramón.

A.4.3.2 Las ocupaciones de riesgo leve incluyen ocupaciones con condiciones y usos similares a los siguientes:

- (1) Refugios para animales
- (2) Iglesias
- (3) Clubes
- (4) Aleros y voladizos, si son de construcción combustible, sin materiales combustibles debajo
- (5) Ocupaciones educacionales
- (6) Hospitales, entre los que se incluyen hospitales para animales e instalaciones veterinarias
- (7) Ocupaciones institucionales
- (8) Criaderos de perros
- (9) Bibliotecas, excepto grandes salas con libros apilados
- (10) Museos
- (11) Hogares de cuidados intermedios o centros de convalecencia
- (12) Oficinas, entre las que se incluyen oficinas de procesamiento de datos
- (13) Ocupaciones residenciales
- (14) Áreas de asientos de restaurantes
- (15) Teatros y auditorios, sin incluir escenarios ni proscenios
- (16) Áticos no utilizados

Ilustración 2.7 Riesgo leve para museos

2.3.2 Definición de riesgo ordinario (Grupo I y Grupo II)

Grupo I

La NFPA (2019a) indica "Espacios con moderada cantidad y baja combustibilidad de los contenidos" (p.38).

La NFPA (2019a) cita "Apilamientos de contenidos con baja combustibilidad que no exceden de 8 pies (2.4m)" (p.38).

El riesgo ordinario Grupo I explica que estos espacios tienen una mesurada probabilidad que ocurra un incendio.

Grupo II

La NFPA (2019a) describe "Espacios con mucha cantidad y en muy alta combustibilidad de los contenidos" (p.41).

La NFPA (2019a) detalla "Apilamientos de contenidos con moderada a alta combustibilidad que no exceden de 12 pies (3.7m)" (p.41).

El riesgo ordinario Grupo II indica que estos espacios tienen una alta posibilidad que se produzca un incendio.

2.3.3 Definición de riesgo extra (Grupo I y Grupo II)

Grupo I

La NFPA (2019a) especifica "Espacios con mucha cantidad y en muy alta combustibilidad de los contenidos" (p.41).

La NFPA (2019a) describe "Espacios donde hay presencia de polvos, pelusas u otros materiales que introducen la posibilidad de incendios de rápido desarrollo" (p.41).

El riesgo extra Grupo I menciona que estos espacios son de muy alta probabilidad que se efectué un incendio.

Grupo II

La NFPA (2019a) menciona "Espacios con mucha cantidad y en muy alta combustibilidad de los contenidos" (p.41).

La NFPA (2019a) indica "Espacios con cantidades sustanciales de líquidos combustibles o inflamables" (p.41).

La NFPA (2019a) describe "Espacios donde es extensa la protección de combustibles" (p.41).

El riesgo extra Grupo II expone que estos sitios son de muy alta probabilidad que ocurra un incendio, además tienen grandes cantidades de líquidos combustibles o inflamables.

2.4 Normativa de referencia de NFPA

La National Fire Protection Association (NFPA) fue fundada en 1896 con el propósito de eliminar los accidentes relacionados con incendios, riesgos eléctricos y otros peligros que estuviesen asociados. La NFPA es una organización de códigos y normas, la cual propone diseños para disminuir el riesgo y las consecuencias del fuego por medio de métodos para la construcción, el diseño, entre otros.

En esta sección se van a considerar algunas de las normativas de la NFPA, relacionadas con la protección de incendios para museos.

2.4.1 NFPA 1. Código de incendios

El propósito de este documento es determinar las condiciones mínimas indispensables para disponer de un nivel adecuado de seguridad humana y contra incendios, con el fin de proteger la propiedad contra los riesgos (NFPA, 2012).

2.4.2 NFPA 10. Norma para extintores portátiles contra incendios

Esta disposición es una guía para la selección, compra, instalación, aprobación, listado, diseño y mantenimiento de los extintores portátiles y de los agentes extintores clase D (NFPA, 2018a).

2.4.3 NFPA 13. Norma para la instalación de sistemas de rociadores

El presente código pretende brindar los requisitos de diseño, instalación para los sistemas de rociadores, entre los cuales se incorporan las tuberías para servicio privado contra incendios (NFPA, 2019a).

2.4.4 NFPA 22. Norma para tanques de agua para protección contra incendios privada

El propósito de esta norma es poder proporcionar un fundamento para el diseño, construcción, operación y mantenimiento de los tanques de agua para la protección contra incendios de forma privada (NFPA, 2018b).

2.4.5 NFPA 24. Norma para la instalación de tuberías para servicio privado de incendios y sus accesorios

Esta norma busca proporcionar proteger la vida y los bienes por medio de la implementación de requerimientos para los sistemas de tuberías del servicio privado de incendios (NFPA, 2019c).

2.4.6 NFPA 25. Norma para la inspección, prueba, y mantenimiento de sistemas de protección contra incendios a base de agua

El propósito de este reglamento es salvaguardar la vida y la propiedad por medio de métodos de inspección, prueba y mantenimiento para los sistemas de protección contra incendio con base en agua (NFPA, 2020).

2.4.7 NFPA 72. Código nacional de alarmas de incendio y señalización

Esta norma busca definir los medios para activar señales, transmitirlas, notificarlas y anunciarlas (NFPA, 2016).

2.4.8 NFPA 101. Código de seguridad humana

Aporta los requisitos mínimos al diseño, funcionamiento, mantenimiento de edificaciones y estructuras para brindar seguridad a las personas contra el fuego (NFPA, 2021a).

2.4.9 NFPA 909. Código para la protección de bienes de recursos culturales-museos, bibliotecas y lugares de culto

El propósito de esta norma es prescribir un programa comprehensivo, con la misión de proteger los bienes culturales, sus contenidos y colecciones de posibles daños o pérdidas (NFPA, 2021b).

2.4.10 NFPA 914. Código para la protección de estructuras históricas

El propósito de este código es prescribir los requerimientos para la protección y recuperación de estructuras históricas, preservando al mismo tiempo los componentes, espacios y las características que convierten a estas estructuras históricas o arquitectónicamente importantes (NFPA, 2019d).

2.5 Legislación nacional aplicable al museo

Seguidamente se van a mencionar algunas de las normativas nacionales que son aplicables al Museo Regional de San Ramón, Costa Rica.

2.5.1 Reglamento Nacional de Protección Contra Incendios

Los artículos 14 y 16 de la Ley 8228, indican que el empleo del RNPCI es obligatorio para todo diseño de nuevas edificaciones, edificios existentes, remodelaciones, cambio de aplicación y diseños e instalación de sistemas de protección contra incendios pasivos y activos, ya sean temporales o permanentes.

2.5.2 Ley 7555

En esta ley se tratan los patrimonios históricos-arquitectónicos de Costa Rica, su objetivo es la conservación, la protección y la preservación del patrimonio.

2.5.3 Decreto ejecutivo N° 32749

El decreto ejecutivo N°. 32749 es el reglamento a la Ley N° 7555 "Ley de Patrimonio Histórico-Arquitectónico de Costa Rica", cuyo objetivo es la conservación, protección y preservación de los bienes inmuebles que tengan un valor histórico y arquitectónico.

2.6 El fuego

El fuego se produce en consecuencia de una reacción química llamada combustión. La química del fuego se comprende como el tetraedro del fuego, ya que los conforman los siguientes elementos: el combustible, el oxígeno, el calor, la fuente de ignición y la reacción en cadena, ver la ilustración 2.8 (García Ruiz, 2020).

Ilustración 2.8 Tetraedro del fuego

Para que el fuego exista se dice que es necesario que estén lo siguientes componentes en las condiciones adecuadas.

Material combustible: son sólidos, líquidos, en estado gaseoso y nuclear.

Temperatura adecuada: todos los materiales requieren una cantidad de calor específico para generar vapores que logren quemarse en el momento que se alcanza el punto de ignición y dentro del rango de inflamabilidad.

Elemento oxidante: para que una materia se queme se necesita un agente oxidante, el más común es el oxígeno, ya que se encuentra en el aire en un 21%.

Reacción en cadena: este se origina en el calentamiento de las moléculas del aire y llega un punto en que se convierten en moléculas inestables, conocidas como radicales libres.

2.6.1 Factores que intervienen en la producción del fuego

Para que el fuego exista no solo son necesarios los anteriores componentes en las condiciones indicadas, también intervienen una serie de factores físicos y químicos.

Punto de inflamación: es la temperatura mínima en la cual el componente inflamable o combustible llega a producir vapores y en la concentración adecuada con el oxígeno, forma una mezcla inflamable (Trujillo Mejía, 2012).

Punto de autoinflamación: es la temperatura inferior a la cual una combinación de gas inflamable y aire puede originar una llama sin requisito de una fuente externa de calor (Trujillo Mejía, 2012).

Punto de ebullición (*Boiling point*) es la temperatura en la cual la presión de vapor de un líquido equipara la presión atmosférica absoluta de 101 kPa.

Punto de inflamación momentánea (flashover) como la temperatura mínima de un líquido en la cual produce el vapor suficiente para crear una mezcla inflamable con el aire.

La NFPA 30 tiene definiciones para las clasificaciones de los líquidos inflamables y los líquidos combustibles como se muestra a continuación:

Líquidos inflamables: tienen un punto de inflamación de copa cerrada inferior de 37,8 °C y presión de vapor que no exceda una presión absoluta de 276 kPa a 37, 8° C. Se clasifican y se subdividen de la siguiente manera:

- ➤ Líquido clase IA: un líquido con un punto de inflamación menor de 22,8 °C y un punto de ebullición inferior de 37,8 °C.
- ➤ Líquido clase IB: un líquido con un punto de inflamación inferior de 22,8 °C y un punto de ebullición de 37,8 °C o superior.
- ➤ Líquido clase IC: un líquido con un punto de inflamación de 22,8 °C, pero inferior de 37,8 °C.

Líquidos combustibles: tienen un punto de inflamación de copa cerrada igual o superior a 37,8 °C. A continuación, se muestra cómo se categorizan:

- ➤ Líquido clase II: un líquido con un punto de inflamación igual o mayor a 37,8 °C y menor de 60 °C.
- ➤ Líquido clase III: un líquido con un punto de inflamación igual o mayor a 60 °C, pero menor de 93 °C.
 - a) Líquido clase IIIA: un líquido que tiene un punto de inflamación igual o mayor a 60 °C, pero menor de 93 °C.
 - b) Líquido clase IIIB: un líquido que dispone de un punto de inflamación igual o mayor de 93 °C.

El límite de inflamabilidad es una concentración de vapores inflamables que se encuentra dentro de un límite superior e inferior como se puede ver en la ilustración 2.9, la concentración de combustible necesita cumplir con ciertas condiciones de mezcla con el oxidante, usualmente el oxígeno, de esta forma pasa a la combustión. El límite inferior y superior se conocen de la siguiente forma:

Límite inferior de inflamabilidad (LII): es la acumulación mínima de vapores inflamables (el porcentaje de mezcla con el oxidante), por lo tanto, no logra arder.

Límite superior de inflamabilidad (LSI): es la acumulación máxima de vapores inflamables (el porcentaje de mezcla con el oxidante), de esta manera logra arder.

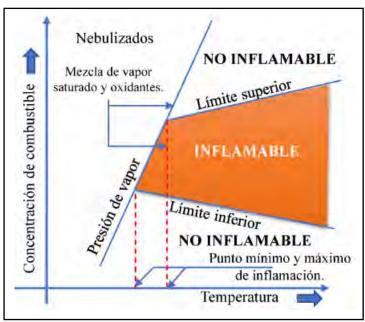


Ilustración 2.9 Límite de inflamabilidad

2.6.2 Clasificación del fuego

El comportamiento del fuego y el cómo se produce es importante tenerlo en cuenta, ya que el material influye en el resultado para combatir el incendio. A continuación, se muestra cómo se clasifican:

Fuegos clase A: es un fuego que se genera por materiales sólidos, como es la madera, el papel, las telas, el carbón, los textiles, cauchos, entre otros. Para combatirlo se hace generalmente por medio del agua. De igual forma se toman en cuenta los polvos químicos secos tipo ABC. El humo que crea este tipo de fuegos se define frecuentemente de color blanco y dejan brasa.

Fuegos clase B: proviene de un fuego que se produce en los líquidos y en los gases inflamables y combustibles. El humo que genera normalmente es de color negro y no deja brasa.

Fuegos clase C: es un fuego que se crea en sistemas, equipos y dispositivos eléctricos. Una vez que se corte la corriente eléctrica, el fuego se producirá por materiales clase A, B, D, E o K.

Fuegos clase D: es un fuego que se origina en metales de fácil oxidación, como: el sodio, el potasio, el magnesio, el litio y el titanio, entre otros. Siempre es importante mirar las hojas de técnicas de cada material, ya que tienen especificaciones diferentes.

Fuegos clase E: es un fuego que se produce por combustión de material nuclear.

Fuegos clase K: es un fuego que está relacionado con aceites, lubricantes, grasas, entre otros. Está muy relacionado con los incendios en cocinas.

2.6.3 Productos de la combustión

Cuando se origina el fuego, genera un conjunto de efectos sobre las personas y el ambiente, como son los gases y vapores, las llamas, el humo y el calor.

La principal causa de muerte en un incendio es la inhalación de humo, gases y vapores calientes porque, además de ser tóxicos, generan una falta de oxígeno. Los efectos que provoquen en las personas y en el sitio del incendio dependen del tiempo, la concentración de estos gases, vapores y humo y de la condición física de la persona.

El calor se puede transferir por conducción, convección y radiación. Asimismo, produce riesgos de exposición, ya que puede ocasionar lesiones leves e incluso la muerte. El aire caliente incrementa el pulso cardíaco, además ocasiona deshidratación, cansancio, obstrucción del tracto respiratorio y quemaduras.

2.7 Sistema de protección contra incendios

Un sistema de protección contra incendios tiene como objetivo el salvaguardar la vida, los recursos y la continuidad del negocio, estos son diseñados e instalados para contener un incendio, asimismo para avisar a los ocupantes o al Cuerpo de bomberos en caso de emergencia.

2.7.1 Sistema de protección pasiva contra incendios

Los sistemas de protección pasiva contra incendios se encargan de la seguridad estructural de la edificación, asimismo de la resistencia al fuego para que el incendio no pueda extenderse a los demás establecimientos del inmueble.

Los objetivos de la protección pasiva son los siguientes: lograr una evacuación segura de las personas, brindar protección estructural, contar con compartimentación y sectorización, realizar la evacuación de los productos de la combustión y facilitar al Cuerpo de Bomberos las labores de extinción y rescate.

Para tener en cuenta los sistemas de protección pasiva contra incendios hay que conocer cuáles son los riesgos del humo, como indica la NFPA HANDBOOK (2009b): El humo puede tener efectos perjudiciales sobre las personas, la propiedad (incluyendo la estructura del edificio y sus contenidos), y la continuidad del negocio. El efecto de la exposición al humo depende de la magnitud de las propiedades de humo (concentración de diferentes gases, reducción en la visibilidad, temperatura y flujo radiante) y la duración de la exposición.

La exposición a energía radiante de una capa de humo a una temperatura de por 10 menos 160°C (320°F) por un periodo corto (5 a 10 segundos) puede ser suficiente para producir dolor (esta temperatura de una capa de humo proporciona un flujo de calor radiante de aproximadamente 2 kW/m² [20 Btu/s·pie²], considerando que el humo sea un cuerpo negro). Alternativamente, las personas por lo general toleran la inmersión en una capa de humo hasta de 100°C (212°F) durante aproximadamente 10 minutos (p.10-88).

Para tener un adecuado manejo del humo se tienen que considerar varios métodos, se pueden aplicar de manera individual o en conjunto con el fin de poder cambiar el movimiento del humo para favorecer la evacuación de los ocupantes, brindarles más visibilidad a los bomberos y disminuir los daños en las instalaciones (National Fire Protection Association, 2009b).

Los sistemas de protección pasiva contra incendios se componen de los siguientes métodos, pero no se limitan a:

Compartimentación: las paredes, divisiones, pisos y puertas se utilizan como barreras, estas cuentan con resistencia al fuego, de manera que tienen una mayor resistencia a la exposición al fuego durante un incendio.

Corriente de aire: para tener una corriente de aire se requieren considerables cantidades de tasas de flujo de aire con el fin de sostener la circulación del humo y la afluencia de aire podría aportar oxígeno al incendio.

Flotabilidad en grandes espacios: la flotabilidad de los gases calientes de la combustión se aplica en la manipulación del humo, ya sea por ventiladores o no impulsado. Estos sistemas de flotabilidad se emplean en espacios con alturas de 10 m desde el suelo al techo.

El terminado interior en un espacio puede hacer que absorba calor con rapidez y que lo logre contener, como lo hace un aislante, de ser posible disminuir el tiempo en el cual surja una combustión súbita generalizada (*flashover*). El terminado interior y el fuego cuentan con las siguientes características: contribuyen sobre la velocidad de la propagación del fuego antes que empiece el *flashover*, ayudan con la difusión del fuego por medio de las llamas que se propagan por la superficie, incrementan la magnitud del fuego al proporcionar combustible y por último generan humos y gases tóxicos que ponen en riesgo la vida y provocan daños al ambiente.

Seguidamente, se indica la resistencia al fuego de los materiales estructurales y se definen los sellos cortafuego:

Se considera la resistencia al fuego de los materiales estructurales exteriores, por lo tanto, se evalúan los riesgos que se pueden generar en caso de incendio, como se muestra en el cuadro 2.2. Además, si estos materiales no cuentan con algún tipo de revestimiento llegan a ser más dañados en un siniestro.

Cuadro 2.2 Resistencia al fuego de elementos estructurales

	MADERA	HIERRO ACERO	HORMIGÓN ARMADO
RESISTENCIA AL FUEGO SIN PROTECCIÓN	Muy Baja	Baja	Alta
COMBUSTIBILIDAD	Alta	Ninguna	Ninguna
CONTRIBUCIÓN A LA CARGA DE FUEGO	Alta	Ninguna	Ninguna
CONDUCTIVIDAD DEL CALOR	Baja	Muy Alta	Muy Alta
INCORPORA PROTECCIÓN FRENTE AL INCENDIO	Muy Baja	Baja	Alta
POSIBILIDAD DE REPARACIÓN DESPUÉS DEL INCENDIO	Ninguna	Baja	Alta
PROTECCIÓN DE PERSONAS DURANTE LA EVACUACIÓN Y DE INTERVENCIÓN DE LOS BOMBEROS	Baja	Baja	Alta

Fuente: (Barreneche, 2020)

Los sellos cortafuego también forman parte de los sistemas de protección pasiva contra incendios, la American Society for Testing and Materials (ASTM, por sus siglas en inglés) los describe de la siguiente forma: Los sellos cortafuego son una combinación específica de elemento o componentes penetrantes, la construcción específica que se impregna, los materiales, dispositivos o incluso ambos, estos se encargan de sellar las aberturas (ASTM, 2017).

Los sellos corta fuego y corta humo se aplican en huecos y juntas, principalmente: en torno a ventanas y marcos de puertas, entre los muros que son de partición, paredes, techos, suelos y en torno a los montajes que perforan paredes y pisos, como las tuberías (que no sean de acero) y cables.

El F Rating se basará en el comienzo de las llamas en la superficie no expuesta, mientras que la clasificación T Rating se fundamentará en el aumento de temperatura y en la aparición de llamas en el lado no expuesto del sistema cortafuegos. Estas clasificaciones, en conjunto con los datos de rendimiento, la ubicación de las aberturas pasantes y las temperaturas de los elementos de penetración, buscan ser un factor en la evaluación de los beneficios de los sistemas cortafuegos (ASTM, 2017).

2.7.2 Sistema de protección activa contra incendios

Los sistemas de protección activa contra incendios son aplicados por medio de mecanismos activados de forma manual o automática, proporcionan un control sobre el incendio y están compuestos por los siguientes conceptos:

Detección: se pueden utilizar detectores de humo, llamas y calor. Estos brindan una señal de alerta a los ocupantes para que puedan evacuar.

a. Detección de humo: los detectores de humo recolectan variaciones en las propiedades del aire, como son: el índice de refracción, transparencia y ionización, además se asocian a la suspensión de partículas de combustibles, cenizas y otras que genera el fuego. Una vez recogidas estas partículas por los detectores son convertidas a señales de alarma (Cortés Díaz, 2018).

Para el correcto funcionamiento de los detectores de humo se recomienda no instalarlos en las siguientes circunstancias: cerca de corrientes de aire, en sitios con grandes cantidades de partículas de polvo, a la intemperie, en lugares mojados o húmedos, en áreas para fumadores o que haya humo generado por automóviles u otros, en sectores de fabricación con presencia de vapores, próximos a luces fluorescentes, en ambientes muy fríos o muy cálidos. Cuando haya duda de instalar detección por humo es mejor considerar los detectores de calor, ya que estos no se ven afectados por algunos de estos factores (Barreneche, 2020).

b. Detección de calor: son sensibles al aumento de la temperatura, además se activan cuando la temperatura sobrepasa un valor en

específico, otros detectores pueden accionarse cuando la velocidad de la temperatura excede un dato en particular (Barreneche, 2020).

c. **Detección por aspiración**: es una red de tuberías, la cual se coloca por toda el área a proteger. Hay una bomba extractora que aspira la muestra del aire y la lleva a la unidad de detección para examinar si el aire tiene partículas de humo. Estos detectores se aplican con el fin de proteger equipos eléctricos, ambientes con un alto nivel de humedad y/o frío. Ver la ilustración 2.10. (Barreneche, 2020).

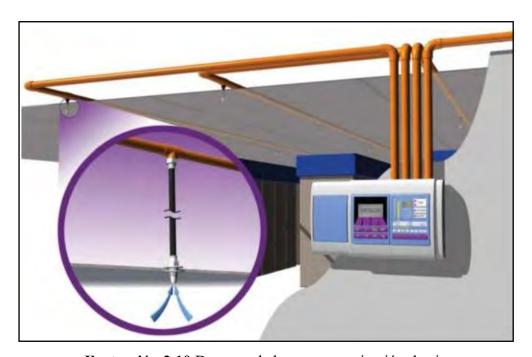
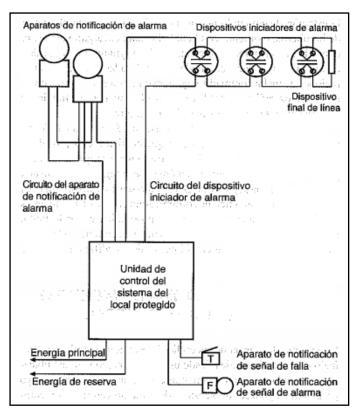


Ilustración 2.10 Detector de humo por aspiración de aire


Supresión del fuego: son todas las labores que busquen suprimir el fuego por una acción directa.

Ventilación mecánica: busca mantener un control del humo en las rutas de evacuación y en otras áreas en específico. Se usan ventiladores mecánicos resistentes al fuego.

Los sistemas de detección y alarma según el riesgo de incendio tienen que conectarse de forma que puedan controlar y monitorear los demás sistemas de protección contra incendios como son: los mecanismos de detección y alarma de incendio, la aplicación de los sistemas de extinción de incendios, los sistemas de agua contra incendios, los ascensores para uso de los bomberos, el mecanismos de desconexión de los ascensores, el sistema de presurización de escaleras, el sistema de control de humos, el sistema de liberación de puertas para la evacuación y por último la activación del sistema de extinción de incendios.

Los componentes de un sistema automático de detección y alarma contra incendios son los siguientes:

Panel de control contra incendios: es utilizado para recibir las señales que envían los detectores, pulsadores y otros elementos que estén conectados a la central, de esta forma indica la alarma de manera visual-acústica y mostrando en donde se encuentra el dispositivo activado. Un ejemplo de un panel de control local se observa en la ilustración 2.11.

Ilustración 2.11 Colocación típica de un sistema de alarma de incendio local

Detectores de incendio: los detectores de incendio cuentan con un sensor capaz de detectar un fuego en el área que fue instalado y manda de manera automática la señal al panel de control. Estos fueron diseñados para detectar el fuego con el humo, el calor y la radiación.

Estación manual: es un dispositivo que envía una señal de alarma de incendio al panel de control, se activa de manera manual. Este tiene que instalarse en la totalidad del área a proteger, deben estar libres de obstáculos y ser de fácil acceso. Además de instalarse en el ingreso de cada una de las salidas de evacuación.

Dispositivo de alarma de incendio: es un mecanismo que se usa para brindar una señal visual y auditiva a los ocupantes del lugar, en caso de incendio, puede ser activado de forma automática por los detectores o por medio de la estación manual.

Mecanismos de transmisión de alarmas: se usa para transmitir la señal de alarma de incendio por medio del panel de control hasta un panel remoto de fuego.

Fuente de alimentación: se requiere para proporcionar energía eléctrica al panel de control y a los elementos que dependen de ella.

Presurización: los ventiladores mecánicos se conocen como sistemas de control de humo en la NFPA 92A. Estos aparatos generan un flujo de aire cerca de las hendijas de las puertas cerradas y en las aberturas de construcción. Se emplean usualmente en escaleras y en el control de humo zonificado.

Existen sistemas móviles y fijos para combatir incendios, estos pueden ser automáticos o no automáticos, se van a mencionar los siguientes:

Extintores: los extintores son un recurso para el combate y la extinción del fuego, por lo tanto, se aplican al inicio del incendio. Es un elemento transportable el cual dispone de un agente supresor que se impulsa y dirige encima de la combustión por la presión interna.

La NFPA 10 recomienda en el A.E.2 la distribución de los extintores dentro del edificio como lo siguiente:

- a) Colocación uniforme.
- b) Accesibilidad sencilla.
- c) Que no estén obstruidos.
- d) Permanecer próximos a los recorridos comunes.
- e) Mantenerse cerca de las puertas de salida.
- f) Estar en un lugar protegido de golpes.
- g) Ser visibles.

Los tipos de fuegos más comunes son el A, B y C, estos se clasifican en materiales combustibles ordinarios, en líquidos inflamables y líquidos combustibles, entre otros, además de los fuegos que implican equipos eléctricos. El RNPCI menciona que el recorrido para los extintores clase A no debe exceder los 23 m, para los tipos B no puede sobrepasar los 15 m y los extintores clase C los 23 m.

En el RNPCI se señala que los extintores con un peso bruto menor a 18 kg tienen que estar a una altura no mayor de 125 cm medidos desde el nivel del piso al soporte del extintor, no puede haber un espacio libre entre el fondo del extintor y el piso inferior menor a 10 cm.

Hidrante: es un mecanismo hidráulico que se ensambla a una red de abastecimiento de agua. Se encuentra en el exterior del edificio y tiene varias tomas de manguera para combatir incendios.

Gabinetes de manguera: la forma de aplicar agua manualmente para combatir el incendio se hace a través de los gabinetes de mangueras, válvulas para uso de bomberos. El cajón de mangueras cuenta con los accesorios necesarios para que el brigadista pueda utilizarlo y aplicar agua sobre el fuego. Las válvulas son empleadas por los matafuegos estas suministran el caudal y la presión requerida con el fin de combatir las llamas.

Sistema manual clase I

Es un sistema de conexiones para mangueras de 0,065 m para suministrar agua a fin que el Cuerpo de bomberos la use. Los montantes de clase I deben ser redes húmedas, excepto donde las tuberías estén sujetas a congelamiento.

Para un sistema clase I, la tasa de flujo mínima para la montante más remota hidráulicamente obedece a 1 893 L/min, por medio de las dos uniones para mangueras de 0,065 m más distante. Con respecto a las montantes adicionales debe ser de 946 L/min por cada una y en edificios con áreas de piso que no excedan de 7 432 m² por piso. La presión residual más pequeña hacia la conexión hidráulicamente más alejada de 0,065 m tiene que ser de 6,9 bar.

Sistema manual clase II

Es un sistema que brinda estaciones de mangueras de 0,040 m para suministrar agua para el uso del personal entrenado o del Cuerpo de bomberos durante la respuesta inicial.

Para el sistema clase II debe estar provisto con no más de 30,5 m de manguera contra incendios listada de 0,040 m revestida, plegable o no plegable adosada y con el fin de ser usada. Además, la boquilla chorro-neblina tiene que ser listada. La tasa de flujo mínima hacia la conexión de manguera más remota hidráulicamente debe ser de 379 L/min. No es necesario contar con una corriente adicional donde se proporciona más de una conexión para manguera. La presión residual más pequeña para la conexión hidráulicamente más distante de 0,040 m obedece a 4,5 bar.

Sistema manual clase III

Es un sistema que brinda estaciones de mangueras de 0,040 m para suministrar agua para el uso del personal entrenado, además facilita una conexión para mangueras de 0,065 m así proporcionar agua en un mayor volumen para la disposición del Cuerpo de bomberos.

Para el sistema clase III necesita estar provisto con no más de 30,5 m de manguera contra incendios listada de 0,040 m, revestida, plegable o no plegable adosada y con el propósito de ser empleada. Además, la boquilla chorro-neblina debe

ser listada. La tasa de flujo mínima hacia la montante más remota hidráulicamente tiene que ser de 1 893 L/min, por medio de las dos conexiones para mangueras de 0,065 m más lejanas. En montantes adicionales se requiere de 946 L/min por montante para edificios con áreas de piso que no excedan de 7 432 m² por piso. La presión residual más insignificante para la conexión hidráulicamente más remota de 0,065 m cumple con 6,9 bar y en la conexión hidráulicamente más distante de 0,040 m obedece a 4,5 bar.

Rociador automático (sprinkler): es un elemento que se acciona al detectar un aumento de temperatura relacionado al fuego o al humo provocado por la combustión. Su objetivo es controlar el avance del incendio.

La NFPA (2019a) lo define como "Un dispositivo de control o supresión de incendios que funciona automáticamente cuando su elemento activado por calor se calienta hasta alcanzar o superar su certificación térmica, permitiendo la descarga de agua sobre un área especificada" (p.34).

Existen los rociadores colgantes y montantes uno colgante es diseñado para estar ubicado de forma que el chorro de agua se canalice hacia abajo, contra el deflector. El montante se instala de manera que la descarga de agua se enfoque a arriba, en dirección al deflector.

Sistemas de acción previa: también conocidos como sistemas de enclavamiento, este puede estar en presión o no, con un sistema de detección adicional localizado en el mismo sitio. Permite abrir la válvula de ingreso del agua a las tuberías y hacer la descarga por los rociadores que se encuentren abiertos.

Estos sistemas son los siguientes: que sea (un único sistema de enclavamiento, admite que el agua entre en las tuberías de los rociadores cuando se accionan los

dispositivos de detección de incendio), un (sistema que no sea de enclavamiento, acepta que el agua entre en las tuberías de los rociadores, al momento de la activación de los mecanismos de detección o de los rociadores automáticos), un (sistema de enclavamiento doble, aprueba el ingreso del agua en las tuberías de los rociadores al instante en que se activan los instrumentos de detección como de los rociadores automáticos). En la ilustración 2.12 se puede observar los componentes de un sistema de enclavamiento para rociadores.

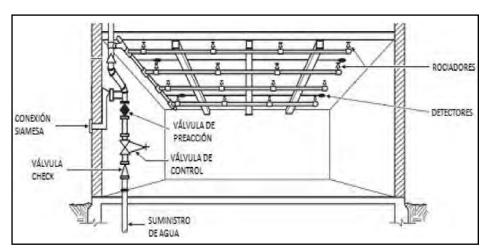
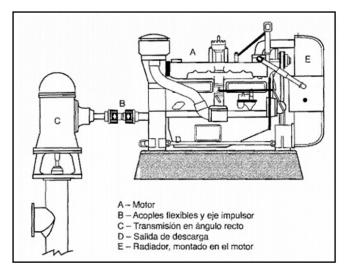



Ilustración 2.12 Sistema de enclavamiento para rociadores

Con respecto a la bomba seleccionada es una de turbina de eje vertical, que por medio de acoples flexibles y un eje impulsor se conecta a un motor diésel. Referente a la bomba esta va a necesitar una distancia entre el fondo del filtro y el del pozo húmedo no menor de 305 mm. Ver ilustración 2.13.

Ilustración 2.13 Bomba de eje vertical impulsada por motor

2.7.3 Sistema de soportes

Los soportes son los encargados de mantener fijas las tuberías contra incendio, de forma que no se muevan de su sitio y que no golpeen la infraestructura del edificio, es por esta razón que deben tener una adecuada repartición e instalación.

Es importante conocer el grado de sismicidad que hay en el cantón de San Ramón, ya que la NFPA 13 pide como requisito la protección sísmica en sitios que son vulnerables a terremotos.

La actividad sísmica de la zona de San Ramón se clasifica como zona III esto es un grado medio de sismicidad de acuerdo con el Colegio Federado de Ingenieros y de Arquitectos (CFIA), ver la ilustración 2.14 y en el Anexo B.1.2 para localizar las zonas de sismicidad.

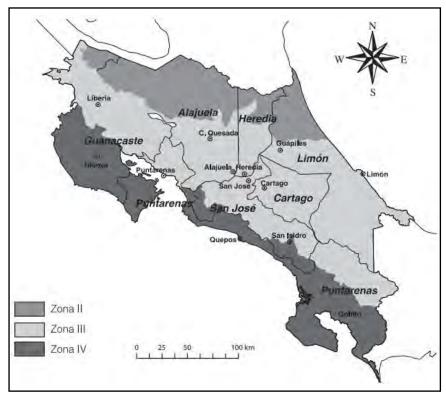


Ilustración 2.14 Zonas sísmicas de Costa Rica

La Comisión Nacional de Emergencias (CNE) indica la amenaza que puede representar la actividad sísmica en el cantón de San Ramón. La magnitud sísmica puede afectar lugares donde hay rellenos insuficientemente sólidos o suelos que por su procedencia facilitan este proceso. Las localidades más vulnerables son: la ciudad de San Ramón, Santiago, San Juan, Zaragoza, La Granja y San Rafael. Además, se mencionan la ruptura del terreno que puede provocar destrucción de hogares, carreteras, puentes, entre otros.

CAPÍTULO 3

3. Diseño

En el presente capítulo se brindan los procedimientos que se aplicaron para el diseño del sistema de supresión de incendios de enclavamiento único, además se da una explicación paso a paso hacia el desarrollo del proyecto en el Museo Regional de San Ramón. En la ilustración 3.1 se muestra el resultado.

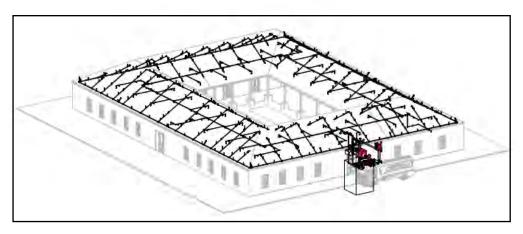


Ilustración 3.1 Sistema de supresión de incendios para el museo

3.1 Selección de los métodos de análisis de riesgo

Para el análisis de riesgo se implementaron los siguientes métodos cualitativos: análisis histórico de accidentes, el ¿qué pasaría si...? y la lista de chequeo. Ver Anexo C.1.

3.2 Análisis de la protección pasiva

Una vez definida la ocupación y el riesgo, se analizó la protección pasiva que requiere el museo, por lo tanto, fue necesario determinar el factor de carga de ocupantes, el cual se encuentra en la tabla 7.3.1.2 de la NFPA 101. Además, en el punto 9.13.13.5.6.1 de la NFPA 909, se menciona que el diseño para la carga de ocupantes se basará en el número máximo de personas por área ocupada.

Considerando la información anterior, se hizo el cálculo de la carga de ocupantes por medio del área y el factor de carga (como se muestra en el cuadro 3.1), este dio un valor de 1 086 personas, pero tomando en cuenta que el museo tiene solo dos medios de egreso y no puede superar los 500 individuos. De igual forma, el ancho mínimo para las puertas es de 1 250 mm.

Cuadro 3.1 Carga de ocupantes total y cantidad de medios de egreso del museo

Medios de egreso				
Ocupación	Reunión pública			
Área (m²)	1 519,93			
Factor de carga (m²/personas)	1,4			
Carga de ocupantes (personas)	1 086			
Carga de ocupantes total (personas)	500			
Ancho mínimo prescriptivo de vanos de puertas (mm)	2 500			
Ancho mínimo prescriptivo de vanos de puertas (mm)	1 250			
Cantidad de medios de egreso	2			

Fuente: (Autora, 2022)

3.2.1 Recorrido de seguridad humana en el museo

En la NFPA 101 se indican las disposiciones con respecto a el recorrido común, para el caso del museo como sitio de reunión pública, debe tener un recorrido de 23 m en áreas con una carga igual o inferior a 50 personas y si se cuenta con una cantidad superior la ruta común máxima permitida es de 6,1 m. En cuanto a los corredores sin salida no es posible sobrepasar los 6,1 m.

En la ilustración 3.2 se aprecian los recorridos comunes que hay en el museo, está el (punto A, el cual va de la sala de profesores al pasillo), luego está el (punto B este sale del segundo nivel del cuarto de colecciones patrimoniales y centro de documentación hasta el pasillo).

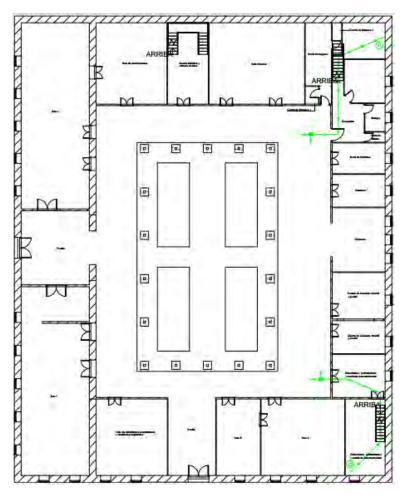


Ilustración 3.2 Recorrido común en el museo

3.3 Rutas de evacuación

En cuanto a los rótulos que van a guiar a las personas a la hora de la evacuación, se deben de tomar en cuenta las normativas INTE 21-02-01:2016 y la INTE 31-07-01:2016, en estas disposiciones se indican las dimensiones de los carteles y la colocación.

En la ilustración 3.3 se observan las dos salidas que tiene el museo, además se contemplan las zonas de seguridad que tiene el edificio. Los recorridos que se muestran demarcados por las flechas son las posibles rutas de evacuación que pueden hacer las personas hacia las áreas de refugio.

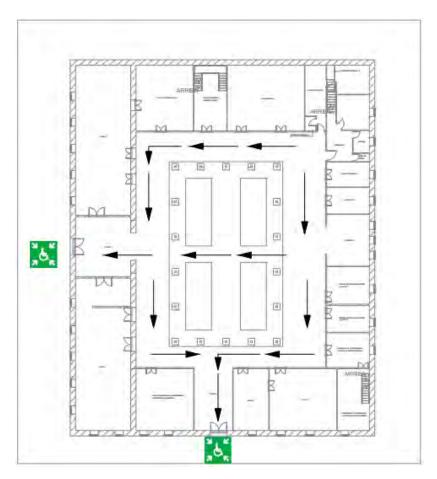


Ilustración 3.3 Rutas de evacuación

3.4 Selección del sistema de supresión contra incendios para el museo

En esta parte se detallaron los parámetros, consideraciones que se hicieron sobre la elección del sistema de supresión contra incendios para el museo, además de la elección del tanque de agua.

3.4.1 Sistema de enclavamiento único con base de agua

En cuanto a la selección del sistema de supresión de incendios más adecuado para el museo, se eligió el sistema de enclavamiento único a base de agua, ya que se consideraron otros sistemas alternativos, con respecto al apartado 9.8.1 de la NFPA 101, pero analizando su aplicación en el edificio se descartaron, como se muestra en el cuadro 3.2.

Cuadro 3.2 Sistemas alternativos de extinción

Sistemas de supresión contra incendios	Descripción
	Este sistema se descartó para
	instalar en el museo, ya que, en la
Sistemas filos do agua nulvavizada	descarga, el agua está en pequeñas
Sistemas fijos de agua pulverizada para protección contra incendios	partículas y estas se adhieren a la
(diluvio)	pared, por lo tanto, va a dañar las
	paredes de calicanto por medio de la
	humedad.
	Se considera lo mismo que para los
Sistemas de agua nebulizada para	sistemas de agua pulverizada,
protección contra incendios	porqué va a humedecer las paredes.
	El sistema de extinción por medio
Sistemas autintavas da agantas	de agentes limpios e inertes, no se
Sistemas extintores de agentes limpios e inertes para protección	va a aplicar, ya que no se pueden
contra incendios	instalar cierres automáticos y no se
	puede mantener la estanqueidad del

Sistemas de supresión contra incendios	Descripción
	agente en el recinto, lo cual genera
	que este se escape.

Fuente: (Autora, 2022)

Tomando en cuenta que en el inmueble no se pueden instalar cierres automáticos para no modificar la infraestructura se tomó la decisión de tener un sistema con enclavamiento único, porque este va a requerir la aprobación del sistema de detección de incendios para llenar las tuberías de los rociadores de agua y una vez el bulbo de los rociadores se revienten el agua pueda descargarse.

El agua es un factor que afecta las paredes del museo, pero como las gotas de agua por descargar en el sistema de supresión a base de agua son más gruesas que en un sistema de diluvio o en uno de agua pulverizada, estás gotas no llegan a penetrar de la misma forma en la pared.

En cuanto a la selección del cuarto de máquinas se escogió la sala 3, en vista que sus paredes son de concreto y por la ubicación, ya que casa de máquinas necesita tener un medio de egreso desde el exterior, de esta forma puede ser modificada para instalar los equipos necesarios, Ver Anexo E.1.

3.4.2 Tanque de agua enterrado en sala 3

Para la ubicación del tanque de agua se eligió la sala 3, por esta razón se va a requerir una bomba de turbina vertical, porqué se necesita hacer un hueco en el suelo para el tanque.

3.5 Muestra de cálculos para el sistema de supresión contra incendios

En este apartado se va a mencionar el procedimiento del cálculo hidráulico realizado para el sistema de supresión contra incendios, en base a los riesgos identificados y en la NFPA 13. Conjuntamente especificar la información de los soportes y sujeción para la tubería, además del arriostramiento antioscilante por medio de una aplicación llamada ®TOLBraceTM. Ver Anexo F.1 y F.1.1.

En cuanto al proceso para el cálculo hidráulico se contempló la ocupación del inmueble, el tipo de riesgo del edificio, área de funcionamiento de los rociadores, área de protección, cantidad de rociadores, presión mínima para cada rociador, capacidad de almacenamiento de agua del tanque y por último el cálculo hidráulico para los rociadores.

Para la sujeción de las tuberías se tomó en cuenta una distancia máxima entre los soportes colgantes con base en su diámetro, además los acoples flexibles para bajantes deben instalarse dentro de 0,6 m de la parte superior de la bajante.

El arriostramiento antioscilante de montantes que excedan los 0,9m de longitud tienen que estar provistas de una riostra de cuatro vías. La distancia entre riostras de cuatro vías en montantes no puede sobrepasar los 7,6 m.

Respecto al cálculo de la soportería antisísmica se necesita conocer la longitud de la abrazadera está varia para arriostramiento antioscilante transversal o longitudinal, ya que para el longitudinal la distancia máxima es de 24 m y para el transversal es de 12 m, también se solicita el tipo de cédula de cada tubería, el diámetro y el modelo de abrazadera. Igualmente, el programa solicita el coeficiente sísmico Cp, el cual es de 0.5 con base en la NFPA 13.

3.6 Presupuesto del sistema de supresión de incendios

Para el cálculo del presupuesto del sistema de supresión de incendios se hizo un estudio de los precios de cada uno de los dispositivos en el mercado nacional, a partir de la investigación en línea se determinó el costo total de los instrumentos del sistema como se observa en el Anexo G.1.

CAPÍTULO 4

4. Resultados y discusión

Este capítulo abarca los resultados y la discusión sobre el sistema de supresión de incendios que se analizó para el Museo Regional de San Ramón. También se mencionan los resultados del análisis de riesgos realizado.

4.1 Riesgos presentes en el Museo Regional de San Ramón

Con base en el análisis histórico de accidentes se sabe que los cortocircuitos, los equipos defectuosos, los atentados, descuidos en obra, rayos, incendios aledaños al edificio, entre otras causas, son fuente de generación de llama en este tipo de estructuras.

Para el análisis por medio de lista de chequeo se utilizaron varios apartados sobre la normativa NFPA y el RNPC, de esta forma se determinó por medio de la NFPA 909 que el museo requiere un sistema de supresión de incendios, por su naturaleza y los bienes que resguarda; además que el sistema de detección de incendios instalado presenta varios incumplimientos y deficiencias, asimismo el ático es un punto de riesgo importante, ya que este se usa como almacenamiento y no cuenta con cobertura, de igual manera el cuarto eléctrico se usa como depósito de objetos cuando este debe estar libre de materiales combustibles. ⁴

En el análisis ¿Qué pasaría si...? se plantearon situaciones en las que puede haber riesgo por fuego y se analizaron posibles consecuencias, se encontraron

⁴ Ver Decreto Ejecutivo N°36979-MEIC, Artículos: 5.1.1 y 5.1.3 para conocer sobre las inspecciones de las instalaciones eléctricas.

incumplimientos y deficiencias en el sistema de detección de incendios instalado y en el montaje eléctrico, por lo que se determina un peligro real de ignición en el museo.

4.2 Protección pasiva

El museo es considerado un sitio de reunión pública como lo muestra el punto A.3.3.198.2 de la NFPA 101, además su riesgo se toma en cuenta como un riesgo leve, esto se indica en el apartado A.4.3.2 de la NFPA 13.

En el punto A.6.1.14.1.3 de la NFPA 101 señala que las pequeñas áreas de almacenamiento se denotan como ocupación incidental, lo mismo con los espacios pequeños de oficinas. En cuanto al centro de literatura infantil y juvenil se señala en el apartado A.3.3.198.6 de la NFPA 101 que un sitio de reunión pública se diferencia de una ocupación educacional en el hecho que no son los mismos ocupantes todo el tiempo.

Tomando en cuenta que solo posee dos medios de egreso este edificio no puede superar la capacidad de 500 personas, asimismo el ancho mínimo para las puertas tiene que ser de 1 250 mm.

4.2.1 Recorrido de seguridad humana en el museo

En cuanto al límite de recorrido por ocupación se consideraron dos distancias de recorrido total. El punto A está en la sala para profesores y el B está en el cuarto de colecciones patrimoniales y centro de documentación, tomando en cuenta que el museo no tiene sistema de rociadores debe cumplir con un límite de recorrido total sin rociadores de 61 m y con rociadores es de 76 m como indica el RNPCI. Ver Anexo D.1.

Cuadro 4.1 Distancia de la ruta total

Ruta	Longitud (m)	Cumple
A	51,99	Sí
В	33,85	Sí

Fuente: (Autora, 2023)

4.2.2 Compartimentación

Con base a la figura 4.1 se requiere de una compartimentación de, al menos una hora, para un cuarto de máquinas con rociadores.

Cuarto/casa de la bomba	Edificios que exponen el cuarto/ casa de la bomba	Separación requerida
Sin reciadores	Sin rociadores	Certificación ignifuga de 2 horas
Sin rociadores Con rociadores	Con rociadores Sin rociadores	50 pies (15,3 m)
Con rociadores	Con recindores	Certificación ignifuga de nna hora o 50 pies (15.3 m)

Ilustración 4.1 Protección del equipo

4.3 Protección activa

Referente al diseño del sistema de supresión de incendios para el inmueble este se basó en varias normativas NFPA y en el RNPCI, se obtuvo lo que se contempla a continuación.

4.3.1 Sistema de supresión de incendios de enclavamiento único

Diseño del sistema de supresión de incendios

Primero se precisa saber el riesgo del museo, en este caso es de riesgo leve porque la NFPA 13 lo indica, posterior se calcula el área de funcionamiento de los rociadores y se conoce el caudal y la presión de cada uno, para luego saber la capacidad del sistema de bombeo y después poder seleccionar los demás equipos.

En cuanto a los criterios técnicos considerados para el diseño del sistema de supresión de incendios se contemplaron las siguientes normativas: NFPA 909, NFPA 914, el RNPCI, la NFPA 13 y la NFPA 20. Una vez realizadas las estimaciones se conoce lo posterior:

Cuadro 4.2 Resultados del sistema de supresión de incendios

Equipo	Especificaciones
Rociador montante	k=80,6 lpm/bar ^{1/2} (5,6 gpm/ psi ^{1/2}), de
	modo que, se obtuvo un caudal por
	rociador de 70,98 lpm (18,75 gpm) y
	una presión mínima de 77,29 kPa
	(11,21 psi). Es de respuesta rápida y se
	debe instalar en el cielorraso.
	k=80,6 lpm/bar ^{1/2} (5,6 gpm/ psi ^{1/2}), de
	modo que, se obtuvo un caudal por
Rociador colgante	rociador de 70,98 lpm (18,75 gpm) y
Rociaudi Colganie	una presión mínima de 77,29 kPa
	(11,21 psi). Es de respuesta estándar y
	se tiene que colocar en el nivel 1 y 2.
	Requiere una capacidad de 19,76 m3,
Tanque de agua	por lo cual va a tener unas dimensiones
Tanque de agua	internas de 3,3 m de ancho, 3m de
	largo y 2 m de alto.
	En cálculo hidráulico se obtuvo 658,66
	lpm (174 gpm) y 696,37 kPa (101 psi),
Sistema de bombeo	por lo tanto, se necesita de una bomba
	de 946,35 lpm (250 gpm) y 696,37 kPa
	(101 psi).
	Demanda una capacidad de 302,83
Tanque diesel	lpm (80 gal) y el dique de contención
	va a disponer de una magnitud de

Equipo	Especificaciones
	458,03 lpm (121 gal) y un tamaño
	interno de 1 m de ancho, 1,9 m de largo
	y 0,5 m de alto.
	La tubería para diámetros nominales
	mayores de $0,0635$ m ($2^{1/2}$ pulg) son de
T. I. (cédula 10, ASTM A795, tubería roja,
	grado B, extremo estriado y para
Tubería	diámetros nominales menores de
	$0.0635 \text{ m } (2^{1/2} \text{ pulg}) \text{ son de cédula } 40,$
	ASTM A53, tubería roja, grado B,
	terminación plana.
	Para el museo se estuvo
	implementando soportería antisísmica
Soportería	longitudinal y transversal, sujeción
	tipo pera, soporte tipo U-Bolt y
	acoples flexibles de varios diámetros.

Fuente: (Autora, 2023)

En el Anexo E.1.1 se incluye el documento sobre especificaciones de los equipos y los materiales.

El sistema diseñado es de enclavamiento único, por lo que, se estuvo realizado en base a lo especificado en la ilustración 4.2.

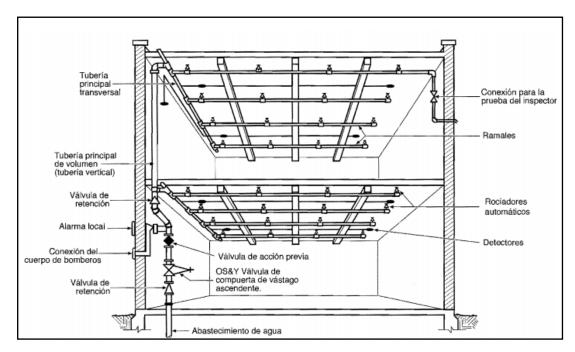


Ilustración 4.2 Sistema común de rociadores de enclavamiento único

En la ilustración 3.1 se muestra el sistema de supresión de incendios diseñado, para el nivel 1 y 2 se hizo una distribución de la red de tubería tipo árbol y en el ático se escogió una colocación con forma de anillo de esta manera las tuberías van a tener una menor presión de agua. Las tuberías verticales bajan hasta casa de máquinas que está en la sala 3 como se observa en el Anexo E.1.

4.4 Presupuesto del sistema de supresión de incendios

En esta sección se muestra el costo del sistema de supresión de incendios diseñado, el cual tiene un precio de ciento sesenta y nueve mil ciento sesenta y cuatro dólares con dos centavos (\$169 164, 02), en esta cotización se consideró la mano de obra, imprevistos, además del 13% del IVA, materiales y otros equipos que se indican en el Anexo G.1.1.

4.5 Guía para edificaciones declaradas patrimonios arquitectónico y cultural

En cuanto a la guía de recomendaciones para el diseño de sistemas de supresión de incendios en edificios declarados patrimonios arquitectónicos y culturales se adjunta en el Anexo H.1.

4.6 Planos del sistema de supresión de incendios

En este apartado se observan los planos del sistema de supresión de incendios de acuerdo con el diseño realizado para el edificio. Ver Anexo I.1.

CAPÍTULO 5

Conclusiones y recomendaciones

Al completar el proyecto se analizaron los objetivos y resultados obtenidos que contribuyeron con las conclusiones y recomendaciones que se exponen seguidamente.

5. Conclusiones

En base al análisis de riesgos implementado en el museo se identificaron los riegos de incendio. Para el sistema de detección y alarma existente se analizó y se reconocieron sus debilidades en cuanto a normativas NFPA y RNPCI. Esto permitió definir un alcance claro para las recomendaciones necesarias, con el objetivo de mejorar la capacidad de respuesta del museo ante posibles incidentes de incendio.

Se han establecido parámetros y requisitos para medidas de seguridad humana. Estos parámetros están diseñados para salvaguardar tanto a las personas que visitan el museo como a los bienes que forman parte del patrimonio arquitectónico y cultural. Se tomó en cuenta las normativas NFPA y el RNPCI para que el edificio tenga mejores prácticas en seguridad para preservar la integridad del museo y su contenido.

Se utilizó el software (®Revit 2022) para crear planos detallados del sistema de supresión contra incendios. Los planos proporcionan una representación gráfica precisa de la disposición de los equipos, sistemas de extinción y rutas de evacuación. Esto facilita la comprensión y la implementación efectiva de las medidas de seguridad y asegura que todas las partes interesadas tengan acceso a documentación clara y actualizada.

5.1 Recomendaciones

El personal a cargo del funcionamiento del sistema de protección contra incendios en el museo debe ser capacitado, de esta forma puedan manipular los equipos correctamente y realizar planes de emergencia para una adecuada evacuación.

En cuanto a las recomendaciones, se sugirió que un profesional que esté incorporado en el Colegio Federado de Ingenieros y Arquitectos (CFIA) con capacidades para el ejercicio profesional, de acuerdo con la Ley N° 3663, pueda revisar el sistema eléctrico en el museo y que este reciba mantenimiento. Se menciona que el edificio debe tener pararrayos. El inmueble debe contar un sistema de protección pasiva y activa contra incendios, además que los equipos instalados estén instalados y mantenidos como indica el fabricante.

Para que el museo cumpla con la NFPA 101 acerca de la cantidad de medios de egreso tiene que mantener las dos puertas principales abiertas, ya que no puede superar la capacidad de 500 personas.

El sistema de detección y alarma de incendios debe cumplir con la NFPA 72 de esta forma cumplir con la protección requerida. El sistema de aspiración se recomienda como sistema de detección de incendios, porque es de detección temprana y evita que haya falsas alarmas.

Referencias

- CDMX Ciudad de México. (s.f.). *CDMX*. Obtenido de http://cdmxtravel.com/es/lugares/la-tenebrosa-historia-del-museo-de-cera.html
- "Notre Dame se salvó por 30 minutos": lo que se sabe del devastador incendio que causó graves daños a la catedral de París. (16 de abril de 2019). *British Broadcasting Corporation*. Obtenido de https://www.bbc.com/mundo/noticias-internacional-47943382
- A dos años del incendio en Notre Dame: las hipótesis detrás de las llamas que arrasaron el ícono parisino. (12 de abril de 2021). *LA NACIÓN*. Obtenido de https://www.lanacion.com.ar/el-mundo/a-dos-anos-del-incendio-en-notre-dame-las-hipotesis-detras-de-las-llamas-que-arrasaron-el-icono-nid12042021/
- American Society for Testing and Materials. (2017). E814-13a. Standard test method for fire tests of penetration firestop systems. West Conshohocken, USA: Propia.
- ARMOUR. (n.d.). INPPROD. Retrieved from http://www.inpprod.com/pci.php
- Artes y letras UCR. (29 de septiembre de 2015). *Universidad de Costa Rica*. Recuperado el 15 de junio de 2022, de https://www.ucr.ac.cr/noticias/2015/09/29/restauran-paredes-originales-del-museo-regional-de-san-ramon.html
- Barreneche, R. O. (2020). *Protección y seguridad contra incendio* (1 ed.). Buenos Aires:

 Diseño. Obtenido de https://elibronet.ezproxy.sibdi.ucr.ac.cr/es/ereader/sibdi/218383
- Benemérito Cuerpo de Bomberos de Costa Rica. (2020). *Reglamento nacional de protección contra incendios*. Costa Rica: Propia.
- Benemérito Cuerpo de Bomberos de Costa Rica. (2020a). *INFORME DE EVALUACIÓN DE SEGURIDAD HUMANA, RIESGO DE INCENDIO Y GAS LP*. Costa Rica:

 Propia.
- Benemérito Cuerpo de Bomberos de Costa Rica. (2020b). *REGLAMENTO NACIONAL DE PROTECCIÓN CONTRA INCENDIOS*. COSTA RICA: Propia.
- Camacho López, A., Fernández de la Calle, I., Gasco Lallave, C. J., Macías Juárez, A. M., Martín Hernández, M. A., Reyes Delgado, G., & Rivas Escudero, J. (2013). Seguridad funcional en instalaciones de proceso. Madrid: Ediciones Días de Santos.

- Camacho López, A., Fernández de la Calle, I., Gasco Lallave, C. J., Macías Juárez, A. M., Martín Hernández, M. A., Reyes Delgado, G., & Rivas Escudero, J. (2013). Seguridad funcional en instalaciones de proceso. Madrid: Ediciones Días de Santos.
- Camacho López, A., Fernández de la Calle, I., Gasco Lallave, C. J., Macías Juárez, A. M., Martín Hernández, M. A., Reyes Delgado, G., & Rivas Escudero, J. (2013). SEGURIDAD FUNCIONAL EN INSTALACIONES DE PROCESO. Madrid: Ediciones Días de Santos.
- Cartin, M. (10 de febrero de 2020). *Mi Costa Rica de antaño*. Obtenido de https://micostaricadeantano.com/2020/02/10/antiguo-palacio-municipal-hoy-museo-regional-de-san-ramon-alajuela-ayer-y-hoy/
- CLARKE. (2022). *clarkefire*. Retrieved from https://clarkefire.com/design-tools/pump-room-calculators/pump-room-ventilation-calculator/PumpRoomVentilation
- Colegio Federado de Ingenieros y de Arquitectos de Costa Rica. (2010). *Código sísmico de Costa Rica* (4a ed.). Costa Rica.
- Comisión Nacional de Prevención de Riesgos y Atención de Emergencias. (2015). Norma de planes de preparativos y respuesta ante emergencias para centros laborales o de ocupación pública. Requisitos. Costa Rica: Propia.
- Comisión Nacional de Prevención de Riesgos y Atención de Emergencias. (s.f.). Amenazas de origen natural cantón de San Ramón. Costa Rica: Propia.
- Cortés Díaz, J. M. (2018). *Técnicas de prevención de riesgos laborales: seguridad y salud* en el trabajo (11a ed.). Obtenido de https://www-digitaliapublishing-com.ezproxy.sibdi.ucr.ac.cr/a/59448
- E. Boyd, C. (31 de julio de 2017). *Global seafood*. Recuperado el 15 de junio de 2022, de https://www.globalseafood.org/advocate/la-cal-desempena-un-papel-crucial-en-el-manejo-de-estanques-acuicolas/#:~:text=La%20cal%20quemada%2C%20que%20se,%3E%20Ca(OH) 2.
- El Louvre pierde tres cuadros en el incendio de un museo normando. (19 de julio de 2017). La Vanguardia. Obtenido de https://www.lavanguardia.com/cultura/20170719/424250835982/louvre-pierdetres-cuadros-incendio-museo.html
- El Sistema Costarricense de Información Jurídica. (4 de octubre de 1995). *Patrimonio histórico-arquitectónico de Costa Rica. [ley 7555]*. Obtenido de

- http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_complet o.aspx?param1=NRTC&nValor1=1&nValor2=24929&nValor3=26382&strTip M=TC#up
- El Sistema Costarricense de Información Jurídica. (14 de marzo de 2005). *Reglamento a la ley N° 7555 "ley de patrimonio histórico-arquitectónico de Costa Rica".[decreto ejecutivo N° 32749]*. Obtenido de http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_complet o.aspx?nValor1=1&nValor2=55888
- El Sistema Costarricense de Información Jurídica. (13 de diciembre de 2011).

 *Reglamento de Oficialización del Código Eléctrico de Costa Rica para la Seguridad de la Vida y de la Propiedad (RTCR 458:2011)".[Decreto Ejecutivo Nº 36979-MEIC].

 Obtenido de http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_complet o.aspx?nValor1=1&nValor2=72027
- En Austria, Video: un incendio arrasó con el museo de motos más espectacular de europa. (21 de enero de 2021). *Clarín*. Obtenido de https://www.clarin.com/autos/video-incendio-arraso-museo-motos-espectacular-europa_0_A6Wyhw6rh.html
- Escobar Vega, J., & Fonseca Rivera, N. M. (2020). Diseño del sistema de protección contra incendios para la planta hidroeléctrica los Negros II en Upala, Alajuela. Trabajo de grado para Licenciatura, Universidad de Costa Rica, Alajuela, Costa Rica.
- Estalla incendio en la escuela de arte de Glasgow. (23 de mayo de 2014). *British Broadcasting Corporation*. Obtenido de https://www.bbc.com/mundo/ultimas_noticias/2014/05/140523_ultnot_incendio_escuela_arte_glasgow_men
- García Ruiz, C. (2020). *Introducción a la química forense*. BOSCH. Retrieved from https://www-digitaliapublishing-com.ezproxy.sibdi.ucr.ac.cr/visor/82928
- GREENHECK. (2022). *GREENHECK*. Retrieved from https://www.greenheck.com/es-us/productos/movimiento-del-aire/ventiladores/ventiladores-para-muro/extractores-axiales-para-muro
- Incendio en Alejandría. (3 de marzo de 2003). *La Nación*. Obtenido de https://www.nacion.com/el-mundo/incendio-en-alejandria/EBG5XFUZHRH5VNFSHDXQDWCQ3U/story/

- Incendio en el centro de Honduras destruye museo del hombre. (30 de noviembre de 2017). Prensa libre. Obtenido de https://www.prensalibre.com/internacional/incendio-en-el-centro-de-honduras-destruye-museo-del-hombre/
- Incendio en el museo Egipto de el Cairo. (3 de febrero de 2011). *La nación*. Obtenido de https://www.nacion.com/el-mundo/incendio-en-el-museo-egipcio-de-el-cairo/PXA3HAQ4SFDJRD5UMT3ZRN5A7U/story/
- Instituto de Nomas Técnicas de Costa Rica. (2016). *INTE 21-02-01:2016*. San José: Propia.
- Instituto de Normas Técnicas de Costa Rica. (2016). *INTE 31-07-01:2016*. San José: Propia.
- Miranda Rojas, H. A., & Bolaños Murillo, L. A. (2020). Diseño del sistema de protección contra incendios de la comisión de régimen académico de la universidad de Costa Rica. Trabajo de grado para Licenciatura, Universidad de Costa Rica, Alajuela.
- Museo getty de California: ¿por qué es especial su arquitectura para protegerlo de incendios? (17 de noviembre de 2018). *El diario*. Obtenido de https://eldiariony.com/2018/11/17/museo-getty-de-california-por-que-es-especial-su-arquitectura-para-protegerlo-de-incendios/
- Museo Nacional de Brasil en Río de Janeiro: ¿qué causó el incendio que lo destruyó? (3 de septiembre de 2018). *British Broadcasting Corporation*. Obtenido de https://www.bbc.com/mundo/noticias-america-latina-45376399
- National Fire Protection Association. (2009a). *Manual de protección contra incendios* (Vol. I). Quincy, Massachussetts, USA: Propia.
- National Fire Protection Association. (2009b). *Manual de protección contra incendios* (Vol. II). Quincy, Massachussetts, USA: Propia.
- National Fire Protection Association. (2012). NFPA 1. Código de incendios. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2015). NFPA 30. Código de líquidos inflamables y combustibles. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2016). NFPA 72. Código nacional de alarma de incendio y señalización. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2016). NFPA 72. Código Nacional de Alarma de Incendio y Señalización. Quincy, Massachusetts, USA: Propia.

- National Fire Protection Association. (2017). NFPA 70. Código Eléctrico Nacional. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2017). NFPA 780. Norma para la Instalación de Sistemas de Protección contra Rayos. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2018). *NFPA 101. Código de Seguridad Humana*. Quincy, Massachusetts: Propia.
- National Fire Protection Association. (2018a). NFPA 10. Norma para extintores portátiles contra incendios. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2018b). NFPA 22. Norma para tanques de agua para protección contra incendios privada. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2019). NFPA 13. Norma para la instalación de sistemas de rociadores. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2019a). NFPA 13. Norma para la instalación de sistemas de rociadores. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2019b). NFPA 14. Norma para la instalación de sistemas de montantes y mangueras. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2019c). NFPA 20. Norma para la instalación de bombas estacionarias para protección contra incendios. Quincy, Massachusetts: Propia.
- National Fire Protection Association. (2019d). NFPA 24. Norma para la instalación de tuberías para servicio privado de incendios y sus accesorios. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2019e). NFPA 914. Code for the protection of historic structures. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2020). NFPA 25. Norma para la inspección, prueba, y mantenimiento de sistemas de protección contra incendios a base de agua. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2021). NFPA 909. Code for the Protection of Cultural Resource Properties-Museums, Libraries, and Places of Worship. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2021a). NFPA 101. Código de seguridad humana. Quincy, Massachusetts, USA: Propia.

- National Fire Protection Association. (2021b). NFPA 909. Code for the protection of cultural resource properties-museums, libraries, and places of worship. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2022). NFPA 20.Standard for the Installation of Stationary Pumps for Fire Protection. USA: Propia.
- National Fire Protection Association. (2022). NFPA 80A. Recommended Practice for Protection of Buildings from Exterior Fire Exposures. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (s.f.). *NFPA*. Recuperado el 15 de junio de 2022, de https://www.nfpa.org/About-NFPA/NFPA-overview
- Pérez D'Gregorio, R. (2002). Sistema internacional de unidades SI. *SciELO*, *110*(4), 541-564. Obtenido de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0367-47622002000400011
- Rodríguez, R. (30 de mayo de 2022). Informe de colecciones resguardadas en el centro de documentación, sección de colecciones patrimoniales. San Ramón, Alajuela.
- Ruhrpumpen. (2017). *Ruhrpumpen fire pumps*. Propia. Retrieved from https://www.ruhrpumpen.com/en/downloads/96-fire-pump-range-en/file.html
- Trujillo Mejía, R. F. (2012). El fuego y sus implicaciones en la industria (3 ed.). Bogotá: ECOE ediciones. Obtenido de https://elibronet.ezproxy.sibdi.ucr.ac.cr/es/ereader/sibdi/96909
- Un incendio destruyó el museo de ciencias naturales de Rosario. (2 de julio de 2003). *La nacion*. Obtenido de https://www.lanacion.com.ar/cultura/un-incendio-destruyo-el-museo-de-ciencias-naturales-de-rosario-nid501021/#:~:text=El%20fuego%20se%20habr%C3%ADa%20desatado,por%20unos%2013.000%20animales%20embalsamados
- Un nuevo incendio daña la prestigiosa escuela de arte de Glasgow. (16 de junio de 2018). *El país*. Obtenido de https://elpais.com/cultura/2018/06/16/actualidad/1529154355 443447.html
- Unidad de aire acondicionado defectuosa provocó un incendio en el museo de Brasil. (s.f.). NFPA journal en español. Obtenido de https://www.nfpajla.org/archivos/exclusivos-online/seguridad-electrica/1427-unidad-de-aire-acondicionado-defectuosa-provoco-un-incendio-en-el-museo-de-brasil

- Universidad de Costa Rica. (s.f.). *Museo UCR*. Recuperado el 30 de mayo de 2022, de http://museo.ucr.ac.cr/catalogo/museos/4sanra.html
- Verzoni, A. (s.f.). Historia perdida. *NFPA JOURNAL EN ESPAÑOL*. Obtenido de https://www.nfpajla.org/archivos/edicion-impresa/institucionales-educacionales-culturales/1726-historia-perdida
- VIKING. (2022). VK1021 Standard Response Pendent Sprinkler K5.6 (80.6). Propia.

 Retrieved from https://www.vikinggroupinc.com/sites/default/files/documents/102520.pdf
- VIKING. (2023). VK3001 Quick Response Upright Sprinkler K5.6 (80.6). Propia.

 Retrieved from https://www.vikinggroupinc.com/sites/default/files/documents/110420.pdf
- Villalobos Cubero, L. M. (2014). El neoclasicismo llega a la ruralidad nacional en el siglo XIX: el palacio municipal de San Ramón. *SciELO*, *15*, 47-52. Obtenido de https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-469X2014000300039#fn6

Anexos

Anexo A. Colecciones del museo regional de San Ramón

En esta sección se va a estar mostrando información sobre las colecciones patrimoniales presenten en el museo.

Anexo A.1 Clasificación por tipo de material

En el siguiente cuadro A.1 se puede ver los tipos de materiales que están hechos algunos de los objetos que se resguardan en el edificio.

Cuadro A.1. Clasificación por tipo de material

Código	Descripción Larga		Tipo de Material	Observaciones
-	Material gráfico		Mapa	Pliegos con imágenes, estampas,
			Plano	láminas, obras o reproduccione
			Xilografia	de arte, mapas, tarjetas de actividades, tarjetas postales
MGRAF			Pintura	transparencias, diapositivas, u
			Fotografía	otro similar. Fotografias, radiografias, diapositivas, dibujos técnicos,
			Dibujo	
			Opaco	diagramas
			Textil	
			Vestuario	Los Bienes muebles son aquello
			Moneda	objetos de Patrimonio Cultura
		Mueble	Escultura	testimonios de la creació humana o de la evolución de la naturaleza y que tienen cierto valor histórico, arqueológico artístico, científico o técnico y qui se pueden mover, que se puedes trasladar. Esto engloba los objetos arqueológicos, pinturas, carteles cuadros, folos, obras de arte libros, documentos, muebles etc.
			Libroa	
			Maquinaria	
			Equipo de laboratorio	
			Objeto doméstico	
			Objeto de trabajo	
	Objetos tridimensionales		Objeto ritual	
OTRID			Material audiovisual ^b	
		Inmueble	Monumentos o sitios históricos	De acuerdo con la Comisió Nacional de la UNESCO patrimonio inmueble est constituido por monumento obras de la arquitectura y de
			Monumentos públicos	
			Monumentos artísticos	ingeniería, sitios históricos centros industriales, zonas o objetos arqueológicos, calles
			Conjunto arquitectónico	puentes, viaductos de interés o valor relevante desde el punto de vista arquitectónico
			Centro industrial	arqueológico, etnológi
			Obra de ingeniería	histórico, artístico o científico reconocidos y registrados como tales.

^{*}Los libros como tal quedan bajo el tipo de material: LIBRO

Fuente: (Rodríguez, 2022)

El material audiovisual, dependiendo de cada item se le indica como tipo de material: audiolibro, grabación sonora, material gráfico, microforma (ejemplo: microfichas, microfilmes) películas o videos; hay otros audiovisuales que pasan a ser tridimensionales como las esculturas, juegos u otros que por su condición de tridimensional deba quedar bajo OTRID, como ya ustedes bien lo han clasificado ahí.

Anexo B. Información para el análisis de riesgo

En este apartado se van a mencionar métodos para la aplicación del análisis de riesgo, además de información que se aplicará para el desarrollo de los procedimientos.

Anexo B.1 Modelo de tabla del método HAZOP

La siguiente ilustración B.1 muestra cómo debe quedar por escrito el análisis del riesgo HAZOP.

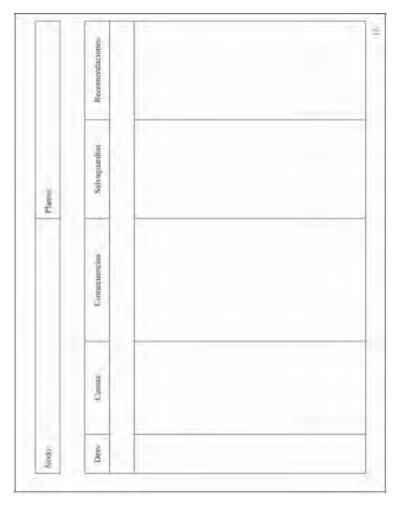


Ilustración B.1. Modelo de tabla HAZOP

Anexo B.1.1 Secuencia operativa del método HAZOP

En la siguiente ilustración B.2 se puede observar una secuencia lógica de trabajo para el análisis del riesgo HAZOP.

Ilustración B.2. Secuencia operativa de un estudio HAZOP

Anexo B.1.2 Clasificación de zonas sísmicas en Costa Rica

En la siguiente ilustración B.3 se puede observar la zona en la cual se cataloga el cantón de San Ramón.

Provincia	Cantón	Distrito	Zona
	1. Alajuela	Todos	111
	2. San Ramón	Todos	111
	3. Grecia	Todos	111
	4. San Mateo	Todos	.III
	5. Atenas	Todos	JII-
	6. Naranjo	Todos	- 111
	7. Palmares	Todos	JH.
	8. Poás	Todos	- 01
	9. Orotina	Todos	10)
2. Alajuela	10. San Carlos	1. Quesada 2. Florencia 3. Buenavista 4. Aguas Zarcas 5. Venecia 6. Pital 7. Fortuna 8. Tigra 9. Palmera 10. Venado 11. Cutris 12. Monterrey 13. Pocosol	
	11. Alfaro Ruiz	Todos	III
	12. Valverde Vega	Todos	III
	13. Upala	Todos	11
	14. Los Chiles	Todos	- 11
	15. Guatuso	Todos	11

Ilustración B.3. Clasificación de las zonas sísmicas de Alajuela. Fuente: (Colegio Federado de Ingenieros y de Arquitectos de Costa Rica, 2010)

Anexo C. Análisis de riesgos de los métodos seleccionados

En este apartado se va a mostrar el informe de los riesgos que se identificaron en el museo.

Anexo C.1 Análisis de riesgos para el museo regional de San Ramón, Alajuela

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA

ANÁLISIS DE RIESGOS PARA EL MUSEO REGIONAL DE SAN RAMÓN, ALAJUELA

UNIVERSIDAD DE COSTA RICA

Diana Vega Valerio

Sede Interuniversitaria de Alajuela Diciembre, 2022

Introducción

En el presente informe se muestran los riesgos que se identificaron en el Museo Regional de San Ramón, se conocieron por medio del análisis histórico de accidentes, el análisis what if? (¿qué pasaría si...?) y el análisis de check list (lista de chequeo), con el propósito de brindar recomendaciones para ser implementadas en edificio.

Índice

1.	Métodos cualitativos	1
1.1	Análisis histórico de accidentes	2
1.3	Análisis what if? (¿qué pasaría si?)	4
1.4	Análisis mediante check list (lista de chequeo)	8
Reco	omendaciones	14
Refe	rencias	15
Anex	xos	16
Anex	xo A Fotografías	16

Índice de fotografías

Fotografía 1 Estación manual obstruida por la puerta. Fuente: (Autora, 2022)	16
Fotografía 2 Estación manual obstruida. Fuente: (Autora, 2022)	17
Fotografía 3 Cuarto de limpieza que esta adentro del baño de mujeres. Fuente: (Autora, 2	022)
	17
Fotografía 4 Baño que está en recepción. (Autora, 2022)	18
Fotografía 5 Ático. Fuente: (Autora, 2022)	18
Fotografía 6 Panel de control con problema y silenciado. Fuente: (Autora, 2022)	19
Fotografía 7 Detector de humo dañado en pasillo. Fuente: (Autora, 2022)	19
Fotografía 8 Sala 1 del Museo. Fuente: (Autora, 2022)	20
Fotografía 9 Sala 2 del Museo. Fuente: (Autora, 2022)	20
Fotografía 10 Paredes del Museo de calicanto. Fuente: (Autora, 2022)	21
Fotografía 11 Extintor al lado del comedor. Fuente: (Autora, 2022)	21
Fotografía 12 Extintor en sala de profesores. Fuente: (Autora, 2022)	22
Fotografía 13 Extintores a la par del panel de control principal. Fuente: (Autora, 2022)	22
Fotografía 14 Extintor ABC a la par del panel de control principal. Fuente: (Autora, 2022	23
Fotografía 15 Extintor ABC a la par del panel de control principal. Fuente: (Autora, 2022) 23
Fotografía 16 Extintor ABC a la par del baño de mujeres. Fuente: (Autora, 2022)	24
Fotografía 17 Extintor ABC a la par del comedor. Fuente: (Autora, 2022)	24
Fotografía 18 Extintor obstruido en el comedor. Fuente: (Autora, 2022)	25
Fotografía 19 Extintor obstruido en la entrada de la sala de colecciones patrimoniales. Fue	ente:
(Autora, 2022)	25
Fotografía 20 Detector de humo en sala de exhibición. Fuente: (Autora, 2022)	26
Fotografía 21 Estación manual obstruida por puerta y por exposición. Fuente: (Autora, 2	022)
	26
Fotografía 22 Segundo medio de egreso permanece cerrado. Fuente: (Autora, 2022)	27
Fotografía 23 Entrada principal del Museo. Fuente: (Autora, 2022)	27
Fotografía 24 Ático usado como bodega. Fuente: (Autora, 2022)	28
Fotografía 25 Ático usado como bodega. Fuente: (Autora, 2022)	28
Fotografía 26 Ático usado como bodega Fuente: (Autora 2022)	20

Fotografía 27 Cuarto eléctrico usado como bodega. Fuente: (Autora, 2022)	29
Fotografía 28 Cuarto eléctrico usado como bodega. Fuente: (Autora, 2022)	30
Fotografía 29 Panel eléctrico. Fuente: (Autora, 2022)	30
Fotografía 30 Escalera localizada en cuarto eléctrico. Fuente: (Autora, 2022)	31
Fotografía 31 Basureros de recolección. Fuente: (Autora, 2022)	31

Índice de tablas

Tabla 1	1. Accidentes ocurridos en Museos y Patrimonios. Fuente: (Autora, 2022)	2
Tabla 2	2. Situaciones planteadas con what if? Fuente: (Autora, 2022)	4
Tabla 3	3. Lista de aspectos para la check list. Fuente: (Autora, 2022)	g

1. Métodos cualitativos

A continuación, se mencionan las metodologías cualitativas que se van aplicar a la edificación con el objetivo de conocer las principales causas de accidentes, de esta forma emplear medidas preventivas sobre posibles causas iniciadoras, al igual que disposiciones para mitigar los efectos.

A continuación, se describen los métodos de identificación de riesgos cualitativos que se aplicaron al Museo.

Bases de datos o análisis histórico de accidentes: Se puede tener acceso a los accidentes más usuales, que hayan sucedido en relación con un proceso o sustancia peligrosa definida, de esta forma se conocen sus causas y consecuencias, por lo tanto, se pueden hacer conclusiones y recomendaciones (Camacho López, et al., 2013).

Análisis what if?: Es un método que identifica los riesgos y trata de establecer por medio de preguntas que posibles consecuencias ocurrirían ante un determinado fallo. Las preguntas que se plantearán considerando un suceso iniciador a lo que continuará un análisis de las deducciones probables, que requerirá reconocer el proceder del sistema, dando como resultado recomendaciones en forma de medidas correctoras (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013)

Análisis por check list: La lista de chequeo es un método de reconocimiento aplicable para la valoración de equipos, materiales o procedimientos y se usa en cualquiera

de las fases del desarrollo de un proyecto (Camacho López, et al., Seguridad funcional en instalaciones de proceso, 2013).

1.1 Análisis histórico de accidentes

Seguidamente se muestra una lista de incidentes ocurridos a lo largo de la historia en museos y/o patrimonios de la humanidad.

Tabla 1. Accidentes ocurridos en Museos y Patrimonios

Edificaciones	¿Qué inició el incendio?	Año del incidente
Museo Regional de San Ramón	En una actividad nocturna	
	existían unas luces	
	incandescentes conectadas,	2012
	que estaban al lado de unas	
	bolsas de basura estas	
	comenzaron a quemarse,	
	una persona se dio cuenta y	
	lograron controlar el fuego	
	(se desconoce el cómo lo	
	apagaron)	
Museo Nacional de Brasil,	Un aire acondicionado defectuoso	2018
Río de Janeiro, Brasil.		
Biblioteca de Alejandría,	Un cortocircuito	2003
Alejandría, Egipto.		2003
Museo Egipcio de El Cairo,	Dos molotov	2011
Cairo, Egipto.	Dos moiotov	
Catedral de Notre Dame,	Descuido en las obras de renovación	2019
París, Francia.		
Escuela de Arte de		
Glasgow, Glasgow,	Un proyector defectuoso	2014
Escocia.		
Museo Marítimo de la isla	Un rayo	2017
normanda de Tatihou,		2017

Edificaciones	¿Qué inició el incendio?	Año del incidente
Museo Regional de San Ramón	En una actividad nocturna	2012
	existían unas luces	
	incandescentes conectadas,	
	que estaban al lado de unas	
	bolsas de basura estas	
	comenzaron a quemarse,	
	una persona se dio cuenta y	
	lograron controlar el fuego	
	(se desconoce el cómo lo	
	apagaron)	
Saint-Vaast-la-Hougue,		
Francia.		
TOP Mountain Motorcycle		2021
Museum Crosspoint,	Se desconoce	
Hochgurgl, Austria.		
Museo de Ciencias		
Naturales de Rosario,	Explosión de una bomba	2003
Rosario, Argentina.		
Museo Violeta Parra,	Enfrentamiento entre	2020
Santiago, Chile.	policías y protestantes	
Museo de cera ubicada en		
la Colonia Juárez, Ciudad	Un cortocircuito	1992
de México, México.		
Museo del Hombre,	Un transformador en aceite	2017
Tegucigalpa, Honduras.	que explotó	
	Por un sistema de riego	
Museo Getty de California,	instalado en el terreno que	2017
Los Ángeles, Estados	rodea el Museo se protegió	
Unidos.	el sitio de un incendio	
	forestal	

Fuente: (Autora, 2022)

En la tabla 1.1 se indica lo que provocó el incendio en cada uno de los edificios, por lo tanto, se puede ver que un cortocircuito, equipos defectuosos, atentados, descuido en obra,

un rayo, un incendio forestal, entre otras causas son las que generan fuego en este tipo de estructuras.

Para prevenir que los lugares que albergan historia sean afectados por incendios se deben implementar sistemas automáticos de protección contra incendios, estos deben estar correctamente instalados y mantenidos (Verzoni).

1.3 Análisis what if? (¿qué pasaría si...?)

En la tabla 1.3 se puede ver el análisis *what if?*, el cual se empleó con el objetivo de conocer cuáles son algunas de las consecuencias que se expone el Museo en caso de incendio y de esta forma tener en cuenta las recomendaciones para prevenir estás situaciones.

Tabla 1. Situaciones planteadas con what if?

¿Qué pasaría si?	Consecuencias	Notas y recomendaciones
¿Qué pasaría si ocurre un incendio dentro del Museo?	Que una persona active una estación manual tiene un grado de complejidad mayor, ya que están ocultas detrás de las puertas. El Museo no tiene sistema de supresión contra incendios, por lo tanto, solo por medio de extintores portátiles se podría sofocar el incendio.	 Mantener el equipo según el fabricante. Contar con un Sistema de Protección Contra Incendios.

¿Qué pasaría si?	Consecuencias	Notas y recomendaciones
¿Qué pasaría si hay un detector dañado dentro del Museo?	Si un detector de humo está dañado puede que no detecte el fuego.	Mantener el Sistema de Alarma Contra Incendio como indica el fabricante.
¿Qué pasaría si no hay una cobertura total de detección de humo?	Si ocurre un fuego en alguno de los cuartos que no tiene detección, puede crecer de forma acelerada, hasta que alguna persona lo observe.	Dar cobertura total al sistema.
¿Qué pasaría si se produce un fuego exterior cerca del Museo?	Los materiales de construcción del Museo no tienen resistencia al fuego, además no cuenta con sistema de supresión contra incendios.	Se recomienda aplicar el apartado 5.1 de la (NFPA 80A,2022) además de considerar los materiales clase A, como indica la 10.2.3.3 y el apartado 4.6.4 de la (NFPA 101,2018).
¿Qué pasaría si se requiere perforar una pared o techo del Museo?	Si por la legislación nacional lo requiere como lo indicar el Benemérito Cuerpo de Bomberos, si se necesita perforar una pared o techo en el museo si se puede realizar en aras de preservar el Patrimonio Histórico.	Para no alterar el tipo de construcción si se requiere la perforación de debe aplicar un sello corta fuego a las paredes y si se perfora el techo asegurarse de no provocar filtraciones de agua hacia el interior del inmueble.
¿Qué pasaría si se requiere hacer obras civiles nuevas en el Museo?	Si es requerido, se pueden realizar obras civiles nuevas sí son necesarias para instalar, por ejemplo, el tanque de agua para el Sistema de Supresión Contra Incendios.	Se recomienda realizar las obras civiles nuevas en coordinación de la oficina de Patrimonio, para su aprobación y visto bueno, a la vez indicar que la autoridad competente lo solicita.
¿Qué pasaría si cae un rayo en el Museo?	En caso de que una descarga eléctrica "Rayo" impacte al museo puede provocar un	Se debe instalar un Sistema de pararrayos en los edificios que contengan patrimonios culturales

¿Qué pasaría si?	Consecuencias	Notas y recomendaciones
	incendio que puede dañar el	irremplazables, como indica la
	inmueble.	NFPA 780.
	Si se encuentra un extintor	Asegurarse que en los lugares
	obstruido, se puede no mitigar el	donde se encuentren instalados
¿Qué pasaría si hay un extintor	siniestro que si no se controla a	los extintores estén libres de
obstruido?	tiempo puede genera un incendio	obstrucciones, con rotulación que
oosii uido:	que logra cobrar vidas humanas y	indique el tipo de extintor y
	dañar la infraestructura del	como se debe de utilizar
	museo.	adecuadamente.
¿Qué pasaría si hay una estación manual obstruida?	Si una estación manual esta obstruida puede provocar que durante una emergencia no se active la estación por no estar visible al usuario, lo cual incide que la emergencia no se dé a conocer en el menor tiempo	Se recomienda que todas las estaciones manuales estén sin obstrucciones, que cada una de las estaciones manuales tengan una caja que las proteja contra los usuarios y evitar falsas alarmas.
	posible.	Los tableros de distribución
¿Qué pasaría si los tableros de distribución eléctrica están obstruidos?	Si ocurre un incendio, habría dificultad en llegar hasta el panel de distribución eléctrica.	eléctrica tienen que estar en una ubicación adecuada y fácilmente accesible, no se tiene que mover ningún objeto para acceder a ellos. Ver apartado 240.24 de la (NFPA 70, 2017)
¿Qué pasaría si un tomacorriente no cuenta con protección por fallas a tierra o disyuntores (breakers)?	Si se produce un cortocircuito, posteriormente habría fuego, el cual perjudicaría la infraestructura.	Se necesita protección en tomacorrientes que estén instalados a menos de 1,8 m del borde exterior de fregaderos y para los que son usados para electrodomésticos. Ver punto 210.8 y 215.9 de la (NFPA 70,
		2017)
¿Qué pasaría si los tomacorrientes, equipos eléctricos y las luminarias se ven en mal estado?	Serian vulnerables a fallar y habría riesgo de haber un cortocircuito.	Los equipos eléctricos, tomacorrientes y luminarias deben estar en buen estado y fijados adecuadamente a la

¿Qué pasaría si?	Consecuencias	Notas y recomendaciones
		pared. Ver el apartado 110.12B y
		el 110.13 ^a de la (NFPA 70, 2017)
		Los multiplicadores de
¿Qué pasaría si en el Museo hay	Por la sobrecarga en una sola	tomacorriente, las regletas y/o
multiplicadores de tomacorriente,	linea de forma constantes,	extensiones no deben ser usados
regletas y extensiones que se	existiría la amenaza de ocurrir un	de manera permanente, como se
usan de forma permanente?	cortocircuito	indica en el punto 590.1 de la
		(NFPA 70, 2017)
		Cuando se hagan remodelaciones
	Está debe cumplir con lo	o ampliaciones los profesionales
¿Qué pasaría si se hace una	dispuesto en la NFPA 70, ya que	son responsables de emitir una
ampliación o remodelación de la	se busca disminuir el riesgo de	declaración jurada detallando el
instalación eléctrica del Museo?	incendio en el inmueble.	cumplimiento del mismo. Ver
	incendio en el minueble.	Decreto Ejecutivo N°36979-
		MEIC, Artículos: 5.1.1 y 5.1.3
		Los extintores de un peso bruto
		menor a 18 kg tienen que
		instalarse a una altura no mayor
		de 125 cm medidos desde el
		nivel de piso al soporte del
		extintor. Para los que tengan un
¿Qué pasaría si un extintor	Habría un grado de complejidad	peso bruto mayor a 18 kg tiene
portátil se instala a una menor	mayor para identificarlo en su	que estar a no más de 107 cm. Y
altura de lo recomendado?	sitio, además del sujetarlo.	en ningún caso debe haber un
		espacio libre entre el fondo del
		extintor y el piso menor a 10 cm.
		Ver apartado 12.3.12,12.3.12 y
		12.3.14 del (Reglamento
		Nacional de Protección Contra
		Incendios, 2020)
		Debe haber extintores clase k de
¿Qué pasaría si no hay un	Existe el riesgo de utilizar un	6 L a no más de 9 m de distancia,
extintor portátil clase k en un	extintor no adecuado para	dónde hay peligro de incendio
sitio que involucra aceites y/o	sofocar un fuego que involucre	que haya 14 L o más de aceites
grasas vegetales o animales?	aceites y/o grasas.	y/o grasas. Ver apartado
		12.2.6,12.4.8 del (Reglamento

¿Qué pasaría si?	Consecuencias	Notas y recomendaciones
		Nacional de Protección Contra Incendios,2020)
¿Qué pasaría si los extintores portátiles del Museo no están listados?	Las personas que hagan uso de un extintor se exponen a que no funcione de forma adecuada en caso de necesitar sofocarse un fuego.	Los extintores portátiles tienen que estar listados y etiquetados por laboratorios reconocidos como son UL, FM, ULC y otros como indica el punto 4.1.1 de la (NFPA 10, 2022)
¿Qué pasaría si el Museo no cuenta con los medios de egreso requeridos por la normativa?	Habría un grado de complejidad mayor para que todas las personas en caso de emergencia puedan evacuar.	Como mínimo deben proveerse dos medios de egreso en todo el edificio(). Ver apartado 4.5.3.1 (NFPA 101, 2018)

Fuente: (Autora, 2022)

1.4 Análisis mediante check list (lista de chequeo)

En la tabla 1.3 se observa la lista de chequeo con varios apartados sobre la normativa NFPA y el Reglamento Nacional de Protección Contra Incendios, la cual se aplicó al Museo, con el propósito de conocer cuáles son algunos de los incumplimientos en el edificio. Los apartados que no se indique su normativa, están basados en la NFPA 909, 2021.

Tabla 2. Lista de aspectos para la check list

Aspectos	Sí	No	Notas
9.12.9.2 construcción nueva. Para una construcción nueva debe incluir el seguimiento de: 1) sistemas de detección de incendios según lo requieran los códigos aplicables. 2) sistemas automáticos de rociadores contra incendios o sistemas alternativos de supresión. 3) sistemas de seguridad de las instalaciones electrónicas según lo requerido en el plan de protección.		x	• No cuenta con el punto 2, ni el punto 3.
(NFPA 72, 2016) apartado 17.14.8.2 Las estaciones manuales de alarma de incendio deben instalarse de modo que sean claramente visibles, sin obstrucciones y accesibles.		x	• La mayoría de estaciones manuales se encuentran detrás de las puertas. Ver fotografías 1 y 2.
(NFPA 72, 2016) apartado 17.14.8.4 Las estaciones manuales de alarma de incendio deben estar ubicadas dentro de los 1,5 m (5 ft) de cada vano de puerta de salida de cada uno de los pisos.	х		◆ La mayoría está a 1 m del marco de la puerta.
(NFPA 72, 2016) apartado 17.14.8.5* Las estaciones manuales de alarma de incendio deben ser provistas de modo que la distancia de recorrido hasta la estación manual de alarma de incendio más cercana no exceda de 61 m (200 ft), medida horizontalmente en el mismo piso. La norma (NFPA 72, 2016) determina que	х		• No hay cobertura en el baño
en donde sea requerido por otras leyes, códigos o normas aplicables y excepto alguna modificación en contrario en		х	que está en recepción, ni en el cuarto de limpieza que esta adentro del baño de mujeres,

Aspectos	Sí	No	Notas
17.5.3.1.1 a 17.5.3.1.5, la cobertura total de			tampoco hay en el ático. Ver
un edificio o de una parte de un edificio,			fotografías 3, 4 y 5.
debe incluir todas las habitaciones,			
antesalas, áreas de almacenamiento, sótanos,			
áticos, altillos, espacios por encima de			
cielorrasos suspendidos y otras			
subdivisiones y espacios accesibles.			
Según la norma (NFPA 72, 2016) los			
sistemas de alarma de incendio tienen que			• Hay un detector de humo
ser instalados, probados, inspeccionados y			dañado, el panel de control
mantenidos de acuerdo con las instrucciones		X	presentaba fallas. Ver
publicadas por el fabricante y con la			fotografías 6 y 7.
normativa.			
(NFPA 72, 2016) apartado 17.7.3.2.3.1 *			
(1) La distancia entre detectores de humo no			
debe exceder un espaciamiento nominal de			
9,1 m (30 ft) y debe haber detectores dentro			
de una distancia de la mitad del espacio			
nominal, medidas en los ángulos rectos			• En las dos salas más grandes
desde todas las paredes o tabiques que se			del Museo, no se cumple con
extiendan hacia arriba hasta dentro del 15		X	los 9,1 m nominal. Ver
por ciento de la altura del cielorraso.			fotografías 8 y 9.
(2) * Todos los puntos sobre el cielorraso			
deben tener un detector dentro de una			
distancia equivalente a o menor de 0,7 veces			
el espaciamiento (0,7 S) de 9,1 m (30 ft)			
nominal.			
9.12.24.1.1 Las áreas de almacenamiento de			• No cuenta con resistencia al
colecciones deben estar rodeadas por			fuego, ya que la pared es de
barreras contra incendios que tengan una		х	calicanto y debe recibir
clasificación mínima de resistencia al fuego			tratamientos especiales. Ver
de 1 h.			fotografía 10.
(Reglamento Nacional de Protección Contra			
Incendios, 2020) punto 12.3.12 Los	v		• Ver fotografías 11, 12 y
extintores con un peso bruto menor a 18 kg	X		13.
deben instalarse a una altura no mayor a 125			

Aspectos	Sí	No	Notas
cm medidos desde el nivel de piso al soporte			
del extintor. En casos especiales, cuando el			
extintor pueda obstruir barandas, pasamanos			
o algún otro elemento de emergencia, puede			
autorizarse la instalación del extintor hasta			
una altura de 150 cm medidos desde el nivel			
de piso al soporte del extintor.			
(Reglamento Nacional de Protección Contra			
Incendios, 2020) punto 12.3.13 Los			
extintores con un peso bruto mayor a 18 kg			
deben instalarse a una altura no mayor a 107	X		
cm medidos desde el nivel de piso al soporte			
del extintor.			
(NFPA 10, 2022) aparatado 4.1.1 Los extintores portátiles tienen que estar listados y etiquetados por laboratorios reconocidos como son UL, FM, ULC y otros.		x	El extintor ABC, que está a la par del panel de control principal no indica si está listado, ni el que está a la par del baño de mujeres, ni el que está al lado del comedor. Ver fotografías 14, 15, 16 y 17.
(Reglamento Nacional de Protección Contra			13, 10 y 17.
Incendios, 2020) punto 12.3.14 En ningún caso el espacio libre ente el fondo del extintor y el piso debe ser menor a 10 cm.	X		
(Reglamento Nacional de Protección Contra			• En la entrada de la sala de
Incendios, 2020) punto 12.3.8 Los extintores no deberán estar obstruidos y tienen que estar a la vista.		х	colecciones patrimoniales y en el comedor hay extintores obstruidos. Ver fotografías 18 y 19.
9.12.24.3.1 Las áreas de almacenamiento			
de colecciones deben contar con todos los			
siguientes componentes del sistema de			
alarma contra incendios.	X		• Ver fotografías 20 y 21.
1. aparatos de notificación 2. Estaciones manuales de alarma de			
2. Estaciones manuales de alarma de incendios			
nicentius			

Aspectos	Sí	No	Notas
3. Detección automática de humo			
9.12.25.1.2 La exhibición propuesta no			
deberá comprometer o afectar			
adversamente lo siguiente en la			
exhibición, el área de exhibición o el			
edificio:			Hay estaciones manuales
1. Sistemas, equipos y medidas de salida.		X	obstruidas. Ver fotografía 21.
2.acceso de emergencia.			
3.*sistemas de protección contra incendios			
4.seguridad contra incendios			
5. Sistemas de iluminación de emergencia			
(NFPA 780, 2023) apartado L.1.1 Debe			
contar con pararrayos los edificios que		X	N
contengan patrimonios culturales		A	No cuenta con pararrayos.
irremplazables.			
(NFPA 101, 2018) apartado 4.5.3.1 Cantidad			
de medios de egreso. Como mínimo deben			
proveerse dos medios de egreso en todo el			
edificio()Los dos medios de egreso deben			• Un medio de egreso está
estar dispuestos de tal manera que se	X		cerrado siempre. Ver
minimice la posibilidad que ambos resulten			fotografías 22 y 23.
no atravesables debido a la misma condición			
de emergencia.			
(NFPA 101, 2018) apartado 7.1.10.1*			
Mantenimiento de medios de egreso. Los			
medios de egreso deben mantenerse			
constantemente libres de toda obstrucción o	X		
impedimento para su pleno uso instantáneo			
en caso de incendio u otra emergencia.			
11.4.1 Las escaleras, pasillos, entradas y			
cualquier otra parte de los medios de salida			
de un edificio deben mantenerse libres de	X		
combustibles, contenedores de basura y			
otros materiales.			

Aspectos	Sí	No	Notas
11.4.2.1 Los espacios del ático deben			
mantenerse limpios, libres de combustibles y			
cerrados.			
11.4.2.2 Se debe permitir que los materiales		X	• El ático se usa como bodega.
combustibles se almacenen en áticos			Ver fotografías 24, 25 y 26.
protegidos por sistemas automáticos de			
supresión diseñados para permitir dicho			
almacenamiento.			
11.4.3* Los cuartos eléctricos, cuartos			• El cuarto eléctrico se utiliza
mecánicos y armarios telefónicos deben		v	
mantenerse libres de combustibles y		X	como bodega. Ver fotografías
cerrados.			27, 28 y 29.
11.4.5 Los plenos y los espacios vacíos no			Debajo de la escalera se utiliza
deben usarse para almacenamiento y deben		X	como bodega, en el cuarto
mantenerse limpios y libres de combustibles.			eléctrico. Ver fotografía 30.
11.4.10 Los contenedores de basura			
utilizados para la recolección a granel de			• San de plástico. Von
basura o papel reciclable deben estar		X	• Son de plástico. Ver
construidos de metal con cubiertas			fotografía 31.
metálicas.			
(NFPA 72, 2016) Tabla 14.3.1 Inspección			
visual.			
Equipos de control:			
(a) Sistemas de alarma de incendio			
monitoreados para verificar las señales de			No reciben mantenimiento, el
alarma, de supervisión y de falla.			panel de control principal
(1) Fusibles (anual 1-4)		X	indica problema. Ver
(2) Equipos interconectados			fotografía 6.
(3)Lámparas y LED			
(4) Suministro de energía primaria			
(principal)			
(5) Señales de falla (semestral)			

Fuente: (Autora, 2022)

Recomendaciones

Se recomienda que el sistema eléctrico reciba mantenimiento y que esté correctamente rotulado, además la elaboración de un proyecto de instalación eléctrica nueva, de ampliación o de remodelación, lo debe hacer un profesional que esté incorporado al Colegio Federado de Ingenieros y Arquitectos (CFIA) con capacidades para el ejercicio profesional, de acuerdo con la Ley N° 3663, el Código Eléctrico de Costa Rica para la Seguridad de la Vida y de la Propiedad Nº 36979-MEIC, sus reformas y sus Reglamentos vigentes (El Sistema Costarricense de Información Jurídica, 2011).

Debe contar con pararrayos los edificios que contengan patrimonios culturales irremplazables, como indica la NFPA 780.

Referencias

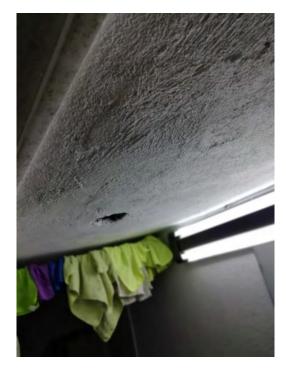
- Benemérito Cuerpo de Bomberos de Costa Rica. (2020a). *Informe de evaluación de seguridad humana, riesgo de incendio y gas lp*. Costa Rica: Propia.
- Benemérito Cuerpo de Bomberos de Costa Rica. (2020b). Reglamento nacional de protección contra incendios. COSTA RICA: Propia.
- Camacho López, A., Fernández de la Calle, I., Gasco Lallave, C. J., Macías Juárez, A. M., Martín Hernández, M. A., Reyes Delgado, G., & Rivas Escudero, J. (2013). Seguridad funcional en instalaciones de proceso. Madrid: Ediciones Días de Santos.
- El Sistema Costarricense de Información Jurídica. (13 de diciembre de 2011).

 *Reglamento de Oficialización del Código Eléctrico de Costa Rica para la Seguridad de la Vida y de la Propiedad (RTCR 458:2011)".[Decreto Ejecutivo Nº 36979-MEIC].

 Obtenido de http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_complet o.aspx?nValor1=1&nValor2=72027
- National Fire Protection Association. (2016). NFPA 72. Código Nacional de Alarma de Incendio y Señalización. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2017). NFPA 70. Código Eléctrico Nacional. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2017). NFPA 780. Norma para la Instalación de Sistemas de Protección contra Rayos. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2018). NFPA 101. Código de Seguridad Humana. Quincy, Massachusetts: Propia.
- National Fire Protection Association. (2021). NFPA 909. Code for the Protection of Cultural Resource Properties-Museums, Libraries, and Places of Worship. Quincy, Massachusetts, USA: Propia.
- National Fire Protection Association. (2022). NFPA 80A. Recommended Practice for Protection of Buildings from Exterior Fire Exposures. Quincy, Massachusetts, USA: Propia.
- Verzoni, A. (s.f.). Historia perdida. *NFPA journal en español*. Obtenido de https://www.nfpajla.org/archivos/edicion-impresa/institucionales-educacionales-culturales/1726-historia-perdida

Anexos

Anexo A Fotografías


A continuación, se muestra una serie de fotografías del Museo Regional de San Ramón.

Fotografía 1 Estación manual obstruida por la puerta

Fotografía 2 Estación manual obstruida

Fotografía 3 Cuarto de limpieza que esta adentro del baño de mujeres

Fotografía 4 Baño que está en la recepción

Fotografía 5 Ático

Fotografía 6 Panel de control con problema y silenciado

Fotografía 7 Detector de humo dañado en pasillo

Fotografía 8 Sala 1 del Museo

Fotografía 9 Sala 2 del Museo

Fotografía 10 Paredes del Museo de calicanto

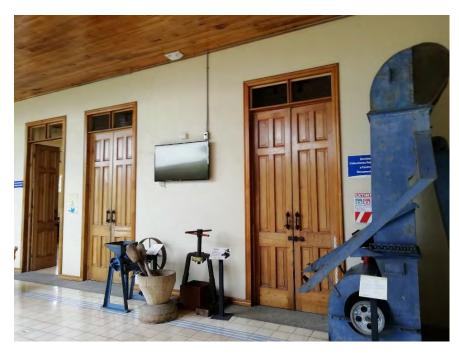
Fotografía 11 Extintor al lado del comedor

Fotografía 12 Extintor en sala de profesores

Fotografía 13 Extintores a la par del panel de control principal

Fotografía 14 Extintor ABC a la par del panel de control principal

Fotografía 15 Extintor ABC a la par del panel de control principal


Fotografía 16 Extintor ABC a la par del baño de mujeres

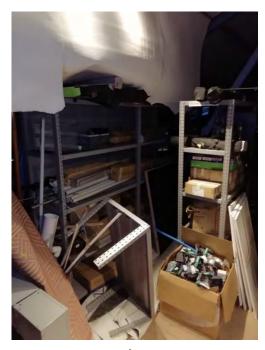
Fotografía 17 Extintor ABC a la par del comedor

Fotografía 18 Extintor obstruido en el comedor


Fotografía 19 Extintor obstruido en la entrada de la sala de colecciones patrimoniales

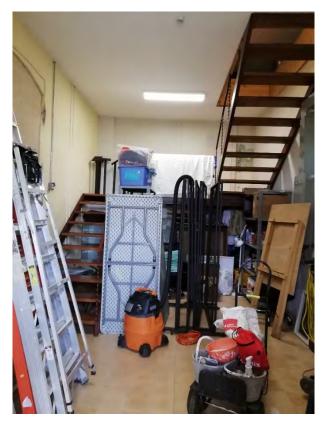
Fotografía 20 Detector de humo en sala de exhibición

Fotografía 21 Estación manual obstruida por puerta y por exposición


Fotografía 22 Segundo medio de egreso permanece cerrado

Fotografía 23 Entrada principal del Museo

Fotografía 24 Ático usado como bodega


Fotografía 25 Ático usado como bodega

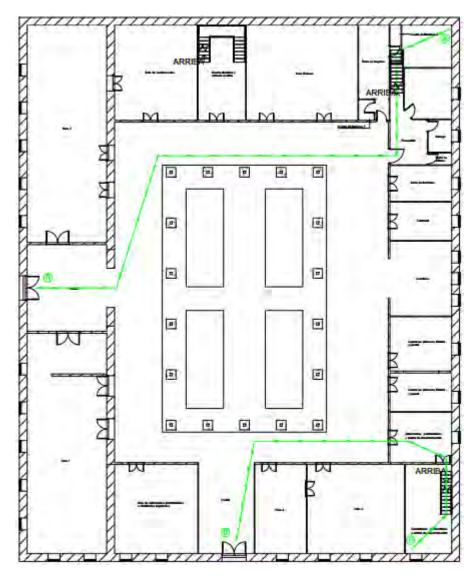
Fotografía 26 Ático usado como bodega

Fotografía 27 Cuarto eléctrico usado como bodega

Fotografía 28 Cuarto eléctrico usado como bodega

Fotografía 29 Panel eléctrico

Fotografía 30 Escalera localizada en cuarto eléctrico


Fotografía 31 Basureros de recolección

Anexo D. Protección pasiva contra incendios

En el siguiente apartado se señalan las rutas de evacuación con los recorridos más largos que hay en el inmueble.

Anexo D.1 Distancia de recorrido total

Seguidamente, se aprecia la ilustración d.1 con los recorridos totales del punto a y el b.

Ilustración D.1 Recorrido total desde la sala de profesores y a partir del cuarto de colecciones patrimoniales y centro de documentación

Anexo E. Datos del sistema de supresión de incendios

En esta división se detalla la información relacionada con el sistema de supresión contra incendios.

Anexo E.1 Cuarto de máquinas

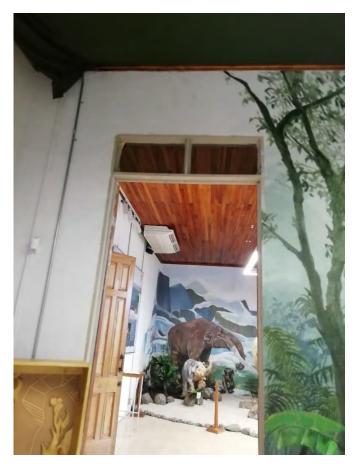

A continuación, se muestran tres imágenes de la sala 3 del museo regional de San Ramón, la cual fue seleccionada como cuarto de máquinas para el sistema de supresión contra incendios.

Ilustración E.1 Sala 3

Ilustración E.2 Sala 3

Ilustración E.3 Sala 3

Anexo E.1.1 Especificaciones del equipo y los materiales

Respecto al documento de detalles acerca de los equipos y los materiales se añade posteriormente.

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA

Especificaciones para el equipo y los materiales que se requieren para el sistema de protección contra incendios

UNIVERSIDAD DE COSTA RICA

Diana Vega Valerio

Sede Interuniversitaria de Alajuela Marzo, 2023

Introducción

En el presente informe se detallan las especificaciones para el equipo y los materiales que se requieren para el sistema de supresión de incendios que se diseñó con respecto al museo.

Índice

Equipos	1
Materiales	2
Referencia	5
Anexos	6
Anexo A. Especificaciones de los equipos	6
Anexo A.1 Ventilación de casa de máquinas	6
Anexo A.1.1 Rociadores montantes	7
Anexo A.1.2 Rociadores colgantes	10
Anexo A.1.3 Conexión de los ramales con los rociadores	12
Anexo A.1.4 Tanque de agua	13
Anexo A.1.5 Bomba de turbina vertical	14
Anexo A.1.6 Tanque diesel y dique de contención	16
Anexo A.1.7 Válvula mariposa	17
Anexo A.1.8 Válvula OS&Y	18
Anexo A.1.9 Válvula check	19
Anexo A.2 Válvula de bola	23
Anexo A.2.1 Válvula de compuerta	23
Anexo A.2.2 Soportería	24
Anexo A.2.3 Manguera flexible	30
Anexo B. Especificaciones de los materiales	32
Anexo B.1 Tubería de acero negro	32

Índice de ilustraciones

Ilustración A.1 Cálculo de la ventilación en casa de máquinas. Fuente: (CLARKE, 2022)
6
Ilustración A.2 Selección del extractor en casa de máquinas. Fuente: (GREENHECK,
2022)
Ilustración A.3 Sistema de ventilación típico para una bomba diesel refrigerada por
intercambiador de calor. Fuente: (National Fire Protection Association, 2022)
Ilustración A.4 Marcas y dimensiones para el rociador montante. Fuente (VIKING,
2023)
Ilustración A.5 Materiales de construcción para el rociador montante. Fuente: (VIKING,
2023)9
Ilustración A.6 Instalación del rociador montante. Fuente: (VIKING, 2023)
Ilustración A.7 Marcas y dimensiones para el rociador colgante. Fuente: (VIKING,
2022)11
Ilustración A.8 Materiales de construcción para el rociador colgante. Fuente: (VIKING,
2022)11
Ilustración A.9 Instalación del rociador colgante. Fuente: (VIKING, 2022)
Ilustración A.10 Disposición de líneas ramales que abastecen a rociadores por encima,
entre y por debajo de cielorrasos. Fuente: (National Fire Protection Association, 2019)
Ilustración A.11 Tanque de agua para la bomba de turbina de eje vertical. Fuente:
(Autora, 2023)
Ilustración A.12 Detalles de la bomba de turbina de eje vertical. Fuente: (Ruhrpumpen,
2017)
Ilustración A.13 Bomba de turbina de eje vertical. Fuente: (Ruhrpumpen, 2017) 16
Ilustración A.14 Tanque diesel de una capa y dique de contención. Fuente: (Autora
,2023)
Ilustración A.15 Válvula mariposa. Fuente: (ARMOUR, s.f.)
Ilustración A.16 Válvula de compuerta OS&Y (de vástago ascendente). Fuente:
(ARMOUR, n.d.)
Ilustración A.17 Válvula check. Fuente: (ARMOUR, s.f.)
Ilustración A.18 Válvula check con ajuste. Fuente: (ARMOUR, s.f.)
Ilustración A.19 Válvula check de ½ pulg. Fuente: (ARMOUR, s.f.)

Ilustración A.20	Válvula de bola. Fuente: (ARMOUR, s.f.)	3
Ilustración A.21	Válvula de compuerta. Fuente: (ARMOUR, s.f.)	4
Ilustración A.22	Soporte tipo pera. Fuente: (ARMOUR, s.f.)	5
Ilustración A.23	Soporte tipo U-Bolt. Fuente: (ARMOUR, s.f.)	5
Ilustración A.24	Soporte para riser. Fuente: (ARMOUR, s.f.)	6
Ilustración A.25	anclas, varillas y hardware. Fuente: (ARMOUR, s.f.)	7
Ilustración A.26	Accesorios para la soportería. Fuente: (ARMOUR, s.f.)	8
Ilustración A.27	Soportería antisísmica. Fuente: (ARMOUR, s.f.)	9
Ilustración A.28	Soportería antisísmica. Fuente: (ARMOUR, s.f.)	0
Ilustración A.29	Manguera flexible para rociadores. Fuente: (ARMOUR, s.f.) 3	1

Índice de tablas

Tabla 1. Equipos que se requieren para el sistema de protección contra incendios. Fuente
(Autora, 2023)
Tabla 2. Materiales que se necesitan para el sistema de protección contra incendios
Fuente: (Autora, 2023)
Tabla B 1 Tubería de acero negro cédula 40 y cédula 10 Fuente: (ARMOUR s f) 30

Equipos

A continuación, se mencionan detalles sobre los equipos que se necesitan para el sistema de supresión de incendios que se diseñó para el Museo Regional de San Ramón.

Tabla 1. Equipos que se requieren para el sistema de protección contra incendios

Equipo	Especificaciones				
	En el anexo a.1 se puede observar el				
Extractor de aire	cálculo del ventilador, se requieren 806,7				
	cfm para el extractor de aire.				
	En la ilustración A.3 del anexo a.1 se				
Damper	muestra un damper por el cual va a entrar				
Damper	el aire para ventilar el cuarto de máquinas				
	en el museo.				
	k=80,6 lpm/bar1/2 (5,6 gpm/ psi1/2), de				
	modo que, se obtuvo un caudal por rociador				
Rociador montante	de 70,98 lpm (18,75 gpm) y una presión				
Rociadoi montante	mínima de 77,29 kPa (11,21 psi). Es de				
	respuesta rápida y se debe instalar en el				
	cielorraso. Ver anexo a.1.1 y el a.1.3.				
	k=80,6 lpm/bar1/2 (5,6 gpm/ psi1/2), de				
	modo que, se obtuvo un caudal por rociador				
Rociador colgante	de 70,98 lpm (18,75 gpm) y una presión				
Rociador coigainte	mínima de 77,29 kPa (11,21 psi). Es de				
	respuesta estándar y se tiene que colocar en				
	el nivel 1 y 2. Ver anexo a.1.2 y el a.1.3.				
	Requiere una capacidad de 17,03 m3, por				
Tanque de agua	lo cual va a tener unas dimensiones internas				
Tanque de agua	de 3 m de ancho, 3m de largo y 2 m de alto.				
	Ver anexo a.1.4.				

Equipo	Especificaciones				
	En cálculo hidráulico se obtuvo 658,66 lpm				
	(174 gpm) y 696,37 kPa (101 psi), por lo				
Sistema de bombeo	tanto, se necesita de una bomba de 946,35				
	lpm (250 gpm) y 696,37 kPa (101 psi). Ver				
	anexo a.1.5.				
	Demanda una capacidad de 302,83 lpm (80				
	gal) y el dique de contención va a disponer				
Tanque diesel	de una magnitud de 458,03 lpm (121 gal) y				
	un tamaño interno de 1 m de ancho, 1,9 m				
	de largo y 0,5 m de alto. Ver anexo a.1.6.				
Válvula mariposa	Ver anexo a.1.7.				
Válvula de compuerta OS&Y	Ver anexo a.1.8.				
Válvula check	Ver anexo a.1.9.				
Válvula bola	Ver anexo a.2.				
Válvula de compuerta	Ver anexo a.2.1.				
Soportería	Ver anexo a.2.2.				
Manguera flexible	Manguera flexible para la conexión de				
Manguera nexible	rociadores colgantes. Ver anexo a.2.3.				

Fuente: (Autora, 2023)

Materiales

Seguidamente se indican datos acerca de los materiales que se precisan para el sistema de supresión de incendios que se diseñó para el Museo Regional de San Ramón.

Tabla 2. Materiales que se necesitan para el sistema de protección contra incendios

Material	Notas
Tubería	La tubería para diámetros nominales mayores de 0,0635 m (21/2 pulg) son de cédula 10, ASTM A795, tubería roja, grado B, extremo estriado y para diámetros nominales menores de 0,0635 m (21/2 pulg) son de cédula 40, ASTM A53, tubería roja, grado B, terminación plana. Ver anexo b.1
Uniones	Las siguientes normas se emplean en las uniones que se disponen en los diversos tipos de tuberías: (a) ASME B16.1, bridas de tubería de hierro gris y accesorios con bridas Clases 25, 125 y 250. (b) AWWA C111/A21.11, juntas de goma para hierro dúctil, tubería de presión y accesorios. (c) AWWA C115/A21.15, tubería de hierro dúctil con bridas roscadas de hierro dúctil o hierro gris. (d) AWWA C606, juntas ranuradas y con reborde.
Accesorios	En accesorios de hierro fundido debe permitirse presiones que no excedan los 2 068,43 kPa (300 psi) en tuberías de 0,0508 m (2 pulg) o menores. Para accesorios de hierro maleable tienen que aprobar las presiones que

Material	Notas
	no sobrepasen los 2 068,43 kPa (300
	psi) en tuberías de 0,1524 m (6 pulg)
	o inferiores.
	Los accesorios que no cumplan con
	los requisitos de los párrafos
	anteriores pueden tener presiones
	que superen los 1 206,58 kPa (175
Accesorios	psi).
	Deben aprobarse accesorios de
	bronce fundido roscados de acuerdo
	con ASME B16.15, Accesorios
	roscados de aleación de cobre
	fundido, clase 125 y 250, donde las
	presiones no sobrepasen de 1 378,95
	kPa (200 psi) para accesorios de
	clase 125 y de 2 757,9 kPa (400 psi)
	para accesorios de clase 250.
	1

Fuente: (Autora, 2023)

Referencias

ARMOUR. (s.f.). INPPROD. Obtenido de http://www.inpprod.com/pci.php CLARKE. (2022). clarkefire. Obtenido de https://clarkefire.com/design-tools/pumproom-calculators/pump-room-ventilation-calculator/PumpRoomVentilation GREENHECK. (2022). GREENHECK . Obtenido de https://www.greenheck.com/esus/productos/movimiento-del-aire/ventiladores/ventiladores-paramuro/extractores-axiales-para-muro National Fire Protection Association. (2019). NFPA 13. Norma para la instalación de sistemas de rociadores. Quincy, Massachusetts, USA: Propia. National Fire Protection Association. (2022). NFPA 20.Standard for the Installation of Stationary Pumps for Fire Protection. USA: Propia. (2017). Ruhrpumpen fire pumps. Propia. Obtenido https://www.ruhrpumpen.com/en/downloads/96-fire-pump-range-en/file.html VIKING. (2022). VK1021 Standard Response Pendent Sprinkler K5.6 (80.6). Propia. Obtenido de https://www.vikinggroupinc.com/sites/default/files/documents/102520.pdf VIKING. (2023). VK3001 Quick Response Upright Sprinkler K5.6 (80.6). Propia. Obtenido de

https://www.vikinggroupinc.com/sites/default/files/documents/110420.pdf

Anexos

Anexo A. Especificaciones de los equipos

En esta sección se adjuntan los detalles de los componentes del sistema de supresión de incendios diseñado.

Anexo C.1 Ventilación de casa de máquinas

En las siguientes ilustraciones se observa el sistema de ventilación de casa de máquinas.

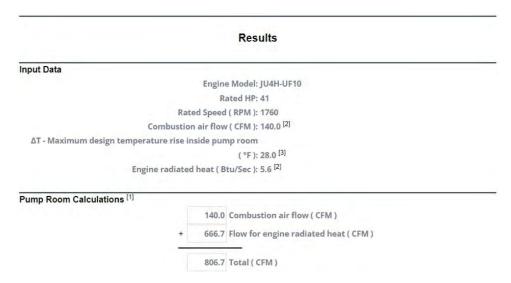
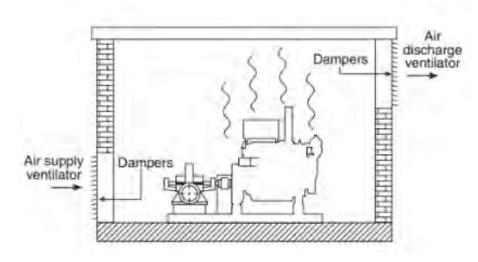


Ilustración A.1 Cálculo de la ventilación en casa de máquinas



BAER

The BAER is a belt driven propeller fan, designed for expanded performance in wall mounted clean-air applications. Units feature cast aluminum airfoil blades and hubs and a standard belt-tensioning system. Available in sizes between 24 and 36 inches.

- -300 to 33,000 cfm
- -Up to 3.3 in. wg.

Ilustración A.2 Selección del extractor en casa de máquinas

Ilustración A.3 Sistema de ventilación típico para una bomba diesel refrigerada por intercambiador de calor

Anexo D.1.1 Rociadores montantes

A continuación, se presentan ilustraciones sobre detalles de los rociadores montantes.

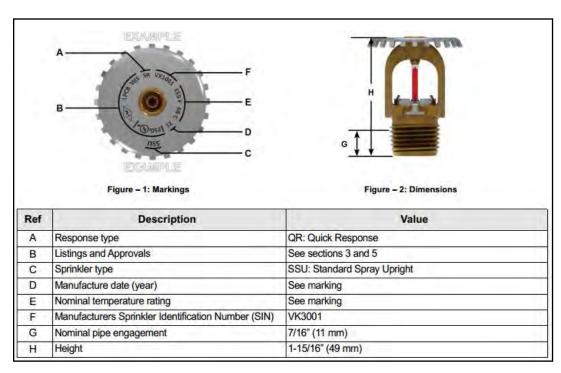


Ilustración A.4 Marcas y dimensiones para el rociador montante

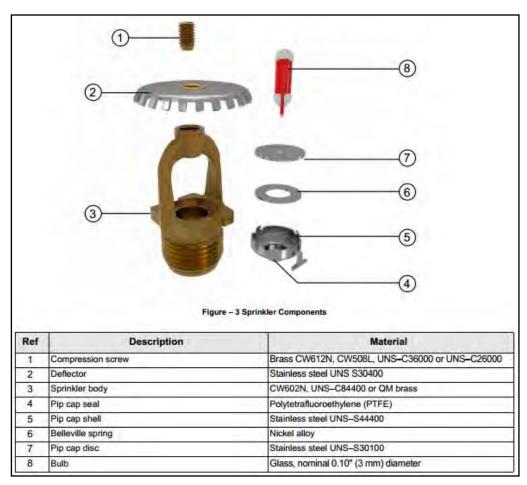


Ilustración A.5 Materiales de construcción para el rociador montante

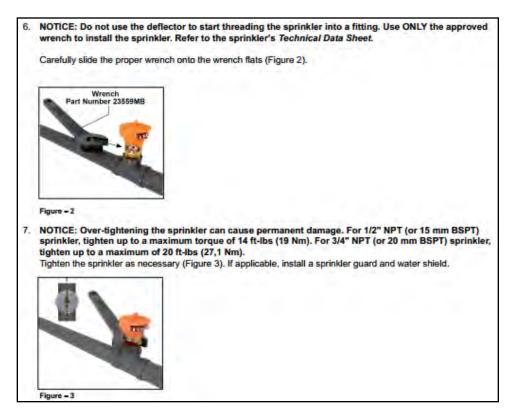


Ilustración A.6 Instalación del rociador montante

Anexo E.1.2 Rociadores colgantes

En esta división se muestran ilustraciones sobre las especificaciones de los rociadores colgantes.

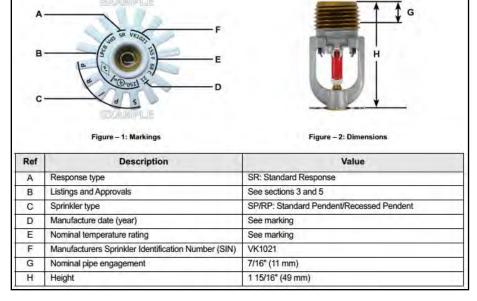
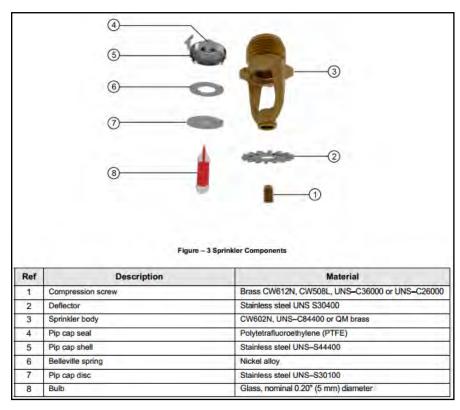



Ilustración A.7 Marcas y dimensiones para el rociador colgante

Ilustración A.8 Materiales de construcción para el rociador colgante

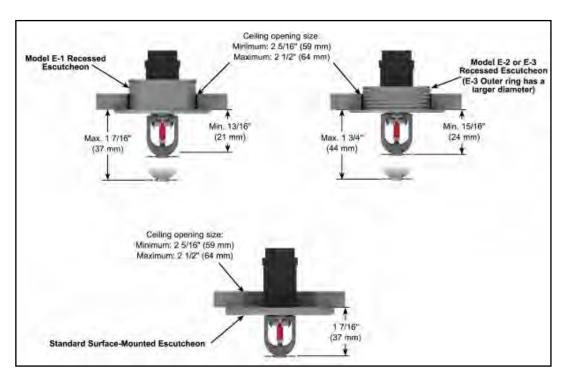
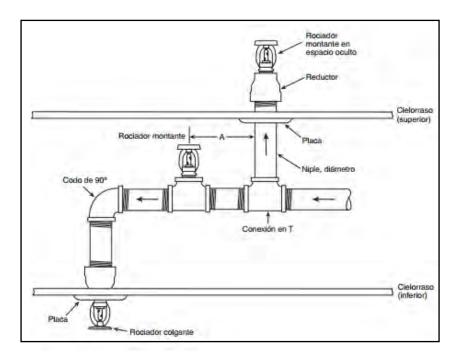



Ilustración A.9 Instalación del rociador colgante

Anexo F.1.3 Conexión de los ramales con los rociadores

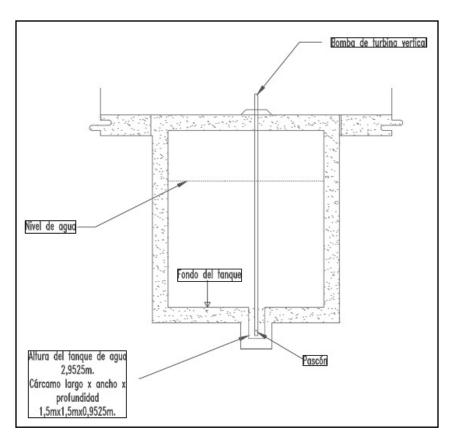

En la ilustración 10 se observa las líneas de ramales que suministran agua a los rociadores, ya sea por encima, entre el cielorraso o por debajo de este.

Ilustración A.10 Disposición de líneas ramales que abastecen a rociadores por encima, entre y por debajo de cielorrasos

Anexo G.1.4 Tanque de agua

A continuación, se aprecia el tanque de agua que se requiere para la bomba de supresión de incendios.

Ilustración A.11 Tanque de agua para la bomba de turbina de eje vertical

Anexo H.1.5 Bomba de turbina vertical

Seguidamente se describe la bomba de turbina de eje vertical que propone el fabricante Ruhrpumpen.

	218	GES / PRESSURE			
		Pressure (PSI)	Weight (BowFs Only)		
Stage	Construction	500 GPM			
		1760 RPM	(Lhs)	(Kg)	
3		47 - 69	661	300	
4		63 - 92	754	342	
5		78 - 116	847	384	
6	Ci-Brz	94 - 139	940	A26	
7		109 - 162	1033	468	
8		125 - 185	1126	510	
9		141 - 208	1219	554	

PUMP MATERIALS												
	Dis	Discharge Flange		Column		Shaft / Column		Bowl		Impeller		
Stage	Sim	Class	Material	Diameter	Material	Column Shaft Diam.	Shaft & Coupling Material	Material	Wear Ring	Material	Wear Ring	Strainer
3						i'						
4	1.5											
5	01. Nove											
6	8" Type	150 RF	O	Б"	316 55		41655	Brz	Brz.	316 SS	316 55	316 SS
7	17.74					1.25"		4				
	1 7 7											
9												

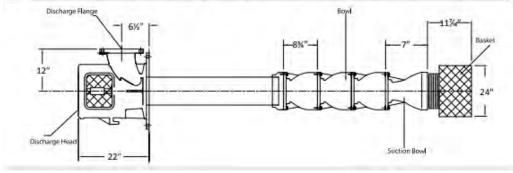


Ilustración A.12 Detalles de la bomba de turbina de eje vertical

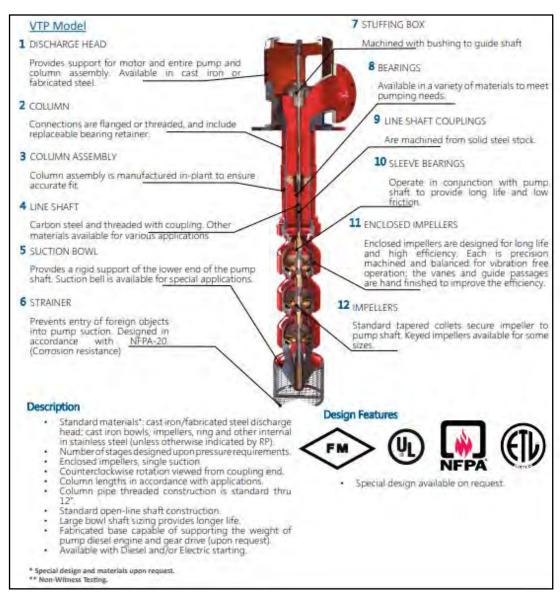


Ilustración A.13 Bomba de turbina de eje vertical

Anexo I.1.6 Tanque diesel y dique de contención

Posteriormente se muestra el tanque diesel para la bomba principal y el muro de contención del diesel en caso de fuga.

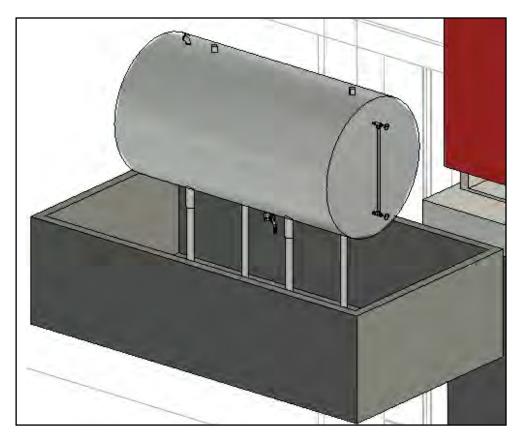


Ilustración A.14 Tanque diesel de una capa y dique de contención

Anexo J.1.7 Válvula mariposa

A continuación, se aprecia la válvula mariposa monitoreada.

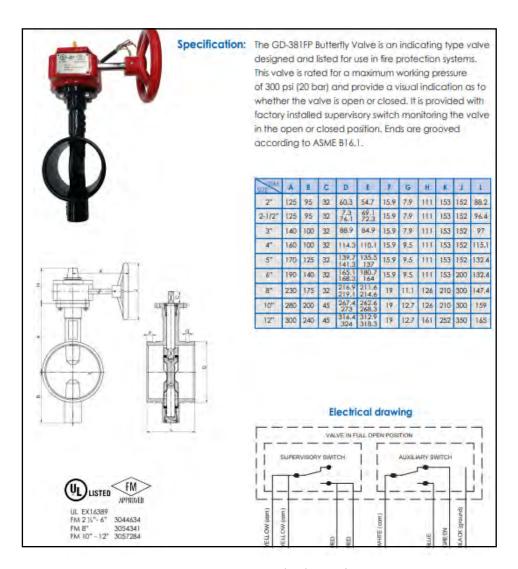


Ilustración A.15 Válvula mariposa

Anexo K.1.8 Válvula OS&Y

En este apartado se presenta la válvula de compuerta OS&Y (de vástago ascendente).

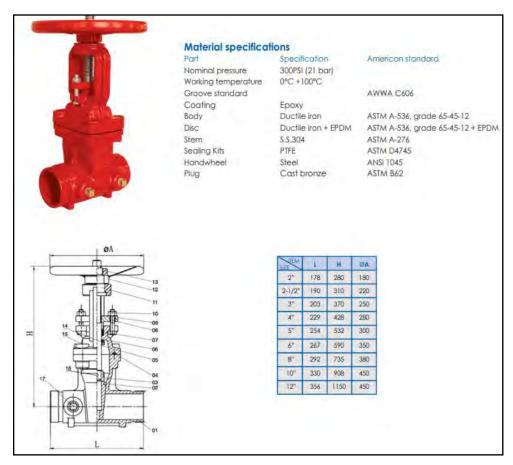


Ilustración A.16 Válvula de compuerta OS&Y (de vástago ascendente)

Anexo L.1.9 Válvula check

Las válvulas de retención se especifican a continuación.

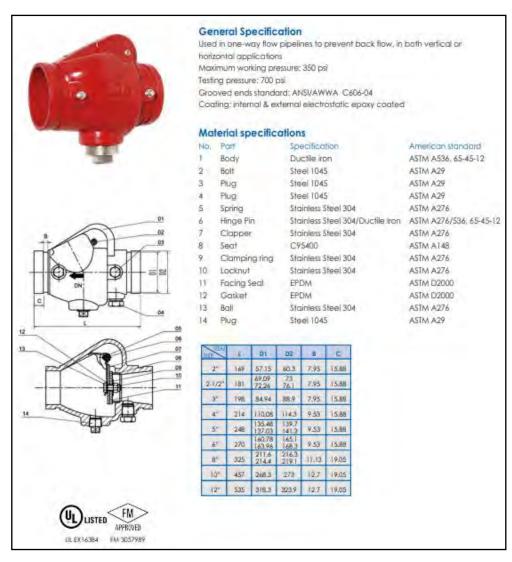


Ilustración A.17 Válvula check

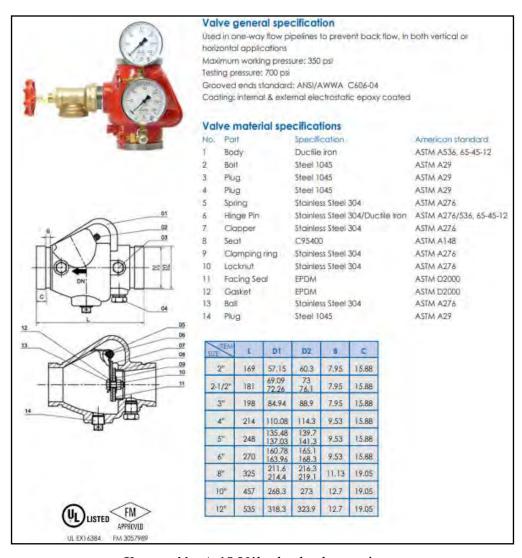


Ilustración A.18 Válvula check con ajuste

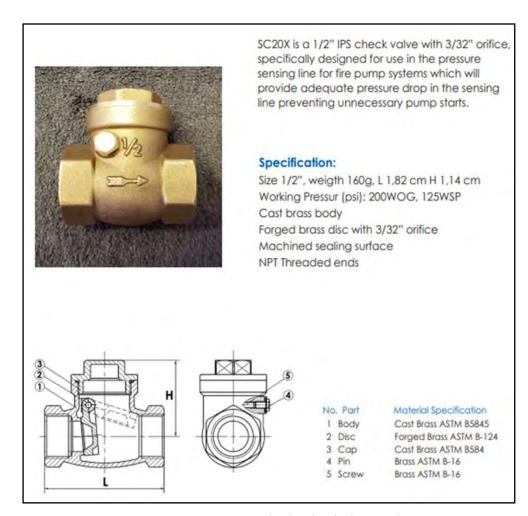
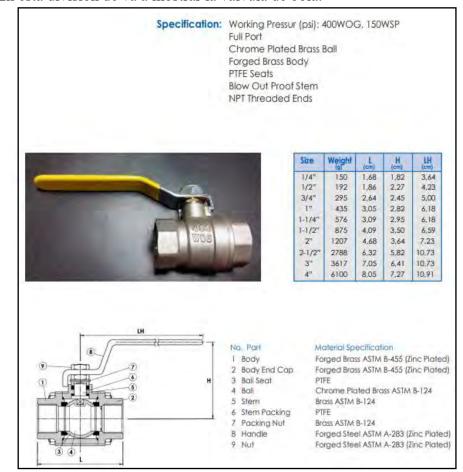



Ilustración A.19 Válvula check de ½ pulg

Anexo M.2 Válvula de bola

En esta división de va a mostrar la válvula de bola.

Ilustración A.20 Válvula de bola

Anexo N.2.1 Válvula de compuerta

La válvula de compuerta se detalla posteriormente.

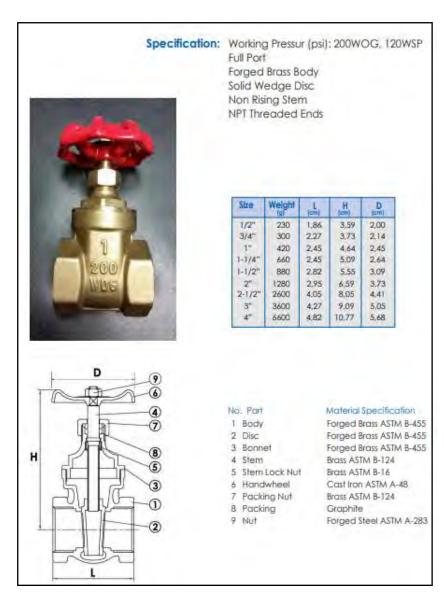


Ilustración A.21 Válvula de compuerta

Anexo O.2.2 Soportería

En esta sección se observan la soportería del sistema de supresión de incendios.

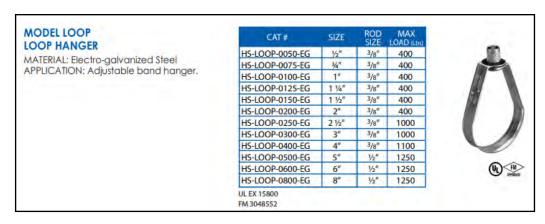


Ilustración A.22 Soporte tipo pera

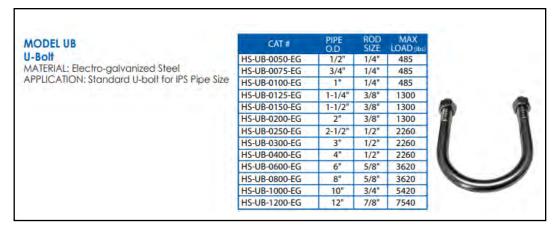


Ilustración A.23 Soporte tipo U-Bolt

Ilustración A.24 Soporte para riser

Ilustración A.25 Anclas, varillas y hardware

Ilustración A.26 Accesorios para la soportería

Ilustración A.27 Soportería antisísmica

Ilustración A.28 Soportería antisísmica

Anexo P.2.3 Manguera flexible

A continuación, se detalla la manguera flexible para los rociadores.

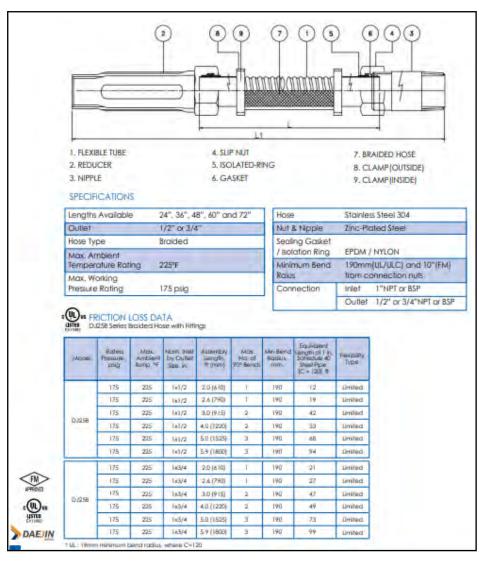


Ilustración A.29 Manguera flexible para rociadores

Anexo B. Especificaciones de los materiales

En inciso se agregaron datos de los materiales para el sistema de supresión de incendios diseñado.

Anexo B.1 Tubería de acero negro

Seguidamente está la tabla que muestra los diámetros de las tuberías de acero, ya sean de cédula 40 o cédula 10.

Tabla B.1 Tubería de acero negro cédula 40 y cédula 10

Product standard: ASTM A7955 or ASTM A53 - Grade B - ERW **Specification:** O,D Ø21.30 - Ø219.10 mm Wall thickness: 2.11 - 4.78 mm Anticorrosive: Hot Galvanized, Powder Coating, Painting Ends: Plain, Grooved, Threaded ASTM A53 **ASTM A795** SCH40 SCH10 N.D. O.D WALLTHICKNESS NOMINAL WEIGHT WALL THICKNESS **NOMINAL WEIGHT** inch inch Kg/mtrs Kg/mfrs ibs/ff 1/2 21.30 0.840 0.109 0.85 3/4 1.050 0.113 1,69 20 26.70 2.11 0.083 1.28 0.86 2.87 1.13 25 4 33.40 1.315 2.77 0.109 2.09 1.41 3.38 0.133 2.50 1.68 1-1/4 42.20 1.660 0.109 2.69 1.81 0.140 2.27 1-1/2 0.109 2.09 0.145 40 48.30 1,900 2.77 3.11 3.68 4.05 2.72 50 2 60.30 2.375 2.77 0.109 3.93 2,64 3.91 0.154 5.45 3.66 65 2-1/2 73,00 2,875 0,120 5,26 5.16 0,203 8.64 5,80 0,216 3,500 0.120 4.34 11,29 80 88.90 3.05 6.46 5.49 7,5B 3 4 114.30 4.500 0,120 8.37 0.237 16.09 10.80 18.99 150 6 168.30 6.625 3.40 0.134 13.85 9.30 7.11 0.280 28.29 219.10 8.625 0.148 25.26 16.96 0.277 24.72 8 273.0 0.165 31.63 21.23 0.365 UL EX2550 / FM 305267 (L) USTED FM

Fuente: (ARMOUR, s.f.)

Anexo F. Muestra de cálculos

En este inciso se va a mostrar el cálculo hidráulico del sistema de supresión contra incendios, la elección del factor k nominal de los rociadores, un resumen sobre la bomba contra incendios, las asignaciones para los chorros de mangueras y la duración del suministro de agua y por último el cálculo para la soportería antisísmica.

Anexo F.1 Cálculos hidráulicos del sistema de enclavamiento único elaborado en ®Excel

Proyecto: Museo Regional de San Ramón

Estudiante: Diana Vega Valerio Fecha: 10/03/2023

Ingeniería mecánica con énfasis en sistemas de protección contra incendios

Información general

- 1. Costado norte del Parque Alberto Manuel Brenes., Av 1, Alajuela, San Ramón
- 2. El área constructiva es de 2769 m²
- 3. Altura desde el nivel más bajo de la acera hasta el último piso habitables: 4m

Criterios técnicos

Los criterios de diseño utilizados son los siguientes:

- 1. Reglamento nacional de protección contra incendios del Benemérito Cuerpo de Bomberos de Costa Rica.
- 2. Norma para la instalación de sistemas de rociadores, NFPA 13. (2019), de la National Fire Protection Association.
- 3. Norma para la instalación de bombas estacionarias para protección contra incendios, NFPA 20. (2019), de la National Fire Protection Association.
- 4. Código para la Protección de Bienes de Recursos Culturales Museos, Bibliotecas y Lugares de Culto, NFPA 909. (2021), de la National Fire Protection Association
- 5. Código para la Protección de Estructuras Históricas, NFPA 914. (2019), de la National Fire Protection Association

Rociadores

En la ilustración 1 de la NFPA 13, se observa la curva de densidad / área,considerando que el riesgo en el edificio es riesgo leve, se eligió una densidad de 0,10 gpm / pie².

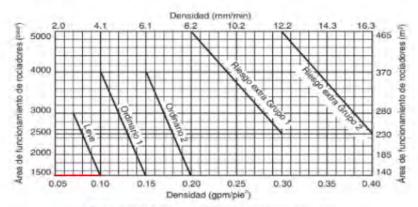


Ilustración 1. Curvas de densidad / área. Fuente: (National Fire Protection Association, 2019)

Para conocer el caudal en el área de funcionamiento de los rociadores, la cuál es de 140 m² (1 500 ft²), se cálculo de la siguiente manera:

$$Q = k\sqrt{P}$$
 (Ec. 1)

$$Q = 150 \quad gpm \quad (Ec. 2)$$

Continuando, se seleccionó el distanciamiento máximo de los rociadores pulverizadores estándar colgantes de la NFPA 13, como se observa en la ilustración 2.

		Área de protección máxima		Espaciamiento máximo		
Tipo de construcción	Tipo de sistema	ple ²	m ^y	pie	m	
No combustible obstruida	Calculatio hidraulicamente	225	20	15	4.6	
No combustible obstruida	Códula de tubería	200	1.6	15	4.6	
No combinible obstrada	Calculado Indrardicamente	225	20	15	4.6	
No combustible obstruida	Cédula de mbería	200	18	15	4.6	
Conduntible no obstruido, sin- miendros expuestos	Calculado bidránlicameme	225	20	15	4/6	
Combustible no obseruida, sin miembros expuestos	Cédula de juberia	700	18	is	4.6	
Combustifie no obstruida, con miculiros expuestos a 8 pies (910 mm) o más entre centros	Calcularis hidraulicamente	225	20	10.	4.6	
Combustible no obstruida, con microbros expuestos a 3 pics (910 mm) o más entre centros	Codula de tuberra	200	10:	(5	4.6	
Combustible no obstruida, con miembros a menos de 3 pies (910 mm) entre centros	Tredon	130	12	(5	4.0	
Combustible obstraida, entr microbros expuestos a 3 pies (910 mm) o más entre centos	Todos	168	16	(5	46	
Combinatible obseruida, con miembros a menos de 3 pies (910 mm) entre centros	Todas	150	12	(5)	4.6	
Espacies oculors inministibles de acuerdo con 10.2.6.1.1	Dulos	120	n	15 en paralelo a la pendiente 10 perpendicular a la pendiente	4.6 en paralelo a la pendiente 5.0 perpendicular a la pendiente*	

Ilustración 2. Áreas de protección y espaciamiento máximo de rociadores pulverizadores estándar colgantes y montantes para riesgo leve. Fuente: (National Fire Protection Association, 2019)

Tomando en cuenta lo anterior se diseñó con un área de protección de 20 m² y un espaciamiento máximo ramales/rociadores de 4,6 m. Además, las distancia mínima de los rociadores a los muros es de 4 pulg (0,10 m) y la distancia mínima entre rociadores es de 6 ft (1,8 m) entre centros.

A continuación se muestra el cálculo para conocer la cantidad de rociadores que se necesitan analizar en el cálculo hidráulico, como se ve en la ec.11.

Área de cobertura	SxL		(Ec.3)
Ac	225	ft2	(Ec.4)
Ap	1500	ft2	(Ec.5)
Número de rociadores	6,67	Rociadores	(Ec.6)
Redondeo	7	Rociadores	(Ec.7)
Espaciamiento máximo	4,6	m	(Ec.8)
Número de rociadores por ramal	3,08	Rociadores	(Ec.9)
Redondeo	4	Rociadores	(Ec.10)
Buscando el múltiplo de 4, se obtienen	8	Rociadores	(Ec.11)

El rociador que seleccioné requiere un k=5,6 gpm (gpm / psi 1/2), por lo tanto se obtuvo un caudal por rociador de 18,75 gpm y una presión mínima de 11,21 psi.

k	5,6	gpm/psi 1/2	(Ec.12)
Q del rociador escogido	14,82	gpm	(Ec.13)
Q para los 8 rociadores	118,53	gpm	(Ec.14)
Q unitario	18,75	gpm	(Ec.15)
P minima para cada rociador	11.21	nsi	(Ec. 16)

Capacidad de almacenamiento de agua del tanque

t	30	mimutos	(Ec.17)
V_{-}	5220	galones	(Ec. 18)
V	19.76	m^3	(Ec.19)

Los rociadores en el cielorraso deben de ser de respuesta rápida y upright, los rociadores para el nivel 1 y nivel 2 son de respuesta estándar y pendent.

Para indicar el diámetro de cada tubería se uso la siguiente tabla

Tabla 1. Cédulas de tuberías para riesgo leve. Fuente:(National Fire Protection Association, 2019)

		C	obre	
A	pero	pulg.	mm	
1 pulg. (25 mm)	2 rociadores	I pulg.	25 mm	2 rociadores
1% padg. (32 mm)	3 rociadores	1% pulg.	52 mm	5 romadores
(% pulg. (40 mm)	5 rociadores	1% polg.	40 mm	5 rociadores
2 pulg. (50 mm)	10 rociadores	2 pulg.	50 mm	12 rociadores
25 pulg. (65 mm)	50 rociadores	2½ pulg.	65 mm	40 rociadores
3 pulg. (80 mm).	50 rociadores-	3 pulg	80 mm	65 rocindores
5% pulg. (90 mm)	100 rociadores	5½ pulg.	90 mm	115 rociadores
1 pulg. (100 mm)	Ver Sección 4.5	4 pails	100 mm	Ver Sección 4.5

En la siguiente ilustración de la NFPA 13, se muestra el tipo de rosca que requieren los rociadores seleccionados, además del factor nominal, el rango de factor k y el porcentaje de descarga del rociador.

Factor K nominal [gpm/(psi) ^{1/2}]	Factor K nominal [L/min/(bar) ^{1/2}]	Rango del factor K [gpm/(psi) ^{1/2}]	Rango del factor K [L/min/(bar) ^{1/2}]	Porcentaje de descarga del factor K-5.6 nominal	Tipo de rosca
1.4	20	1.3-1.5	19-22	25	½ pulg. (15 mm) NPT
1.9	27	1.8-2.0	26-29	33.3	½ pulg. (15 mm) NPT
2.8	40	2.6-2.9	38-42	.50	½ pulg. (15 mm) NPT
4.2	60	4.0-4.4	57-63	75	½ pulg. (15 mm) NPT
5.6	80	5.3-5.8	76-84	100	½ pulg. (15 mm) NPT
8.0	115	7.4-8.2	107-118	140	% pulg. (20 mm) NPT c % pulg. (15 mm) NPT
11.2	160	10.7-11.7	159-166	200	½ pulg. (15 mm) NPT c ½ pulg. (20 mm) NPT
14.0	200	13.5-14.5	195-209	250	% pulg. (20 mm) NPT
16.8	240	16.0-17.6	231-254	300	% pulg. (20 mm) NPT
19.6	280	18.6-20.6	272-301	350	1 pulg. (25 mm) NPT
22.4	320	21.3-23.5	311-343	400	1 pulg. (25 mm) NPT
25.2	360	23.9-26.5	349-387	450	1 pulg. (25 mm) NPT
28.0	400	26.6-29.4	389-430	500	1 pulg. (25 mm) NPT

Ilustración 3. Identificación de las características de descarga de los rociadores. Fuente: (National Fire Protection Association, 2019)

Seguidamente, se indica la distancia máxima entre los soportes con respecto al tamaño nominal de la tubería. Ver la ilustración 4.

ajustados para rociadores del tipo seco a los fines de los cálculos hidráulicos.

					l'amaño	nomina	de tube	eria (mn	1)			
	20	25	32	40	50	65	80	90	100	125	150	200
luberia de acero, excepto de pared delgada roscada	NA	5.7	5.7	4.6	4.6	1.6	16	1.6	4.6	4.6	4.6	1.6
Inberia de acero de pared delgada roscada	NA	3.7	3.7	3.7	3.7	3.7	3.7	NA	NA	NA	NA	NA
lisbo de cobre:	2.4	2.4	3.0	3.0	3.7	5.7	3.7	4.0	4.6	4.0	4.6	4.3
CPVC	1.7	1.8	2.0	2.1	2.4	2.7	5.0	NA.	NA	NA	NA.	SIA
Tuberia de hierro dúctil	NA.	NA	NA.	NA	NA.	NA-	4.6	NA.	4.6	NA.	4.6	4.6

Ilustración 4. Distancia máxima entre soportes colgantes (m). Fuente: (National Fire Protection Association, 2019)

A continuación, se puede ver en la ilustración 5 de la NFPA 20, la selección de la bomba de 250 gpm, por lo tanto se requiere un diámetro de succión de 3^{1/2}", un diámetro de descarga de 3", una válvula de 2^{1/2}" para las válvulas de manguera y un suministro de cabezal de manguera de 3".

			Tama		de tuberías (! pulg.)	Nominal)		
						Cantidad	y tamaño de	Saministro
Certificación de la bomba (gpm)	Succionsis	Descarga*	Valvula de alivio	Descarga de válvula de alivio	Dispositivo de medición	Valvulas de manguera	Conexiones sin	de cabezal de manguera
25	1	-1	74	31	1%	T-19	12%	1
50	1197	125	136	197	2	1-156	1 - 2%	136
100	2	2	116	2	2%	1-256	1-2%	216
150	2%	2%	2	1956	3	1-2%	1 - 216	256
200	31	3	2	2%		1-2%	1 - 2%	25%
250	3%	3	2	2%	3%	1 - 2%	1-2%	3
300	4	4	2%	31/6	354	1-24	12%	3
400	- 1	4.	3	5	4	2 - 2!9	1-5	4
450	.57	75	- 5	.57	4	2 259	1-5	4
500	- 5	. 5	3	5	5	2-2%	1-5	4
750	6	6	4	- 6	5	3 - 2%	1-5	6
1000-	8		4	8	6	4-21/2	1-5	- 6
1250	.8	16	6	- 8	6	6 - 2%	1 - 5	8
1500	8	8	6	-84	8	6-24	1-5	8
2000	10	10	6	10	8	6 - 2%	$2 - 5^4$	5
2500	10	10	6	10	8.	8-2%	2 - 5 ^a	10.
3000	12	12	8	12	8	12-25	$2 - 5^4$	10
3500	12	12	8	12	1.0	12 - 25	5-54	12
1000	14	12	8	34	10 -	16 - 2%	$9 = 5^{d}$	12
1500	16	14	8	1.6	10	16-2%	$5 - 5^4$	12
5000	16	14.	8	14	10	20 - 21/	3-54	12

Ilustración 5. Resumen de información sobre bombas contra incendio centrífugas. Fuente: (National Fire Protection Association, 2019)

En la ilustración 6, se puede apreciar el caudal para la manguera interior y exterior, según la ocupación, ya que la bomba seleccionada es de 250 gpm y el cálculo solicita mínimo 174 gpm no es necesario agregar estos valores al cálculo, además no se requieren tomas de mangueras interiores o exteriores.

	Manguer	a interior	inte	iguera rior y or total binada	Duración
Ocupación	gpm	L/min	gpm	L/min	(minutos)
Riesgo leve	0, 50, o 100	0, 190, o 380	100	380	30
Riesgo ordinario	0, 50, o 100	0, 190, o 380	250	950	60-90
Riesgo extra	0, 50, o 100	0, 190, o 380	500	1900	90-120

Hustración 6. Requisitos de asignación para chorros de mangueras y duración del suministro de agua para sistemas calculados hidráulicamente. Fuente: (National Fire Protection Association, 2019)

CÁLCULOS HIDRAULICOS ROCIADORES SEGÚN NFPA13

NOMBRE DEL CONTRATO Museo regional de San Ramón
FECHA 19/10/2025 SISTEMA DE ROCIADORES

ONGET	UD ENTRE D	EAMALES (L) (m)		3,53	Dis	(SIDAD)	ULICAD	ÓN	0,1	gpm/ft2	AREA DE DISEÑO)	1500	fi2	TIPOR	ocuano	R/CANT		GLOBAL FLUX UPRIGHT, 155°, 1/2°	N° ROC
ISTAN	CIA ENTRE	ROCIADORES (8) (m)	-	2,53	AREA (OBERT	BLA ROCI	ADOR	225,0	ft2	Area de cobernes			ft2					Nº ROCIADORES DE DISEÑO	8
ine.		CENT Y STITULE SON CO. QUELLAGEN PLANS	CAUL	OAL (L/Min)	DIAM INT (ii) .	uds	TIPO	LEquiv Access	EQUEVAL	ENTE DE ERIA	PERDIDA de CARGA Instituto		GLOSE DE RESKON		SION	Coef K	VELO	CIDAD	NOTAS	TRAMO
						- 1	Ť	- 5	LON	orn.	C= 120	Pt	11,211	Pt	1,52885		21,65	ft/s		
	100	TRAMO DE 1	4=		10.00	-0	C	2	TRAMO	8,3		Ph			0,32481	200	6,60	m/s		
ı	01	A 2			1,05	- 0			ACCES	- 5	0,1150 psi/ft					5,6	1.2	7		1.
			0=	88.75				1.00	TOTAL	13,3		ΔP	1,5289	Pn	1,20404		4	100		5
_	1	1000				- 1	Т.	- 6	LON	3 (FT).	C= 120	Pt	12,739	Pt	14,93	-	25,90	II/s		
,	66	TRAMO DE 2	4=	19,99	1,38	3	C		TRAMO	9,84		Ph		Pv	0,46465	100	7,89	m/s		- 4
4	0.2	A 3			1,38		-Va		ACCES	9	0,1163 psi/fi			-		5,6	1.45.70	100		2
		1	Q=	39			Ve		TOTAL	18,8		ΔP	2,1906	Pn	14,4654					
							1	×	LON	a(PT).	C= 120	Pt	14,93	Pt	27,0176		29,66	n/s	Ph= (n)*(psi/n)	
3	03	TRAMO DE 3	q=	21,64	1,61	0	C	- 3	TRAMO.	8,3		Ph	5,0271	Py -	0,60926	5.6	9,04	m/s		3
3	u.s	A4			1,61		Va		ACCES	8	0,1247 psi/ft					3,6	100	1.4		
			Q=	66		-	Vc		TOTAL	16,3		ΔP	7,0604	Pn :	26,4083					
_		10000				-1	T	- 8	LONG	3 (PT).	C= 120	Pt.	21,99		25,64		42,56	n/s		
	04	TRAMO DE 4	q=	26,26	1.61	- 0	C	- 4	TRAMO	7		Ph		PV	1,25452	5.6	12,97	m/s		- 4
*	0.4	A 5			1,01		Va		ACCES		0,2433 psi/ft		-			3,0	100			-
			Q=	87	-		Ve		TOTAL	15,0			3,6496	Pn .	24,3855					
			-			- 0	T	- 5	LON	3(FT).	C= 120				25,64		18,08	ft/s	k eq.	
5	5	K equivalente	4=		2.47	0	C	2	TRAMO	0		Ph		Pv	0,22646	5.6	3,51	m/s	17,10963605	5
3		is equivalent					Va	-	ACCES	0	0,0303 psi/ft					-				- 5
			Q=	87			Ve		TOTAL	0,0		ΔP		_	25,4136					
		4-0000	q=	- 355		1	T	12		(FT).	C= 120		- 25,64		26,3537		18,08	m/s		
6	06	TRAMO DE 5	4	0,00	2,47	- 0	C	- 6	TRAMO	11,58		Ph		Py	0,22646	0	5,51	m/s		6
u		A 6			1200		V ₄		ACCES -	12	0,0303 psi/ti									
			Q=	87			Ve		TOTAL	23,6			0,7137		26,1273					
	-		a=			23	T	- 12	-	3(PT).	C= -120		26,354		90,4341		36,41	ft/s		
_	0.0	TRAMO DE 6	,	87,83		2	C	- 6	TRAMO	266		Ph	0,2685	Pv	0,91841		11,10	m/s		7
7	07	AII			2,47		V.man	7	ACCES	309	0,1105 psi/ft					5,6			le control of the con	-
		10.77	-	174		0	V.chec V.com	- 14		575.0			63,812		89,5157					
	_		Q=	174				_	TOTAL			ΔP			-			-		
		TRAMO DE	q=	0.00		- 4	C	15	TRAMO	7,94	C= 120		90,166		106,55		23,57	m/s	-	
8	08	4391001000000		0,00	3,07	1				117	0.0383 nsi/t	Ph	2,/9/9	PV .	0,38483	3,6	7,18	mrs		8
	1.	11 A 12	0=1	174		3	V.chec V.com		TOTAL	124,9	O,0383 psut	AP	10,586	D. I	106,163					
	-	_	Y-	1/4		-0	T		LON		C= 120		10,386	_	100,752		36,41	fi/s		
	- 11		q=	0,00		0	Ċ	. 3	TRAMO	oprij.	C= 120	Ph			0,91841		11,10	m/s		
9	09	Presión	_	U,M	2,47		Va	- 2	ACCES	0	0,1105 psi/tt				9,71,541	5,6	11,10	mus		9
			0=1	174	1	-	Vc		TOTAL	0,0	0,1105 para	ΔP	- 0	Pn I	99,8334					
			1		$\overline{}$		***		- Strain	4,0		JAP"							de la companya della companya della companya de la companya della	

	GPM
CAUDAL DE DEMANDA CALCULADO	174
PRESIÓN DE DEMANDA	PSI
TRESTON DE DEMANDA	101

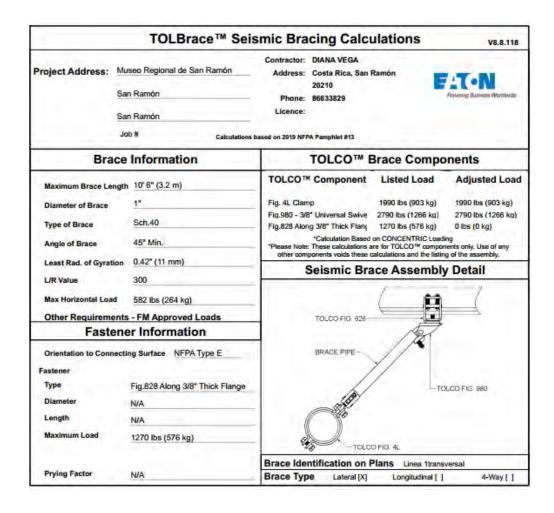
La capacidad del sistema de bombeo debe ser de 174 gpm y 101 psi

Cuadro F.1 Tubería de cédula 40 y cédula 10

					ASTN	A795			ASTA	A53		
	2	-			SC	H10	SCH40					
N	,D	0	.D	WALLTH	IICKNESS	NOMINAL	WEIGHT	WALLTH	ICKNESS	NOMINA	NOMINAL WEIGHT	
mm	inch	mm	inch	mm	inch	Kg/mtrs	lbs/ff	mm	inch	Kg/mits	lbs/ft	
15	1/2	21,30	0,840	_	_		_	2.77	0.109	1,27	0,85	
20	3/4	26.70	1,050	2.11	0.083	1.28	0.86	2.87	0.113	1,69	1.13	
25	Ŷ	33,40	1.315	2.77	0.109	2.09	1.41	3.38	0.133	2.50	1.68	
32	1-1/4	42.20	1,660	2.77	0.109	2.69	1.81	3.56	0.140	3.39	2.27	
40	1-1/2	48.30	1.900	2.77	0,109	3,11	2.09	3.68	0,145	4,05	2.72	
50	2	60.30	2,375	2.77	0.109	3.93	2.64	3.91	0.154	5.45	3.66	
65	2-1/2	73,00	2,875	3,05	0,120	5,26	3,53	5,16	0,203	8,64	5,80	
80	3	88.90	3,500	3,05	0.120	6,46	4.34	5,49	0.216	11,29	7,58	
100	4	114.30	4,500	3.05	0.120	8.37	5.62	6.02	0.237	16.09	10.80	
150	6	168,30	6.625	3.40	0.134	13.85	9.30	7.11	0.280	28.29	18,99	
200	8	219.10	8,625	3.76	0.148	25.26	16.96	8.18	0.277	36.82	24.72	
250	10	273.0	10.75	4.19	0.165	31.63	21.23	9.27	0.365	60.29	40.48	

UL EX2550 / FM 305267

Fuente: (ARMOUR, s.f.)


Cuadro F.2 Tabla de longitudes equivalentes de tuberías

	1/4 pulg.	3/4 pulg.	1 pulg.	1¼ pulg.	1½ pulg.	2 pulg.	2½ pulg.	3 pulg.	3 hpulg.	4 pulg.	5 pulg.	6 pulg.	8 pulg.	10 pulg.	12 pulg.
Accesories y válvulas	(15 mm)	(20 mm)	(25 mm)	(32 mm)	(40 mm)	(50 mm)	(65 mm)	(80 mm)	(90 mm)	(100 mm)	(125 mm)	(150 mm)	(200 mm)	(250 mm)	(300 mm)
Codo 45°	-	1 (0.3)	1 (0.3)	1 (0.3)	2 (0.6)	2(0,6)	3 (0.9)	3 (0.9)	3 (0.9)	4 (1.2)	5 (1.5)	7 (2.1)	9 (2.7)	11 (3.3)	13 (4)
Codo estándar 90°	1 (0.3)	2 (0.6)	2 (0.6)	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)	7 (2.1)	8 (2.4)	10 (9)	12 (3.7)	14 (4.5) -	18 (5.5)	22 (6.7)	27 (8.2)
Codo de giro largo 90	0.5 (0.2)	1 (0.3)	2 (0.6)	2 (0.6)	2 (0.6)	3 (0.9)	4 (1.2)	5 (15)	3 (1.5)	6 (1.8)	8 (2.4)	9 (2.7)	13 (4)	16 (4.9)	18 (5.5)
En To cruz (flujo con giru 90°)	3 (0.9)	4 (1.2)	0 (1.5)	6 (1.8)	8 (2.4)	10 (3)	12 (3.7)	15 (4.6)	17 (5.2)	20 (6.1)	29 (7.6)	30 (9,1)	35 (10.7)	50 (15.2)	60 (18.3)
Valvula mariposa	-	-	-	-	-	6 (1.8)	7 (2.1)	10 (3)	-	12 (3.7)	9 (2.7)	10.(3)	12 (3.7)	(9 (5.8)	21 (6.4)
Valvula de compuerta	-	-	-	-	-	1 (0.3)	1 (0.3)	1 (0.3)	1 (0.3)	2 (0.6)	2 (0.6)	3 (0.9)	4 (1.2)	5 (1.5)	Б (1.8)
Interruptor de flujo de úpo paleta			6 (L8)	9 (2.7)	10 (8)	14 (4.3)	17 (5.2)	22 (6.7)		30 (9.1)		16 (4.9)	22 (6.7)	29 (8.8)	36 (11)
Vályula de retención a clapera*	-	-	5 (1.5)	7 (2.1)	0 (2.7)	11 (3.3)	14 (4.3)	16 (4.9)	19 (5.8)	99 (6.7)	27 (8.2)	52 (10)	45 (14)	55 (17)	65 (20)

Fuente: (National Fire Protection Association, 2019a)

Anexo F.1.1 Soportería antisísmica

En esta parte se va a enseñar una muestra del cálculo de la soportería longitudinal y transversal, ya que en total se hicieron 30 cálculos.

Diameter	Туре	Length	Total Length	Weight Per Unit Length	Total Weight
2.5" (65 mm)	Sch. 40	40 ft (12.2 m)	40 ft (12.2 m)	7.89 lb/ft (11.74 kg/m)	316 lbs (143 kg)
1.5" (40 mm)	Sch. 40	43.701 ft (13.3 m)	43.701 ft (13.3 m)	3.61 lb/ft (5.37 kg/m)	158 lbs (72 kg)
1.25* (32 mm)	Sch. 40	17.717 ft (5.4 m)	17.717 ft (5.4 m)	2.93 lb/ft (4.36 kg/m)	52 lbs (24 kg)
1" (25 mm)	Sch. 40	9.711 ft (3 m)	9.711 ft (3 m)	2.05 lb/ft (3.05 kg/m)	20 lbs (9 kg)
				Subtotal Waining	546 the (248 kg)
					546 lbs (248 kg)
				Wp (incl. 15%)	628 lbs (285 kg)
Main Size	Type/Sch.	Spacing (ft)		Wp (incl. 15%)	

Ilustración F.1 Cálculo para soporte antisísmico transversal

	TOLBrace™ Seis	smic Bracing Calculations vs.s.118
Project Address:	San Ramón San Ramón	Contractor: DIANA VEGA Address: Costa Rica, San Ramón 20210 Phone: 86633829 Licence: Dased on 2019 NFPA Pamphlet #13
Bra	ce Information	TOLCO™ Brace Components
Maximum Brace Le	ngth 10' 6" (3.2 m)	TOLCO™ Component Listed Load Adjusted Load
Diameter of Brace	1*	Fig. 4L Clamp 790 lbs (358 kg) 684 lbs (310 kg) Fig. 980 - 3/8* Universal Swive 3360 lbs (1524 kg) 2909 lbs (1320 kg)
Type of Brace	Sch.40	Fig.828 Across 1/2" - 7/8" Thi 3340 lbs (1515 kg) 0 lbs (0 kg)
Angle of Brace	60° Min.	"Calculation Based on CONCENTRIC Loading "Please Note: These calculations are for TOLCO™ components only. Use of any other components voids these calculations and the listing of the assembly.
Least Rad. of Gyrat	ion 0.42" (11 mm)	Seismic Brace Assembly Detail
L/R Value	300	
Max Horizontal Loa	d 713 lbs (323 kg)	<u>&</u> _
Other Requireme	ents - FM Approved Loads	TOLOG FIG. 828
Faste	ener Information	
Orientation to Conn	necting Surface NFPA Type F	TOLOG FIG. 880
Туре	Fig.828 Across 1/2" - 7/8" Thick FI	66
Diameter	N/A	TOLCO FIG. NL
Length	N/A	1
Maximum Load	3340 lbs (1515 kg)	0
O. Dept. 1	1	Brace Identification on Plans Linea flongitudinal
Prying Factor	N/A	Brace Type Lateral [] Longitudinal [X] 4-Way []

Diameter	Type	Length	Total Length	Weight Per Unit Length	Total Weight
2.5* (65 mm)	Sch. 40	59.45 ft (18.1 m)	59.45 ft (18.1 m)	7.89 lb/ft (11.74 kg/m)	469 lbs (213 kg)
1.5° (40 mm)	Sch. 40	56.201 ft (17.1 m)	56.201 ft (17.1 m)	3.61 lb/ft (5.37 kg/m)	203 lbs (92 kg)
1.25* (32 mm)	Sch. 40	26.476 ft (8.1 m)	26.476 ft (8.1 m)	2.93 lb/ft (4.36 kg/m)	78 lbs (35 kg)
1* (25 mm)	Sch. 40	18.045 ft (5.5 m)	18.045 ft (5.5 m)	2.05 lb/ft (3.05 kg/m)	37 lbs (17 kg)
				Subtotal Weigh	787 lbs (357 kg)
				Subtotal Weigh Wp (Incl. 15%	
Main Size	Type/Sch.	Spacing (ft)		Wp (incl. 15%)	

Ilustración F.2 Cálculo para soporte antisísmico longitudinal

Anexo G. Cotización del sistema de supresión de incendios

En este apartado se van a mostrar las cotizaciones llevadas a cabo, además del presupuesto elaborado para el sistema de supresión de incendios.

Anexo G.1 Cotizaciones

Cotización para una bomba de turbina de eje vertical de 946,35 lpm (250 gpm) a 696,370 kPa (101 psi), incluye el panel de control para la bomba principal, la bomba jockey y su panel de control, el tanque de combustible y los accesorios que corresponden.

24-febrero-2023

Universidad de Costa Rica San Ramón

San Ramón, Alajuela 20201

Attn: Diana Vega dianavegav97@hotmail.com

Referencia cliente: Nombre proyecto: UDCR /SO / Bomba Museo Regional / CR Cotización No.: 1894744

COTIZACIÓN

Ruhrpumpen se complace en presentar esta cotización para su consideración.

OBSERVACIONES:

- Se consideran 3.468 Ft a una temperatura máxima de 84.2 F
- Se considera una longitud total de las bombas de acuerdo a lo requerido de 6.56 ft (2m)
- Se considera una carga dinámica total de 103 PSI.
- Se debe considerar un mínimo nivel de agua de 3.99 ft en el cárcamo aproximadamente
- El tiempo de entrega está sujeto al inventario disponible en el momento de la compra.
- Esta oferta incluye únicamente lo mencionado en nuestro alcance de suministro, cualquier otro equipo que no esté listado en esta oferta no será considerado.
- Se está considerando material y equipos estándar de Ruhrpumpen en esta cotización
- No se consideran pintura ni recubrimientos epóxicos para estos equipos.

ALCANCE DE SUMINISTRO:

Nuestra propuesta incluye lo detallado en nuestro alcance de suministro para cada partida cotizada. El precio está basado estrictamente en lo indicado en este Alcance de Suministro, ningún otro artículo debe asumirse o considerarse como provisto, diseños adicionales no especificados en el alcance de suministro pueden ser cotizados como opcionales. Usted puede contactar a Ruhrpumpen para disponibilidad, tiempo de entrega y precio. Ruhrpumpen S.A. es una compañía a nivel mundial que tiene plantas de manufactura en varios países alrededor del mundo y como compañía de clase mundial utilizamos los mismos procesos de manufactura en cualquiera de nuestras plantas.

ESPECIFICACIONES:

No hay especificaciones para revisión.

VIGENCIA:

Esta oferta es válida por 30 días desde la fecha en que se encuentra firmada o en su defecto desde la fecha en que fue enviada. Para órdenes en "estado de aprobación" de documentación, las cotizaciones se mantendrán firmes hasta la entrega, siempre y cuando el cliente la libere dentro de los 30 días ,después de la fecha original de entrega. De lo contrario, será aplicado un incremento en el precio y una extensión en el período de entrega.

Debido a los recientes (y continuos) aumentos sin precedentes en los precios de las materias primas a nivel mundial, cualquier pedido de compra recibido con una validez de cotización vencida puede estar sujeto a un aumento de precio antes de la aceptación. Detalles sobre el motivo del aumento de precio (si corresponde) proporcionados por Ruhrpumpen en ese momento.

PRECIO:

Los precios cotizados son para todas las partidas compradas por una sola vez. En caso de una orden parcial, nosotros revisaremos y ajustaremos como corresponde. Los precios mostrados son USD.

FLETE:

If any freight pricing is included in this quotation, then it is an estimated price and will be invoiced to customer at actual cost. Freight Incoterm below is per Incoterms 2020.

All equipment is quoted FCA Monterrey, Mexico.

RUHRPUMPEN SYSTEMS S.A. DE C.V. Niquel 9204 Cd. Industrial Mitras García, N.L. México C.P. 66000 Phone: ±52 (81) 8158-5500

www.ruhrpumpen.com

Freight is collect or third party billing. If prepaid and add is required, a 15% handling fee will be added to the freight bill.

EMPAQUE:

Empaque de exportación.

ENTREGA:

18 semanas después:

De cubrir el pago del primer anticipo.

CERTIFICADOS DE EXPORTACION - CONDICIONES PREVIAS: La obligación del proveedor de llevar a cabo esta oferta está condicionada al otorgamiento de permisos, licencias y aprobaciones necesarias requeridas por la ley correspondiente. La leyes deexportación serán aplicables a la Orden Compra y el tiempo de entrega será extendido el tiempo que sea necesario en relación al tiempo que tome el obtener dichos permisos, licencias y aprobaciones para los equipos en el país de la exportación.

ASISTENCIA EN EL ARRANQUE:

No incluida. Si es requerida ver nuestra hoja de tarifas de servicio y condiciones.

TERMINOS Y CONDICIONES:

Los Términos y Condiciones Generales de Ruhrpumpen son aplicables a esta cotización, por lo que forman parte integrante de lamisma. En caso de controversia entre la presente carta y los Términos y Condiciones Generales de Ruhrpumpen prevalecerá la presente carta.

TERMINOS DE PAGO:

50 % de anticipo, 50 % contra aviso de material listo para embarcar. (Impuestos no incluidos.)

DOCUMENTACION:

Offered documentation (both content and delivery time) is per attached:

Ruhrpumpen documentation delivery schedule - Package 1 - items submitted all at once in Final Data Book.

GARANTIA:

Garantía ofrecida es:

De acuerdo a los Términos y Condiciones de compra globales de Ruhrpumpen (incluyendo cotizaciones de referencia).

Gracias por considerar a Ruhrpumpen para su proyecto. Por favor no dude en contactarnos en caso de tener alguna pregunta. Locontactaremos en breve para asegurarnos que todas sus preguntas sean respondidas.

Esperamos seguir trabajando con usted próximamente.

Representantes autorizados de fábrica deben estar presentes para la prueba de aceptación de campo (NFPA 20 Edición 2022, Capítulo 14, Sección 14.2)

Saludos cordiales,

Carlos A. Labrador M. Industry Sales Engineer Central America Mobile: +507 68292223

CC: David Amezcua

Inside Sales Engineer – Fire Pumps email: camezcua@ruhrpumpen.com skype: camezcua_rp

RUHRPUMPEN SYSTEMS S.A. DE C.V. Niquel 9204 Cd. Industrial Mitras García, N.L. México C.P. 66000 Phone: +52 (81) 8158-5500

www.ruhrpumpen.com

El siguiente es un resumen de precios para este proyecto. Para detalles, ver cotización por artículos.

Item Tag Number	Service/Application	Pump Size	Stages	Item Unit Price	Quantity	Item Extended Price
001 - Diesel Kirloskar	500GPM @ 101PSI	10C-67	5	US\$ 58,435	1	US\$ 58,435
002 - Jockey	11.2GPM @ 111PSI	4SP 16-14	0	US\$ 1,777	1	US\$ 1,777
			•		Total	US\$ 60,212

Global Proposal System 22.4.2

Alcance de suministro				
Cliente	Universidad de Costa Rica	Tamaño / Etapas	10C-67 / 5 / 5	
Número de artículo	001 - Diesel Kirloskar	Velocidad de la bomba	1760 rpm	
Referencia cliente		Número de cotización	1894744	

	Alcance de suministro
Cant.	Descripción
1	10C-67 -5 stage
	Bomba Vertical
	Description: VS1, vertically suspended/single casing/discharge through column/diffuser, HI design pump
	Especificación vertical
	Construcción: Hydraulic Institute
	According with NSF: No
	Diseño de flecha lineal: Abierto
	Firepump Certification
	UL listed & FM approved pump (certified)
	Tazón
	10" bowl, stages: 5
	Flanged bowl
	Suction bell
1	Threaded bowl connection adapter to column
1	Construcción de materiales: CI-SSF
1	Materiales de cuerpo de tazones: A48 Cl. 30B material bowl
1	Material de impulsor: A351 Gr. CF8M material impeller
	416 SS Impeller collets
1	Material de bujes: A276 Type 316 (W/Petcoke) bowl bearing

1 Bowl wear ring material: A351 Gr. CF 1 Impeller wear ring material: A351 Gr. CF Bolting material Cabezal Cabezal 1 Carrete a la descarga para manor Cabezal de descarga p Descarga d Nozzle head Material: Cas	8M (Chrome) impeller wear ring 316SS metro y valvula liberadora. provisto por RP e 6" t Iron nozzle head
Bolting material Cabezal Cabezal Cabezal Carrete a la descarga para manor Cabezal de descarga p Descarga d	anetro y valvula liberadora. provisto por RP e 6" t Iron nozzle head
Cabezal Cabezal Cabezal Carrete a la descarga para manor Cabezal de descarga p Descarga d	netro y valvula liberadora. orovisto por RP e 6" t Iron nozzle head
Cabezal 1 Carrete a la descarga para manor Cabezal de descarga p Descarga d	orovisto por RP e 6" t Iron nozzle head
1 Carrete a la descarga para manor Cabezal de descarga p Descarga d	orovisto por RP e 6" t Iron nozzle head
Cabezal de descarga p Descarga d	orovisto por RP e 6" t Iron nozzle head
Descarga d	e 6" t Iron nozzle head
1	t Iron nozzle head
1 Nozzle head Material: Cas	· · · · · · · · · · · · · · · · · · ·
	e· Tino I
Nozzle Head Typ	o. Tipo L
Bridas de descarga: 125#	FF ANSI Flanges
Venteo de descarg	a: Roscado
1 Bearing: 31	SSS
Thrust Pot: No T	nrust Pot
Diversas	
1 Carbon steel s	soleplate
Columna	l .
Columna	
1 Se considera una longitud total de la bomba de la base del cabezal hasta la p	
1 Construcción de columna:	Columna roscada
Column material: Columna de ace	ero al carbón (ASTM A53)
Tamaño de columna	Columna 6"
Flecha de línea	1 1/4"
1 A582 Type 410	ineshaft
Lineshaft lubrication: Pro	oduct lubrication
Material se baleros en columna:	Rubber column bearings
Sello de fle	cha
Encerramiento de flecha: Em	paquetadura estándar

Alcance de suministro

	Alcance de Sullillistro
Cant.	Descripción
	Motor
	Tipo de motor: Engine drive
1	-Base VT (sólo motor diésel)
1	Motor Diésel Kirloskar o similar:
	-Modelo: KFP4R-UF07
	-62HP @ 1760 RPM
	-Listado UL/FM
	-Emisiones Tier T1
	-230 VAC chaqueta calentadora de agua
	-Escape flexible 4"
	-Sistema de 12 Volts
	-Kit de baterías con rack y cables 12V (suministradas secas)
	-Barra Cardán Listada UL con guardas y bridas de acoplamiento
	- Cople Torsional
	-Cuadro de enfriamiento VT 3/4"x1-1/4" , Max. 250PSI
	-Guarda
	-Manuales de operacion
	-Silenciador Industrial 4"
	-Pintura roja
1	Panel de Control Tornatech o Similar
	-Modelo: GPD-12-220
	-Listado UL/FM
	-Enclaustrado Nema 2
	-230 VAC / 1 Fase / 60 Hz
	-12 VDC
	-Montaje (patas en acero)

	-Pintura roja
	-Señales y alarmas de acuerdo a NFPA 20
	-Switch para bajo nivel de combustible -Suministrado suelto
1	Tanque Diesél Ruhrpumpen o similar
	-Listado UL-142
	-Pared sencilla
	-Capacidad 150 Gal
	-Material: Acero al carbón
	-NPT Locakable Fuel Cap, Screend Tank Vent, Fuel Guage NPT, NPT
	Lockable Drain Valve, Fuel Fill Pipe and NPT Lockable Fuel Valve -Montaje (Patas)
	-Primer Roja
	-Suministrado Suelto
1	Lineas de enfriamiento para motor Diesel.
	Diversas
1	Lineas de enfriamiento para cabezal engranado.
1	Engrane en Angulo Recto Amarillo o Similar:
	- Modelo: 60A
	- Aprobado FM - Angulo Recto
	- Radio 1:1 @ 1760/1760 RPM
	- Trinquete de no Retroceso
	- Entregado por separado
	Cople
1	Acoplamiento: Drive shaft and threaded coupling
	Cople con espaciador: No
1	Coupling guard: Coupling guard - OSHA compliant
	Testing
	Performance Testing
1	Certified Performance Test (non-witnessed) - Hydraulic Institute acceptance grade
	"1U"
4	Hydrostatic Testing
1	Hydrostatic Pressure Test - bowl assembly (non-witnessed)
1	Hydrostatic Pressure Test - discharge head (non-witnessed)
1	Hydrostatic Pressure Test - column (non-witnessed)
	Paint
	Stainless steel parts (if any) not coated.

Descripción Surface preparation is 'SSPC-SP10 (near White Metal) Sa 2½ , ISO 8501-1' which meets the intent of ISO 12944 latest edition surface preparation requirements. Bowl assembly coating Ruhrpumpen Sistema de revestimiento para equipos de protección contra incendios: categoría de corrosividad C2 / preparación de la superficie SSPC-SP10 / capa superior EP / código de color RAL 3001 ("rojo") / sólo superficies exteriores [partes de acero inoxidable (si las hay) sin revestimiento].

Alcance de suministro

Cant.

1

1

Discharge head coating

Ruhrpumpen Sistema de revestimiento para equipos de protección contra incendios: categoría de corrosividad C2 / preparación de la superficie SSPC-SP10 / capa superior EP / código de color RAL 3001 ("rojo") / sólo superficies exteriores [partes de acero inoxidable (si las hay) sin revestimiento].

Column coating


Ruhrpumpen Sistema de revestimiento para equipos de protección contra incendios: categoría de corrosividad C2 / preparación de la

	superficie SSPC-SP10 / capa superior EP / código de color RAL 3001 ("rojo") / sólo superficies exteriores [partes de acero inoxidable (si las hay) sin revestimiento].
	Documentación
	Documentación
1	RP Standard documentation package 1
	Preparación de flete
1	Preparación de flete: Empaque de Exportacion.
	Accesorios
	Accesorios
1	Manómetro en brida de descarga
	- Seco
	- UL/FM
	- Conexión inferior 1/4" NPT
	- Diámetro de carátula 4 "
	- Se incluye accesorios de conexión - Suministrado Suelto
1	
'	Válvula liberadora de aire y vacio Claval o similar -Modelo 33ATD
	-UL
	- Presion de Op. 300PSI
	-Tamaño 2"
	- Suminstrada Suelta
1	Valvula de Alivio de Presion Claval o Similar:
	-Modelo: 2050B-4KG-1
	-Listado UL/FM
	-Tamaño: 3"
	-Tipo Angulo -Bridada 150#FF x 150#FF
	-Suministrada suelta
1	Waste Cone Claval o Similar:
'	- Modelo WC-1
	- Tamaño 3" x 6"
	- 150#FF x 150#FF
	- Suministrado suelto
1	Flujometro Tornatech o Similar,
	- Modelo GT-FluxFP-0KK0
	- Aprobado FM
	- Ranurado
	- Tamaño 6"
_	- Suministrado suelto
1	Colador: 316 AUS basket strainer
	Arregio General
	Descarga arriba de la superficie
	Product Line Marketing Information
	Please see our product brochure for general information about this product line (some available features shown in brochure may not have been offered in above scope of supply)
	https://www.ruhrpumpen.com/en/products/vertical-pumps/vtp-vertical-turbine-
	pump

	Alcance	de suministro	
Cliente	Universidad de Costa Rica	Tamaño / Etapas	4SP 16-14 / -
Número de artículo	002 - Jockey	Velocidad de la bomba	0 rpm
Referencia cliente		Número de cotización	1894744

	Alcance de suministro
Cant.	Descripción
1	4SP 16-14
	Datos preliminares
	Diseño
	Diseño
1	Bomba Sumergible de Pozo Profundo WDM o Similar:
	- Modelo: 4SP-16-14 - 11.2 GPM @ 111 PSI
	- 1.5 HP
	- 14 Etapas
	- Succion y Descarga de: 1-1/4" - Impulsores y volutas fabricados en acero inoxidable 304
	- Entregado por Separado
1	Motor Sumergible Franklin o Similar:
	- Para pozo de agua - 1.5 HP
	- 1.5 HP - 220 V / 3 Fases / 60 Hz
1	Panel de Control, Tornatech o similar:
	- Modelo: JP3
	-Listado UL - 1.5 HP
	- 220 V / 60 Hz / 3 Ph
	- Enclaustramiento Nema 2
	- Pintura Roja
	- Señales y alarmas de acuerdo a NFPA-20 - Suministrado suelto
1	Columna de acero galvanizado de 1-1/4" roscada con codo de descarga
	*Se considera una longitud total de la bomba de 6.56ft (2m) de acuerdo con lo requerido. *

Velocidad, valorada : 1760 rpm Diámetro de impulsor, nominal : 7.50 in Diámetro de impulsor, máximo : 7.81 in Diámetro de impulsor, mínimo : 6.88 in Eficiencia : 76.5 % NPSH requerido / margen requerido : 2.93 / 0.87 psi Ns (flujo rodete) / Nss (flujo rodete) : 2,474 / 9,291 Unidades US Caudal estable continuo mínimo : 185.4 USgpm Altura máxima, diámetro nominal : 124.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / s0.51 / 81.29 %bomba) Relación de caudal, nominal / PMR (vaina / s0.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) : 96.01 % Relación de altura (diám. nominal / diám. s8.50 % máximo) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 /	Hoja		características	
Tamaño				
Número de artículo : 001 - Diesel KirloskarServicio : 500GPM © 101PSI Cantidad 1 Condiciones de operación Caudal, nominal : 500.0 USgpm Presión / altura diferencial, rated (requerido) : 101.0 psi Presión de succión, diseño/máx. : 0.00 100.0 psi g NPSH disponible, Diseño : Amplio Frecuencia de suministro del centro : 60 Hz Presión de impulsor, nominal : 7.50 in Diámetro de impulsor, máximo : 7.81 in Diámetro de impulsor, máximo : 7.81 in Diámetro de impulsor, máximo : 2.93 / 0.87 psi NSFSH requerido / Margen requerido : 2.93 / 0.87 psi NS (flujo rodete) / Nss (flujo rodete) : 2,474 / 9,291 Unidades Caudal, estable continuo mínimo : 185.4 USgpm Altura máxima, diámetro nominal : 126.4 psi Aument de la altura del elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal punto de mejor rendimiento (vaina / 611.1 / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de daimetro (nominal / máximo) : 96.01 % Relación de daitura (diám. nominal / diám. máximo) Cay(Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 / 1.00		a Rica		
Diesel KirloskarServicio : 500GPM ② 101PSI Cantidad 1 Condiciones de operación Caudal, nomical resión / altura diferencial, rated (requerido) : 500.0 USgm Presión / altura diferencial, rated (requerido) : 101.0 psi Presión / altura diferencial, rated (efectiva) : 101.0 psi Presión / altura diferencial, rated (efectiva) : 103.8 psi Presión de succión, diseño/máx. : 0.00	Referencia cliente :		Tamaño : 10C	5-67
© 101/PSI Cantidad 1 Condiciones de operación Caudal, nominal Presión / altura diferencial, rated (requerido): 101.0 psi Presión / altura diferencial, rated (efectiva) 101.0 psi Presión de succión, diseño/máx. 103.8 psi Presión de succión, diseño/máx. 104.00 psi g NPSH disponible, Diseño Precuencia de suministro del centro Rendimiento Velocidad, valorada 17.50 in Diámetro de impulsor, máximo 17.51 in Diámetro de impulsor, máximo 17.51 in Diámetro de impulsor, mínimo 18.6 88 in Eficiencia 17.65 % NS (flujo rodete) / Nss (flujo rodete) 12.4.74 / 9.291 Unidades US Caudal estable continuo mínimo Altura máxima, diámetro nominal 12.6.4 psi Aumento de la altura de elevación corn flujo de: 23.03 / 23.45 kimpulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / 605.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51, 81.29 %bomba) Relación de datura (diám. nominal / máximo) Relación de altura (diám. nominal / diám. máximo) CQ(Ch/Ce/Cn [ANSI/HI 9.6.7-2010] Frecha de último salvado 1500.0 USgpm Tipo de líquido 17ipo de sólidos, en volumen: 10.00 % temperatura, máxima de sólidos, en volumen: 10.00 % temperatura, máxima de sólidos, en volumen: 1100 presión de saparitaria (da líquido 1100 presión de saparitaria (da líquido 1100 presión de saparitaria (da líquido 1100 pres			l	
Caudal, nominal : 500.0 USgmm Presión / altura diferencial, rated (requerido) : 101.0 psi Presión / altura diferencial, rated (efectiva) Diámetro máximo de sólidos : 0.00 in Concentración de sólidos, en volumen: Concentración de sólidos, en volumen: 0.00 % Temperatura, máxima : 68.00 F Densidad del líquido : 1.000 / 1.000 Peso esp. Velocidad, valorada : 1760 rpm Diámetro de impulsor, nominal : 7.50 in Diámetro de impulsor, máximo : 7.81 in Diámetro de impulsor, mínimo : 6.88 in Eficiencia in Sk (flujo rodete) / Nss (flujo rodete) / Nss (flujo rodete) / Nss (flujo rodete) / Sk (flujo rodete) / Ns (flujo rodete) / Us (US Caudal, punto de mejor rendimiento (vaina / bomba) Caudal, punto de diámetro (nominal / máximo) (Relación de diámetro (nominal / diám. maximo) (Relación de d			Según el número de la curva : VTF	P-10C-67-1760
Caudal, nominal :500.0 USgpm Tipo de líquido :Water Trambién conocido como : 101.0 psi Presión / altura diferencial, rated (requerido) :	@ 101PSI		Fecha de último salvado : 24-f	ebrero-2023 5:08 PM
Caudal, nominal Presión / altura diferencial, rated (requerido) 101.0 psi Presión / altura diferencial, rated (efectiva) 101.0 psi Presión / altura diferencial, rated (efectiva) 101.0 psi Presión / altura diferencial, rated (efectiva) 103.8 psi Presión de succión, diseño/máx. 103.8 psi Presión de succión, diseño/máx. 103.8 psi Presión de succión, diseño/máx. 100.00 psi.g 100.00 presión de vapor, diseño psi.g 100.00 presión				
Presión / altura diferencial, rated (requerido) : 101.0 psi Presión / altura diferencial, rated (efectiva) 101.0 psi Presión / altura diferencial, rated (efectiva) 101.0 psi Presión / altura diferencial, rated (efectiva) 101.0 psi Presión de succión, diseño/máx. : 0.00 100 % Temperatura, máxima 168.00 F 1.000 / 1.000 Pso esp. 1000 % Temperatura, máxima 168.00 F 1.000 / 1.000 Peso esp. 1000 % Temperatura, máxima 168.00 F 1.000 / 1.000 Peso esp. 1000 % Temperatura, máxima 168.00 F 1.000 / 1.000 Peso esp. 1000 / 1.000 Peso esp. 1000 % Temperatura, máxima 168.00 F 1.000 Peso esp. 1000 % Temperatura, máx	Condiciones de operación		·	
101.0 psi Presión / altura diferencial, rated (efectiva) 103.8 psi Presión de succión, diseño/máx. 103.8 psi Presión de succión, diseño/máx. 10.00 psi.g NPSH disponible, Diseño Rendimiento Velocidad, valorada Presión de impulsor, nominal Diámetro de impulsor, máximo 10.88 in Presión de vapor, diseño NPSH requerido / margen requerido psi Ns (flujo rodete) / Nss (flujo rodete) Unidades Us Caudal estable continuo mínimo Altura máxima, diámetro nominal 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / bomba) Relación de altura (diám. nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de altura (diám. nominal / diám. Relación de altura (diám. nominal / diám. 10.00 % Temperatura, máxima a : 68.00 F Concentración de sólidos, en volumen: 0.00 % Temperatura, máxima : 68.00 F Consulta (puldo : 1.000 / 1.000 Peso esp. Viscosidad, diseño 1.00 c P Presión de vapor, diseño : 0.34 psi.a Presión de vapor, diseño : 0.04 wapor, diseño : 0.34 psi.a Viscosidad, diseño : 1.00 c P Presión de vapor, diseño : 0.04 vapor, diseño : 0.04 psi.a Viscosidad, diseño : 1.00 c P Presión de vapor, diseño : 0.04 psi.a Viscosidad, diseño : 1.00 c P Presión de vapor, diseño : 0.34 psi.a Viscosidad, diseño : 1.00 c P Presión de vapor, diseño : 0.34 psi.a Viscosidad, diseño : 1.00 c P Presión de vapor, diseño : 0.05 w presión de datos Complementarios Us Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Us Datos unidad motriz & Potencia (@Densidad máx.) Margen sobre el criterio de potencia Margen de prestación : 0.00 % Factor de servicio : 1.00 Potencia, hidráulica : 29.96 hp Potencia (mixima máxima) : 39.19 / 39.21 hpPotencia máxima, diámetro nominal : 39.19 / 39.21 hpPotencia máxima, diámetro nominal : 45.20 hp Potencia	,	: 500.0 USgpm		: Water
Concentración de sólidos, en volumen: 103.8 psi Presión de succión, diseño/máx. 0.00	Presión / altura diferencial, rated (requerido)	:	También conocido como	:
103.8 psi Presión de succión, diseño/máx. : 0.00 / 0.00 psi.g / 0.00 p	101.0 psi Presión / altura diferencial, rated (efec	tiva)	Diámetro máximo de sólidos	: 0.00 in
Densidad del líquido 1.000 / 1.000 Peso 1.000 Peso 1.000 / 1.000 Peso 1.000 Peso 1.000 Peso 1.000 / 1.000 Peso 1.000 P		:	Concentración de sólidos, en volumen:	
NPSH disponible, Diseño : Amplio Frecuencia de suministro del centro : 60 Hz	103.8 psi Presión de succión, diseño/máx.	: 0.00	0.00 % Temperatura, máxima	: 68.00 F
Frecuencia de suministro del centro Rendimiento Viscosidad, diseño : 1.00 cP Presión de vapor, diseño : 0.34 psi.a Viscosidad, diseño : 1.40 Presión de descarga : Consulte la página de datos Complementarios Límite de presión de succión : N/D Presión de operación permisible: Consulte la página de datos Complementarios : 0.40 Vibrite de presión de operación permisible: de datos Consulte la página de datos Complementar	/ 0.00 psi.g		Densidad del líquido	: 1.000 / 1.000 Peso
Velocidad, valorada : 1760 rpm Diámetro de impulsor, nominal : 7.50 in Diámetro de impulsor, máximo : 7.81 in Diámetro de impulsor, mínimo : 6.88 in Eficiencia : 76.5 % NPSH requerido / margen requerido : 2.93 / 0.87 psi NS (flujo rodete) / Nss (flujo rodete) Unidades US US Caudal estable continuo mínimo : 185.4 USgpm Altura máxima, diámetro nominal : 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / eleación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) : 96.01 % Relación de altura (diám. nominal / diám. s88.50 % Cay(Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 / 1	NPSH disponible, Diseño	: Amplio	esp.	
Velocidad, valorada : 1760 rpm Diámetro de impulsor, nominal : 7.50 in Diámetro de impulsor, máximo : 7.81 in Diámetro de impulsor, mínimo : 6.88 in Eficiencia : 76.5 % NPSH requerido / margen requerido : 2.93 / 0.87 psi Ns (flujo rodete) / Nss (flujo rodete) : 2,474 / 9,291 Unidades : US Caudal estable continuo mínimo : 185.4 USgpm Altura máxima, diámetro nominal : 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / 615.1 USgpmbomba) Caudal, punto de mejor rendimiento (vaina / 80.51 / 81.29 %bomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de altura (diám. nominal / diám. s8.50 % Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 / 1.0	Frecuencia de suministro del centro	: 60 Hz	Viscosidad, diseño	: 1.00 cP
Diámetro de impulsor, nominal Diámetro de impulsor, máximo Diámetro de impulsor, máximo Diámetro de impulsor, mínimo Eficiencia Calcincia NPSH requerido / margen requerido Posi NS (flujo rodete) / Nss (flujo rodete) US Caudal estable continuo mínimo Altura máxima, diámetro nominal 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / bomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) Relación de diámetro (nominal / diám. Relación de altura (diám. nominal / diám. Relación de altura (diám. nominal / diám. Relación de altura (diám. nominal / diám. Relación de (altura (diám. nominal / d	Rendimiento		Presión de vapor, diseño	: 0.34 psi.a
Diámetro de impulsor, máximo Diámetro de impulsor, mínimo Eficiencia Edatos Eonsulte la página de datos Complementarios Límite de presión de succión E N/D Presión de prueba hidrostática E Consulte la página de datos Empleosión Edatos Empleosión E obravile datos Empleosión de operación permisible: Eonsulte la página de datos Empleosión Edatos Empleosión de succión Elimite de presión de succión Elimite de presión de succión Elimite de presión de operación permisible: Eonsulte la página de datos Empleosión de succión Elimite de presión de prueba hidrostática Elimite de presión de succión Elimite de presión de d	Velocidad, valorada	: 1760 rpm		
Diámetro de impulsor, máximo Diámetro de impulsor, mínimo Eficiencia Eficiencia Eficiencia NPSH requerido / margen requerido psi NS (flujo rodete) / Nss (flujo rodete) Unidades US Caudal estable continuo mínimo Altura máxima, diámetro nominal 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / bomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de datura (diám. nominal / máximo) Relación de altura (diám. nominal / diám. Relación de diámetro (nominal / diám. Relación de diámetro (nominal / diám. Relación de diámetro (nominal /	Diámetro de impulsor, nominal	: 7.50 in	Datos presión	
Diámetro de impulsor, mínimo : 6.88 in Eficiencia : 76.5 % NPSH requerido / margen requerido : 2.93 / 0.87 psi NS (flujo rodete) / Nss (flujo rodete) : 2,474 / 9,291 Unidades US Caudal estable continuo mínimo : 185.4 USgpm Altura máxima, diámetro nominal : 22.3.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) : 96.01 % Relación de altura (diám. nominal / diám. máximo) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 /	Diámetro de impulsor, máximo	: 7.81 in		: Consulte la página
NPSH requerido / margen requerido psi Ns (flujo rodete) / Nss (flujo rodete) Us Caudal estable continuo mínimo Altura máxima, diámetro nominal 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) Relación de diámetro (nominal / diám. máximo) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] Náxima presión de operación permisible: Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos Complementarios Máxima presión de operación permisible: Consulte la página de datos Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos Límite de presión de vacción : N/D Presión de prueba hidrostática : Consulte la página de datos Límite de presión de vacción : N/D Presión de prueba hidrostática : Consulte la página de datos Límite de presión de vacción : N/D Presión de prueba hidrostática : Consulte la página de datos Límite de presión de vacción : N/D Presión de prueba hidrostática : Consulte la página de datos Límite de presión de vacción : N/D Presión de prueba hidrostática : Consulte la página de datos	Diámetro de impulsor, mínimo	: 6.88 in	de datos	1 0
psi Ns (flujo rodete) / Nss (flujo rodete) Us Caudal estable continuo mínimo Altura máxima, diámetro nominal 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) Relación de altura (diám. nominal / diám. máximo) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] Ns (flujo rodete) / Nss (flujo rodete) : 2,474 / 9,291 Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos complementarios Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos	Eficiencia	: 76.5 %		complementarios
Ns (flujo rodete) / Nss (flujo rodete) Unidades Unidades Unidades Unidades Unidades Unidades US US Límite de presión de succión : N/D Presión de prueba hidrostática : Consulte la página de datos Caudal estable continuo mínimo Altura máxima, diámetro nominal : 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) Relación de altura (diám. nominal / diám. Sexual de datos Datos unidad motriz & Potencia (@Densidad máx.) Margen sobre el criterio de potencia : Potencia máxima Margen de prestación : 0.00 % Factor de servicio : 1.00 Potencia, hidráulica : 29.96 hp Potencia (tazón / bomba) : 39.19 / 39.21 hpPotencia máxima, diámetro nominal : 45.20 hp Potencia mínima recomendada de motor: 50.00 hp / 37.29 kW		: 2.93 / 0.87		Consulte la página
Us Límite de presión de succión S N/D Presión de prueba hidrostática Consulte la página de datos Consulte la página datos Consulte la p	·	: 2.474 / 9.291		complementarios
Caudal estable continuo mínimo : 185.4 USgpm Altura máxima, diámetro nominal : complementarios 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) : 96.01 % Potencia (tazón / bomba) : 39.19 / 39.21 hpPotencia máxima, diámetro nominal / máximo) CayCh/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 / 1.00 / 1.00 / 1.00		, , .	Límite de presión de succión	: N/D
Altura máxima, diámetro nominal : 126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) : 96.01 % Relación de altura (diám. nominal / diám. 88.50 % Relación de altura (diám. nominal / diám. 100 / 1.		US	Presión de prueba hidrostática	: Consulte la página
126.4 psi Aumento de la altura de elevación con flujo de : 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / : 621.1 / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / : 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) : 96.01 %	Caudal estable continuo mínimo	: 185.4 USgpm	de datos	
de: 23.03 / 23.45 %impulsión cerrado (vaina / bomba) Caudal, punto de mejor rendimiento (vaina / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) Relación de altura (diám. nominal / diám. 88.50 % máximo) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] (@Densidad máx.) Margen sobre el criterio de potencia : Potencia máxima Margen de prestación : 0.00 % Factor de servicio : 1.00 Potencia, hidráulica : 29.96 hp Potencia (tazón / bomba) : 39.19 / 39.21 hpPotencia máxima, diámetro nominal : 45.20 hp Potencia mínima recomendada de motor: 50.00 hp / 37.29 kW	Altura máxima, diámetro nominal	:		
bomba) Caudal, punto de mejor rendimiento (vaina / 615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) Relación de altura (diám. nominal / diám. 88.50 % máximo) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] Caudal, punto de mejor rendimiento (vaina / 621.1 / Factor de servicio 10.00 % Factor de servicio 11.00 Potencia, hidráulica 129.96 hp Potencia (tazón / bomba) 39.19 / 39.21 hpPotencia máxima, diámetro nominal 15.20 hp Potencia mínima recomendada de motor: 50.00 hp / 37.29 kW 1.00 / 1.00		ı flujo	(@Densidad máx.)	
Factor de servicio : 1.00 Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) : 29.96 hp Potencia (tazón / bomba) : 39.19 / 39.21 hpPotencia máxima, diámetro nominal / diám. máximo) : 88.50 % máximo) : 88.50 % Todo (Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 / 1.00 / 1.00	·			
615.1 USgpmbomba) Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) Relación de altura (diám. nominal / diám. máximo) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] 1.00 / 1.00 Factor de servicio : 1.00 Potencia, hidráulica : 29.96 hp Potencia (tazón / bomba) : 39.19 / 39.21 hpPotencia máxima, diámetro nominal : 45.20 hp Potencia mínima recomendada de motor: 50.00 hp / 37.29 kW	,	: 621.1 /		
Relación de caudal, nominal / PMR (vaina / 80.51 / 81.29 %bomba) : Potencia (tazón / bomba) : 39.19 / 39.21 hpPotencia máxima, diámetro nominal / diám. máximo) : 88.50 % cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 / 1.00 / Potencia mínima recomendada de motor: 50.00 hp / 37.29 kW		•		
80.51 / 81.29 %bomba) Relación de diámetro (nominal / máximo) Relación de altura (diám. nominal / diám. máximo) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] 1.00 / 1.00 Potencia (tazón / bomba) 39.19 / 39.21 hpPotencia máxima, diámetro nominal 45.20 hp Potencia mínima recomendada de motor: 50.00 hp / 37.29 kW	,		Potencia, hidráulica	: 29.96 hp
Relación de altura (diám. nominal / diám. : 88.50 % nominal : 45.20 hp Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 / 1.00 / 1.00			,	:
máximo) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 / 1.00 / 1.00 / 1.00	Relación de diámetro (nominal / máximo)	: 96.01 %	39.19 / 39.21 hpPotencia máxima, diáme	tro
Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] : 1.00 / 1.00 / Potencia mínima recomendada de motor: 50.00 hp / 37.29 kW 1.00 / 1.00	· ·	: 88.50 %		:
	Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010]	: 1.00 / 1.00 /	Potencia mínima recomendada de motor	: 50.00 hp / 37.29 kW
	Estado de la selección	: Aceptable		

Cotización para una bomba de turbina de eje vertical de 946,35 lpm (250 gpm) a 696,370 kPa (101 psi).

Comentarios:	TOTAL:	54.000.00 USS	
Los precios indicados son válidos para el total de la oferta; cambios significativos del requesimiento, implicarán una nueva cotización o el retiro de la misma. Los Siempos de entréga son válidos al momento de la corización, pero sujetos a venta previa. Las entregas podrán fornar hasta 48 horas después de confirmada la orden de compra, dado los compromisos previos de bodega y transportes.	CASHBACK: SUBTOTAL: IMP DE VENTA: TOTAL:	0.00 US\$ 54,000.00 US\$ 7,020.00 US\$ 61,020.00 US\$	
Condición de Entrega: DDP EN PROYECTO EN GAM Oferta válida hasta: 10-03-2023 Condiciones de Pago: PRE-PAGADO	E	LABORADO POR Presupuestos	

Agradecemos sus comentarios para mejorar nuestro servicio al cliente. Escribanos a: opinion@inpprod.com

Cotización para elementos del sistema de supresión contra incendios.

OFIBODEGAS MILANO, #6, CALLE POTRERILLOS, SAN RAFAEL, ALAJUELA 20108 - COSTA RICA TELF: 506-4000.2818	Nº COTIZACIÓN: CTC1103122 Pág: 1/4 San Jose de Costa Rica, 23-02-2023
Cliente: DIANA VEGA VALERIO Cedula Juridica: . Dirección: Almacenes INPPROD	Proyecto: N/A
Teléfonos:	Moneda: US\$
Contacto:	

Refer.	Código	Descripción	Cantidad	Und	Precio Unitario	Precio Total	T/ Entrega
1	AR-IV-MH-XQH-350G 0250	- 2-1/2" RISER CHECK VALVE, GXG, 350PSI, UL/FM	2.00	PZA	96.52	193.04	
2	The state of the state of the state of	- 3" RISER CHECK VALVE, GXG, 350PSI,	3.00	PZA	120.39	361.17	
3	0300 AR-IV-MH-XQH-350G 0600	UL/FM -6" RISER CHECK VALVE, GXG, 350PSI, UL/FM	1.00	PZA	264.35	264.35	
4	AR-BV-SC20-0050	1/2* SWING CHECK VALVE,NPT,200PSI,BRASS	4.00	PZA	5.48	21.92	
5	AR-IV-MH-XQH-350G 0200	- 2" RISER CHECK VALVE, GXG, 350PSI, UL/FM	1.00	PZA	64.72	64.72	
6	AR-IV-Z81-0200	2" OS&Y GATE VALVE,GXG,200PSI FM/ NSF61	1.00	PZA	143.30	143.30	
7	AR-IV-Z81-300-0300	3" OS&Y GATE VALVE,GXG,300PSI UL/FM, NSF61	2.00	PZA	273.22	546.44	
8	AR-BV-BA40-0050	1/2* BALL VALVE, FULL PORT, NPT, 400PS, BRASS	3.00	PZA	5.67	17.01	
9	BC-700-100-00060	1/2* GLOBE VALVE, BRASS, 200PSI	6.00	PZA	16.05	96.30	
10	AR-IV-GD381Y-0200	2" BUTTERFLY VALVE, GXG W/TAMPER SWITCH, 300PSI, UL/FM, NSF/ANSI61	1.00	PZA	134.15	134.15	
11	AR-IV-GD381X-0300	3" BUTTERFLY VALVE, GXG W/TAMPER SWITCH, 300PSI, UL/FM, NSF/ANSI61	1.00	PZA	144.71	144.71	
12	VM-15A-175-0100	1" 15A.3 AIR RELEASE VALVE 175 PSI,UL/FM	1.00	PZA	191.27	191.27	
13	GF-CFLX-0200-E	FLEXIBLE COUPLING, GRV UL/FM, EPDM 2"	4.00	PZA	3.71	14.84	
14	GF-CFLX-0300-E	FLEXIBLE COUPLING, GRV UL/FM, EPDM 3"	2.00	PZA	5.39	10.78	
15	GF-CFLX-0600-E	FLEXIBLE COUPLING, GRV UL/FM, EPDM 6"	1.00	PZA	10.31	10.31	
16	WT-GA-PFE-3935R1	AIR/WATER GAUGE PLASTIC 3.5° 0-300PSI, 1/4° BR NPT BOTTOM UL/FM	6.00	PZA	18.85	113.10	
17	HS-LOOP-0100-EG	1" LOOP HANGER UL/FM,EG	1.00	PZA	0.32	0.32	
18	HS-LOOP-0150-EG	1-1/2" LOOP HANGER UL/FM,EG	1.00	PZA	0.37	0.37	
19	HS-LOOP-0200-EG	2" LOOP HANGER UL/FM,EG	1.00	PZA	0.40	0.40	
20	HS-LOOP-0250-EG	2-1/2" LOOP HANGER UL/FM,EG	1.00	PZA	0.72	0.72	

Refer.	Código	Descripción	Cantidad	Und	Precio Unitario	Precio Total	T/ Entrega
21	HS-LOOP-0300-EG	3" LOOP HANGER UL/FM,EG	1.00	PZA	0.86	0.86	
22	HS-LOOP-0600-EG	6" LOOP HANGER UL/FM,EG	1.00	PZA	2.05	2.05	
23	HS-CSB-0250-EG	2-1/2" EASY UNIVERSAL SWAY BRACE,UL/FM	19.00	PZA	30.51	579.69	
24	HS-CSBQG-0250-EG	2-1/2" LATERAL SWAY BRACE, UL/FM	28.00	PZA	22.88	640.64	
25	HS-DRO-MIN-0037-E G	3/8" X 3/4" MINI DROP IN ANCHOR,EG	2.00	PZA	0.14	0.28	
26	HS-DRO-STD-0037-E G	3/8" X 1-9/16 DROP IN ANCHOR,EG	1.00	PZA	0.36	0.36	
27	HS-ROD-0037-3M-EG	3/8" X 3M ALL THREAD ROD,EG	1.00	PZA	2.23	2.23	
28	HS-CHN-14-158-158-I S-EG	L 1-5/8" X 1-5/8" X 3M STRUT CHANNEL,14G,L-SLOTS,EG	1.00	PZA	12.19	12.19	
29	VK-SCQR-3001-K56-L 68B	JVK3001 SPK, QR UPRIGHT 1/2" K5.6, 68°C, BR UL/FM, 23869AB	132.00	PZA	8.32	1,098.24	
30	VK-SCQR-3021-K56-F 68W	PVK3021 SPK, QR PENDENT 1/2" K5.6, 68°C, WH UL/FM, 23870MB/W	53.00	PZA	8.91	472.23	
31	TF-E90-0100	1" THREADED ELBOW 90°, UL/FM	70.00	PZA	1.93	135.10	
32	TF-E90-0150	1-1/2" THREADED ELBOW 90", UL/FM	81.00	PZA	3.85	311.85	
33	TF-E90-0200	2" THREADED ELBOW 90°, UL/FM	7.00	PZA	5.78	40.46	
34	GF-E90-0250	SHORT RADIUS 90° ELBOW,GRV UL/FM 2-1/2"	11.00	PZA	4.56	50.16	
35	GF-E90-0300	SHORT RADIUS 90° ELBOW,GRV UL/FM 3°	3.00	PZA	6.25	18.75	
36	GF-E90-0600	SHORT RADIUS 90° ELBOW,GRV UL/FM 6°	7.00	PZA	22.89	160.23	
37	TF-TEE-0050	1/2* THREADED TEE, UL/FM	1.00	PZA	1.10	1.10	
38	TF-TEE-0100	1" THREADED TEE, UL/FM	55.00	PZA	2.50	137.50	
39	TF-TEE-0150	1-1/2" THREADED TEE, UL/FM	97.00	PZA	4.82	467.54	
40	TF-TEE-0200	2" THREADED TEE, UL/FM	1.00	PZA	7.22	7.22	
41	GF-TEE-0250	SHORT RADIUS TEE, GRV UL/FM 2-1/2"	82.00	PZA	7.52	616.64	
42	GF-TEE-0300	SHORT RADIUS TEE, GRV UL/FM 3"	3.00	PZA	8.99	26.97	
43	GF-TEE-0600	SHORT RADIUS TEE, GRV UL/FM 6"	1.00	PZA	32.95	32.95	
44	TF-COU-0100	1" THREADED STRAIGHT COUPLING, UL/FM	679.00	PZA	1.44	977.76	
45	TF-COU-0150	1-1/2" THREADED STRAIGHT COUPLING,	564.00	PZA	2.50	1,410.00	

Refer.	Código	Descripción	Cantidad	Und	Precio Unitario	Precio Total	T/ Entrega
		UL/FM				Lares	
46	TF-COU-0200	2" THREADED STRAIGHT COUPLING, UL/FM	32.00	PZA	3.89	124.48	
47	GF-CRGD-0250-E	ANGLE PAD RIDGID COUPLING, GRV UL/FM EPDM 2-1/2"	229.00	PZA	4.64	1,062.56	
48	GF-CRGD-0300-E	ANGLE PAD RIDGID COUPLING, GRV	39.00	PZA	5.39	210.21	
49	GF-CRGD-0400-E	ANGLE PAD RIDGID COUPLING,GRV	4.00	PZA	6.64	26.56	
50	GF-CRGD-0600-E	ANGLE PAD RIDGID COUPLING,GRV	19.00	PZA	12.41	235.79	
51	TF-CAP-0100	1" THREADED CAP, UL/FM	31.00	PZA	1.15	35.65	
52	TF-CAP-0150	1-1/2" THREADED CAP, UL/FM	16.00	PZA	2.21	35.36	
53		1-1/2" A53,RED PIPE,SC40,GR.B PLAIN	45.00	PZA	55.39	2,492.55	
-	150-UF	END.UL/FM	40.00		55.55	2,402.00	
54	TACR-A53-SC40PE-0 100-UF	1" A53,RED PIPE,SC40,GR.B PLAIN END.UL/FM	47.00	PZA	34.84	1,637.48	
55	TACR-A795-SC10GE- 0250-UF	2-1/2" A795 ERW, RED PIPE,SC10,GR.B GROOVED END.UL/FM	46.00	PZA	81.02	3,726.92	
56	TACR-A53-SC40PE-0 200-UF	2" A53,RED PIPE,SC40,GR.B PLAIN END,UL/FM	3.00	PZA	73.70	221.10	
57		3" A795 ERW, RED PIPE,SC10,GR.B GROOVED END.UL/FM	2.00	PZA	98.84	197.68	
58	TACR-A795-SC10GE- 0600-UF	6" A795 ERW, RED PIPE,SC10,GR.B GROOVED END,UL/FM	2.00	PZA	208.39	416.78	
59	C900-SDR14-0400-20-	4" C900 SDR14 PIPE 20", UL/FM	1.00	PZA	194.94	194.94	
60	C900-E90-DI-0400-MN	14" X 90" DI ELBOW MJ X MJ UL/FM	1.00	PZA	101.48	101.48	
61		4" DI TEE MJ X MJ, UL/FM	1.00	PZA	143.27	143.27	
62	AR-FDC-175-04500	6" X 3" 3W BACK MANIFOLD,UL	1.00	PZA	720.69	720.69	
62-1	AR-FDC-125-02210	3" X 2-1/2" GATE HOSE VALVE,FNPT X MNST,UL/FM	3.00	PZA	322.19	966.57	
62-2	AR-FDC-125-01580	2-1/2" CAP AND CHAIN, BRASS	3.00	PZA	24.76	74.28	
63	AR-FDC-175-02785	6" X 2-1/2" 2W BACK DBL CLAP INLET UL/FM	1.00	PZA	343.16	343.16	
lefer.	Código	Descripción	Cantidad	Und	Precio Unitario	Precio Total	T/ Entrega
63-1	AR-FDC-125-01280	2-1/2" PLUG AND CHAIN ,BR,UUFM	2.00	PZA	46.19	92.38	
64	AR-FDC-37R-6N45	6" FNPT X 4-1/2" MNST W/CAP AND CHAIN	1.00	PZA	752.45	752.45	
65	VK-PS-G3000P-E	G3000P 3" PREACTION W/ ELECT REL	1.00	PZA	6,947.86	6,947.86	
69	TF-RED-0200-0050	2" X 1/2" THREADED REDUCING COUPLING, UL/FM	2.00	PZA	4.09	8.18	
70	GF-REDCT-0250-0150	CONCENTRIC RED G X T,UL/FM 2-1/2" X	109.00	PZA	3.19	347.71	
71	GF-REDCT-0300-0100	CONCENTRIC RED G X T,UL/FM 3" X 1"	1.00	PZA	3.58	3.58	
72		CONCENTRIC RED G X T,UL/FM 3" X 2"	1.00	PZA	4.07	4.07	
73		CONCENTRIC RED,G X G UL/FM 6" X 3"	2.00	PZA	11.87	23.74	
Coment	tarios:				TOTAL:	30,679.70	, rice
os preci	os indicados son válidos para	el total de la oferta; cambios significativos del requerimier	sto, implicarán u	ina nueva			
	n o el retiro de la misma. os de entrega son válidos al mon	nento de la cotización, pero sujetos a venta previa.			CASHBACK:) US\$
	gas podrán tomar hasta 48 horas	después de confirmada la orden de compra, dado los compro	misos previos de	bodega	SUBTOTAL:	30,679.70	
aanspor					IMP DE VENTA:	3,988.36	S US\$
					TOTAL:	34,668.00	s uss
Condic	ión de Entrega: DDP	EN PROYECTO DENTRO GAM				ELABORADO PO	R
Oferta v	válida hasta: 10-03-2	2023					

Agradecemos sus comentarios para mejorar nuestro servicio al cliente, Escribanos a: opinion@inpprod.com

Cotización para equipos del sistema de supresión contra incendios.

INDPROD CR, S.A. Nº COTIZACIÓN: CTC1103150 Pág: 1/1 OFIBODEGAS MILANO, #6, CALLE POTRERILLOS, SAN RAFAEL, ALAJUELA 20108 - COSTA RICA TELF: San Jose de Costa Rica, 02-03-2023 506-4000.2818 Cliente: Diana Vega Valerio Cedula Juridica: Proyecto: N/A Dirección: Almacenes INPPROD USS Moneda: Teléfonos: Contacto: DIANA VEGA VALERIO Proyecto: Trabajo final UCR. Notas: Precio Total T/ Entrega Refer. Descripción Cantidad Und Precio Unitario Código AR-FDC-175-03520 4" X 2-1/2" 2W BACK MANIFOLD,UL/FM 165.28 1.00 PZA 165.28 1.1 AR-FDC-125-01970 2-1/2" GATE HOSE VALVE, FNPT X MNST 2.00 PZA 575.24 287.62 UL/FM 1.2 AR-FDC-125-01580 2-1/2" CAP AND CHAIN, BRASS 2.00 PZA 24.76 49.52 65.20 1.3 AR-FDC-150-02260 4" IPS ROUND PLATE WALL PLATE WET 1.00 PZA 65.20 STD PIPE 2 AR-FDC-175-02540 4" X 2-1/2" 2W BACK SGL CLAP INLET 1.00 PZA 178.30 178.30 **UL/FM** 2.00 PZA 2.1 AR-FDC-125-01280 2-1/2" PLUG AND CHAIN .BR.UL/FM 46.19 92.38 2.2 AR-FDC-150-02260 4" IPS ROUND PLATE WALL PLATE WET 1.00 PZA 65.20 65.20 STD PIPE 272.31 TF-E45-0125 1-1/4" THREADED ELBOW 45°, UL/FM 87.00 PZA 3 3.13 TACR-A53-SC40PE-0 1-1/4" A53,RED PIPE,SC40,GR.B PLAIN 10.00 PZA 466.10 46.61 125-UF END,UL/FM 5 VK-QL13525AC AIR COMPRESSOR FOR DRY SYSTEMS PZA 1,232.29 1.00 1,232,29 1/4HP, 135GAL, UL AR-FSD-28B-48-50 1" X 1/2" X 48" FLEXIBLE SPRINKLER 53.00 PZA 21.47 1,137.91 DROPS W/BRACKET, BRAIDED UL/FM Comentarios: 4,299.73 US\$ TOTAL: Los precios indicados son válidos para el total de la oferta; cambios significati cotización o el retiro de la misma. CASHBACK: 0.00 US\$ 2. Los tiempos de entrega son válidos al momento de la cotización, pero sujetos a venta previa. SUBTOTAL: 5,058.16 US\$ 3. Las entregas podrán tomar hasta 48 horas después de confirmada la orden de compra, dado los compromisos previos de bodega y transportes 657.56 US\$ IMP DE VENTA: TOTAL: 5,715.72 US\$ **ELABORADO POR** Condición de Entrega: DDP En Proyecto dentro de GAM 17-03-2023 Oferta válida hasta: Presupuestos Condiciones de Pago: PRE-PAGADO

Agradecemos sus comentarios para mejorar nuestro servicio al cliente. Escribanos a: opinion@inpprod.com

Cotización de los soportes de tubería tipo U-BOLT.

INDDROD CR, S.A. Nº COTIZACIÓN: CTC1103207 Pág: 1/1 OFIBODEGAS MILANO, #6, CALLE POTRERILLOS, SAN RAFAEL, ALAJUELA 20108 - COSTA RICA TELF : San Jose de Costa Rica, 10-03-2023 506-4000.2818 Cliente: Diana Vega Valerio Cedula Juridica: N/A Proyecto: Dirección: Almacenes INPPROD Moneda: US\$ Teléfonos: 8663 3829 Contacto: DIANA VEGA Presupuesto estudiante UCR. Refer. Código Descripción Cantidad Und Precio Unitario Precio Total T/ Entrega HS-UB-0100-EG 1" ROUND U-BOLT HANGER 102.00 204.00 PZA 2.00 2 HS-UB-0250-EG 2-1/2" ROUND U-BOLT HANGER 30.00 PZA 4.35 130.50 Comentarios: 334.50 US\$ TOTAL: CASHBACK: 0.00 US\$ 2. Los tiempos de entrega son válidos al momento de la cotización, pero sujetos a venta previa SUBTOTAL: 334.50 USS 3. Las entregas podrán tomar hasta 48 horas después de confirmada la orden de compra, dado los compromisos previos de bodega IMP DE VENTA: 43,49 US\$ TOTAL: 377.99 US\$ **ELABORADO POR** Condición de Entrega: EXW Bodegas Inpprod 25-03-2023 Oferta válida hasta: Presupuestos Condiciones de Pago: PRE-PAGADO

Agradecemos sus comentarios para mejorar nuestro servicio al cliente. Escribanos a: opinion@inpprod.com

Cotización del tanque de agua para uso de la bomba de turbina de eje vertical.

Cotización de la tubería de cobre y sus accesorios, con el objetivo que se utilizados en los paneles de control.

CJ: 3-101-356578		metros norte de las Antiguas Bodegas Colgate I Tel(s): 506-257-1142 Fax 506-248-1137	Pa	gina: 1
	NA VEGA	COTIZACION	NUMERO:	0000057821 16-02-2023
CANTIDAD	SEGMEN	TO: Contratista PROVINCIA: .san Jose VEND: 13 Ro	odrigo Castro PRECIO	IMPORTE
1.00 UNI	1220H	TUBO DE COBRE RIGIDO DE 1/2 G-AIR	15,900.00	15,900.00
6.00 UNI	107C 12	CODO DE COBRE A 90 DE 1/2 G-AIR	165.00	990.0
	111 12	TEE DE COBRE DE 1/2 G-AIR	240.00	720.0
3.00 UNI		ULTIMA LINEA		
3.00 UNI		ULTIMA LINEA	TOTAL BRUTO:	- 7
3.00 UNI		ULTIMA LINEA		17,610.0 0.0 2,289.3

Anexo G.1.1 Presupuesto del sistema de supresión de incendios

En esta sección se muestra el presupuesto requerido para el sistema de supresión de incendios, luego de haber hecho las cotizaciones respectivas.

Cuadro G. 1 Presupuesto del sistema de supresión de incendios

Item	Cantidad	Unidad	Descripción	Precio Unitario	Precio Total
	_		Tubería de cobre 1/2	4	4
1	1	unidad	pulg_9,98 m	\$28,47	\$28,47
2	6	unidad	Codo de cobre 1/2 pulg	\$0,30	\$1,80
3	3	unidad	Tee de cobre 1/2 pulg	\$0,43	\$1,29
			Tubería acero sch40_200 m_		
4	35	unidad	1 1/2 pulg	\$55,39	\$1.938,64
			Tubería acero sch40_59,54		
5	10	unidad	m_ 1 1/4 pulg	\$46,61	\$466,10
			Tubería acero sch40_272,67		
6	48	unidad	m_ 1 pulg	\$34,84	\$1.672,31
			Tubería acero sch10_269,6		
7	46	unidad	m_ 2 1/2 pulg	\$81,02	\$3.726,91
			Tubería acero sch40_12,72		
8	4	unidad	m_ 2 pulg	\$73,70	\$294,80
			Tubería acero sch10_6,26 m_		
9	2	unidad	3 pulg	\$98,84	\$197,68
			Tubería acero sch10_6,13 m_		
10	2	unidad	6 pulg	\$208,39	\$416,78
			Anclajes mini drop-in 3/8" X		
11	182	unidad	3/4"	\$0,14	\$25,48
12	31	unidad	Tapa roscada 1 pulg	\$1,15	\$35,65
13	16	unidad	Tapa roscada 1 1/2 pulg	\$2,21	\$35,36
			Acoplamiento_reductor		
14	2	unidad	concéntrico 2 x 1/2 pulg	\$3,19	\$6,38
			Acoplamiento_reductor		
15	2	unidad	concéntrico 2 x 1 1/2 pulg	\$3,19	\$6,38
			Acoplamiento_reductor		
			concéntrico 2 1/2 x 1 1/2		
16	109	unidad	pulg	\$3,19	\$347,71
			Acoplamiento_reductor		
17	1	unidad	concéntrico 3 x 1 pulg	\$3,58	\$3,58
			Acoplamiento_reductor		
18	1	unidad	concéntrico 3 x 2 pulg	\$4,07	\$4,07

Item	Cantidad	Unidad	Descripción	Precio Unitario	Precio Total
			Acoplamiento_reductor		
19	2	unidad	concéntrico 6 x 3 pulg	\$11,87	\$23,74
20	76	unidad	Codo roscado 1 pulg	\$1,93	\$146,68
21	87	unidad	Codo roscado a 45° 1 1/4 pulg	\$3,13	\$272,31
22	8	unidad	Codo roscado 2 pulg	\$5,78	\$46,24
23	11	unidad	Codo roscado 2 1/2 pulg	\$4,56	\$50,16
24	3	unidad	Codo roscado 3 pulg	\$6,25	\$18,75
25	7	unidad	Codo roscado 6 pulg	\$22,89	\$160,23
26	1	unidad	Tee roscada 1/2 pulg	\$1,10	\$1,10
27	58	unidad	Tee roscada 1 pulg	\$2,50	\$145,00
28	84	unidad	Tee roscada 1 1/2 pulg	\$4,82	\$404,88
29	2	unidad	Tee roscada 2 pulg	\$7,22	\$14,44
30	92	unidad	Tee roscada 2 1/2 pulg	\$7,52	\$691,84
31	3	unidad	Tee roscada 3 pulg	\$8,99	\$26,97
32	1	unidad	Tee roscada 6 pulg	\$32,95	\$32,95
33	340	unidad	Acoplamiento rígido 1 pulg	\$1,44	\$489,60
			Acoplamiento rígido 1 1/2		4
34	282	unidad	pulg	\$2,50	\$705,00
35	36	unidad	Acoplamiento rígido 2 pulg Acoplamiento rígido 2 1/2	\$3,89	\$140,04
36	115	unidad	pulg	\$4,64	\$533,60
37	39	unidad	Acoplamiento rígido 3 pulg	\$5,39	\$210,21
38	4	unidad	Acoplamiento rígido 4 pulg	\$6,64	\$26,56
39	19	unidad	Acoplamiento rígido 6 pulg	\$12,41	\$235,79
40	2	unidad	Válvula check roscada 2 1/2 pulg	\$96,52	\$193,04
41	3	unidad	Válvula check ranurada 3 pulg	\$120,39	\$361,17
42	1	unidad	Válvula check ranurada 6 pulg	\$264,35	\$264,35
43	4	unidad	Válvula check con extremos roscados 1/2 pulg	\$5,48	\$21,92
44	1	unidad	Válvula check con extremos roscados 2 pulg	\$64,72	\$64,72
45	1	unidad	Válvula de compuerta OS&Y 2 pulg	\$143,30	\$143,30
46	2	unidad	Válvula de compuerta OS&Y 3 pulg	\$273,22	\$546,44

Item	Cantidad	Unidad	Descripción	Precio Unitario	Precio Total
			Válvula de bola con extremos		
47	3	unidad	roscados 1/2 pulg	\$5,67	\$17,01
			Cabezal de pruebas (Toma de		
48	1	unidad	2 1/2 pulg)	\$178,30	\$178,30
			Acoplamiento flexible para		
49	4	unidad	tubería vertical 1 pulg	\$3,71	\$14,84
			Acoplamiento flexible para		
50	4	unidad	tubería vertical 2 pulg	\$3,71	\$14,84
			Acoplamiento flexible para		
51	2	unidad	tubería vertical 3 pulg	\$5,39	\$10,78
			Acoplamiento flexible para		
52	1	unidad	tubería vertical 6 pulg	\$10,31	\$10,31
			Válvula de globo con		
53	6	unidad	extremos roscados 1/2 pulg	\$16,05	\$96,30
54	6	unidad	Manómetro de 300 psi	\$18,85	\$113,10
			Soporte de tuberías de silla		
55	9	unidad	ajustable	\$218,57	\$1.967,12
			Control de piso "Riser" 2 1/2		
56	2	unidad	pulg	\$287,62	\$575,24
			Válvula mariposa supervisada		
57	1	unidad	2 pulg	\$134,15	\$134,15
			Válvula mariposa supervisada		
58	1	unidad	3 pulg	\$144,71	\$144,71
			Válvula de alivio de aire 1		
59	1	unidad	pulg	\$191,27	\$191,27
			Válvula de alivio de		
60	1	unidad	sobrepresión 1 pulg	\$191,27	\$191,27
			Siamesa de 2 tomas_ 2 1/2	4	4
61	1	unidad	pulg	\$165,28	\$165,28
62	2	unidad	Tapa de cadena 2 1/2 pulg	\$46,19	\$92,38
63	2	unidad	Tapa NST 2 1/2 pulg	\$24,76	\$49,52
- 55		amaaa	Válvula de acción previa	Ψ2 1)7 0	ψ 13/3 <i>L</i>
64	1	unidad	"simple" 3 pulg	\$6.947,84	\$6.947,84
	_		4 pulg Placa redonda de	Ŧ - · · · / - ·	+
			pared_ tubería		
65	2	unidad	estándar húmeda	\$65,20	\$130,40
66	1	unidad	Compresor de aire	\$1.232,29	\$1.232,29
			Soporte antisísmico	, ,	, ,
67	19	unidad	longitudinal 2 1/2 pug	\$30,51	\$579,69
			Soporte antisísmico		
68	28	unidad	transversal 2 1/2 pug	\$22,88	\$640,64
			Barra de canal perfil alto-		
69	47	unidad	antisísmico	\$12,19	\$572,93

Item	Cantidad	Unidad	Descripción	Precio Unitario	Precio Total
			Barra roscada en 3/8"-tipo		
70	182	unidad	pera	\$2,23	\$405,86
71	182	unidad	Soporte tipo pera ajustable	\$0,72	\$131,04
72	109	unidad	Soporte U-BOLT 1 pulg	\$2,00	\$218,00
73	30	unidad	Soporte U-BOLT 2 1/2 pulg	\$4,35	\$130,50
74	1	unidad	Tanque diesel 80 gal	Incluido en el precio de la bomba	-
75	1	unidad	Bomba de turbina vertical de 250 gpm y 101 psi	\$58.435,00	\$58.435,00
76	1	unidad	Bomba jockey	\$1.777,00	\$1.777,00
77	1	unidad	Panel de la bomba principal	Incluido en el precio de la bomba	-
78	1	unidad	Panel de la bomba jockey	Incluido en el precio de la bomba jockey	-
79	1	unidad	Toma directa de 4 1/2 pulg	\$752,45	\$752,45
80	132	unidad	Rociador upright de 5,6 gpm/psi ^{1/2} y 11,21 psi	\$8,32	\$1.098,24
81	56	unidad	Rociador pendent de 5,6 gpm/psi ^{1/2} y 11,21 psi	\$8,91	\$498,96
82	53	unidad	Manguera flexible para los rociadores 1 pulgx1/2 pulgx48 pulg	\$21,47	\$1.137,91
83	1	unidad	Dique de contención de concreto	\$358,13	\$358,13
84	1	unidad	Tanque de agua enterrado de concreto	\$5.610,00	\$5.610,00
85	8	personas	Mano de obra (180 días)	-	\$39.921,47
86			Imprevistos	-	\$9.977,52
				Sub Total	\$149.702,68
			Impuesto	13%	\$19.461,35
	Diana Ve	ga Valerio		Monto Total	\$169.164,02

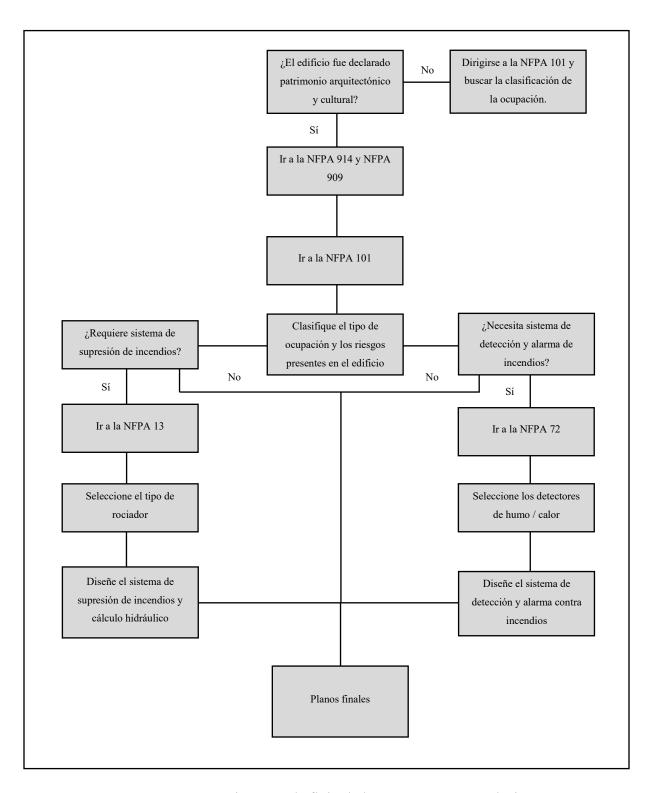
Fuente: (Autora, 2023)

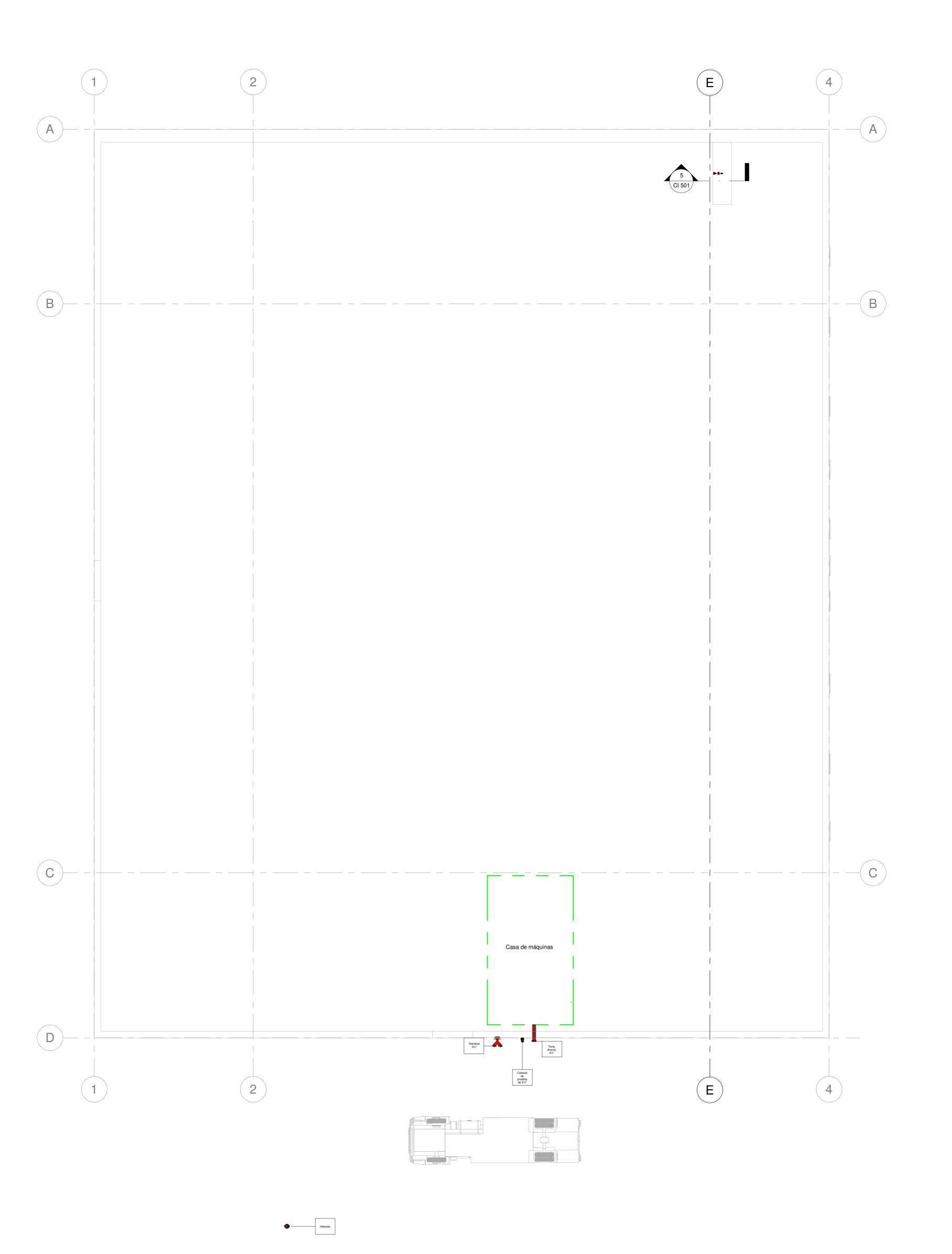
Anexo H. Guía con recomendaciones para diseño de un sistema de protección contra incendios en inmuebles declarados patrimonio arquitectónico y cultural

En esta parte de agregó el diagrama de flujo con las recomendaciones para el diseño de sistema de protección contra incendios para inmuebles declarados patrimonio arquitectónico y cultural.

Anexo H.1 Guía con recomendaciones

La primera parte del diagrama consiste en conocer si el inmueble es declarado patrimonio arquitectónico y cultural, luego procura la lectura de la NFPA 914 y la NFPA 909 para saber a mayor detalle sobre la protección de estructuras históricas, posterior ir a la NFPA 101, clasificar la ocupación y los riesgos presentes en el sitio, seguidamente saber si el edificio requiere un sistema de supresión de incendios y uno de detección y alarma de incendios, por lo tanto se precisa ir a la NFPA 13 y NFPA 72 y llevar a cabo la selección de los detectores de humo / calor y la elección de los rociadores, además se debe diseñar el sistema de protección contra incendios y por último realizar los planos.




Ilustración H.1 Diagrama de flujo de la guía con recomendaciones

Anexo I. Planos del sistema de supresión contra incendios

En este apartado se agregaron los planos realizados del sistema de supresión contra incendios.

Anexo I.1 Planos del sistema de supresión de incendios para el Museo Regional de San Ramón

Conexiones del cuerpo de bomberos

1:100

Protección de aberturas verticales

La certificación de resistencia al fuego mínima para la protección de aberturas verticales debe estar conforme a:

Característica Protección requerida

Cerramiento que conecta 4 pisos o más Barrera cortafuego 2h

Otros cerramientos Barrera cortafuego 1h

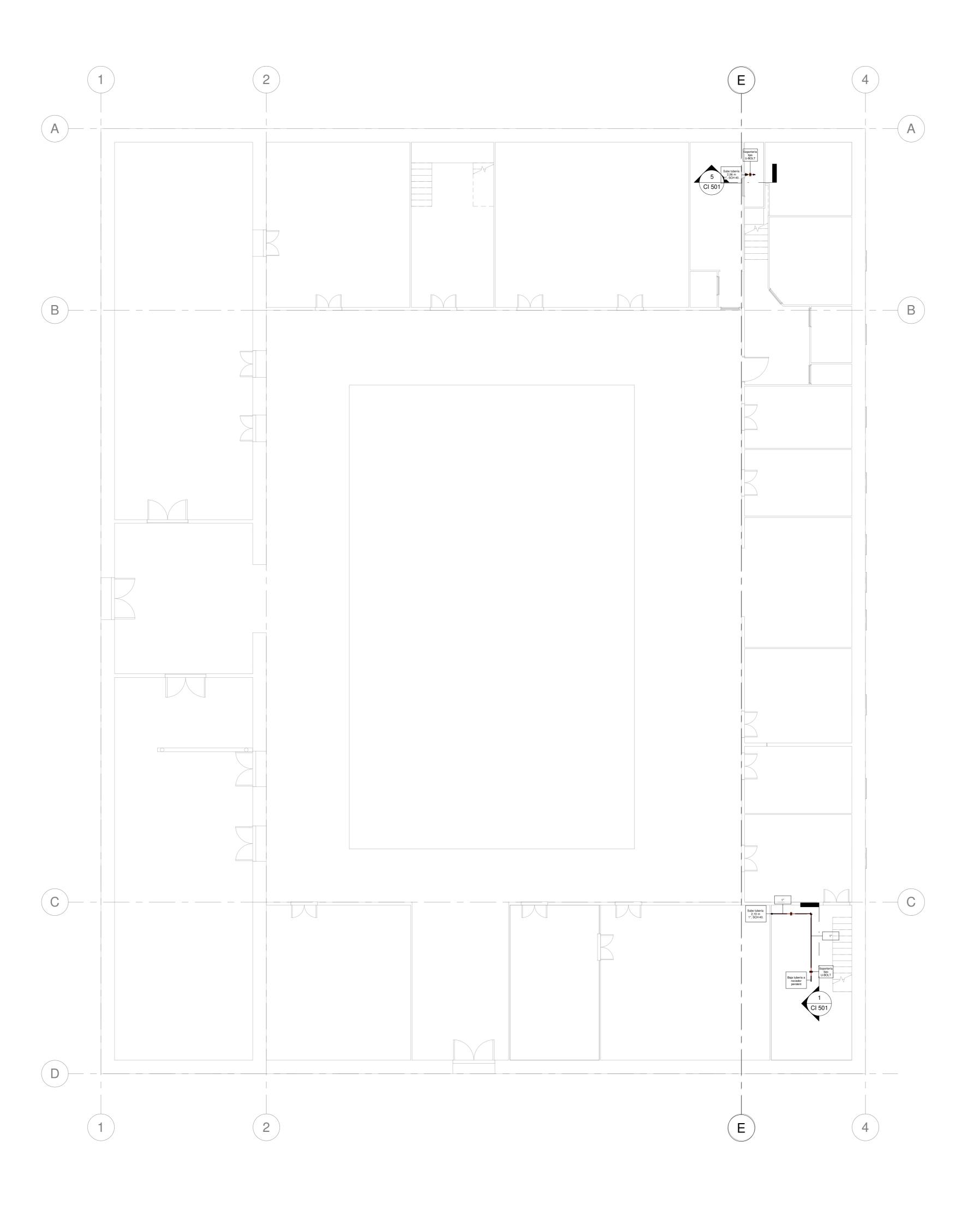
www.autodesk.com/revit

Notas:

- Los soportes de tubería de silleta ajustable son para las tuberías que están a nivel de piso/baldosa como en casa de máquinas.
- Los soportes de tubería tipo U-BOLT son para las tuberías que están sobre cielorraso liviano.
 Para tubería con diámetros
- mayores o iguales a 2^{1/2}" usar cédula 10, acero al carbono. 4. Para tubería con diámetros menores a 2^{1/2}" usar cédula 40,
- acero al carbono.

 5. Los rociadores upright deben ubicarse en el ático y la descarga de agua se dirige hacia arriba
- contra el deflector.

 6. Los rociadores pendent tienen que instalarse en en el nivel 1 y 2 de la edificación, la descarga del chorro de agua se dirije hacia abajo contra el deflector.
- 7. En está lámina se observan las conexiones del cuerpo de bomberos en el museo.


Ubicación del museo: Calle Central, Avenida Juan Santamaría. Costado Norte del parque Central., San Ramón, Costa Rica Provincia: Alajuela Cantón: San Ramón Distrito: San Ramón

Museo Regional de San Ramón

Portada

Project number	01
Date	2023/03/02
Drawn by	Diana Vega Valerio
Units	m
CI	000
Scale	1:100

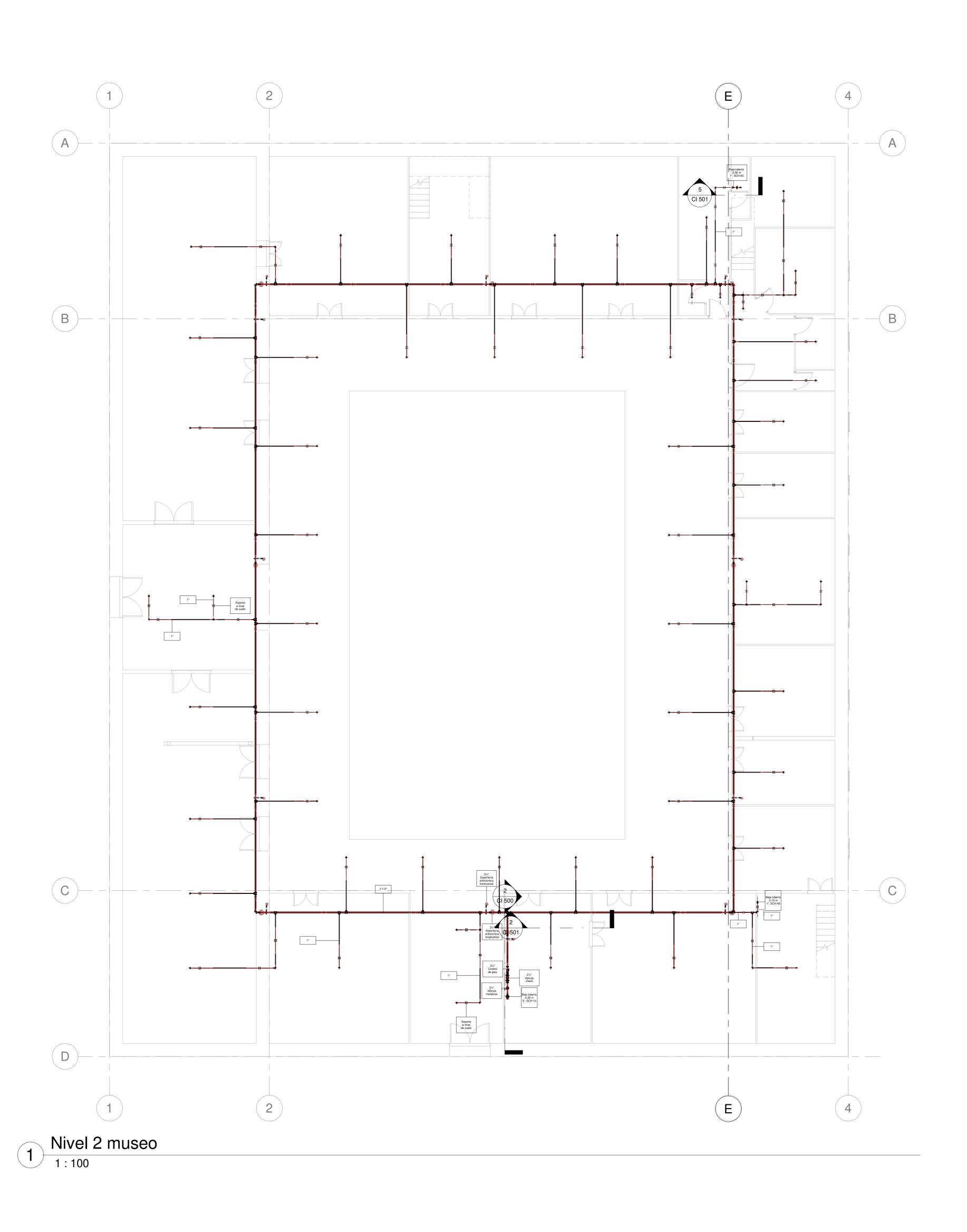
/09/2023 10:55:15

Nivel 1 museo
1:100

AUTODESK

www.autodesk.com/revit

- Notas:


 1. La simbología se observa en la lámina CI 000.

 2. En esta hoja se muestra la tubería contra incendios ubicada en nivel

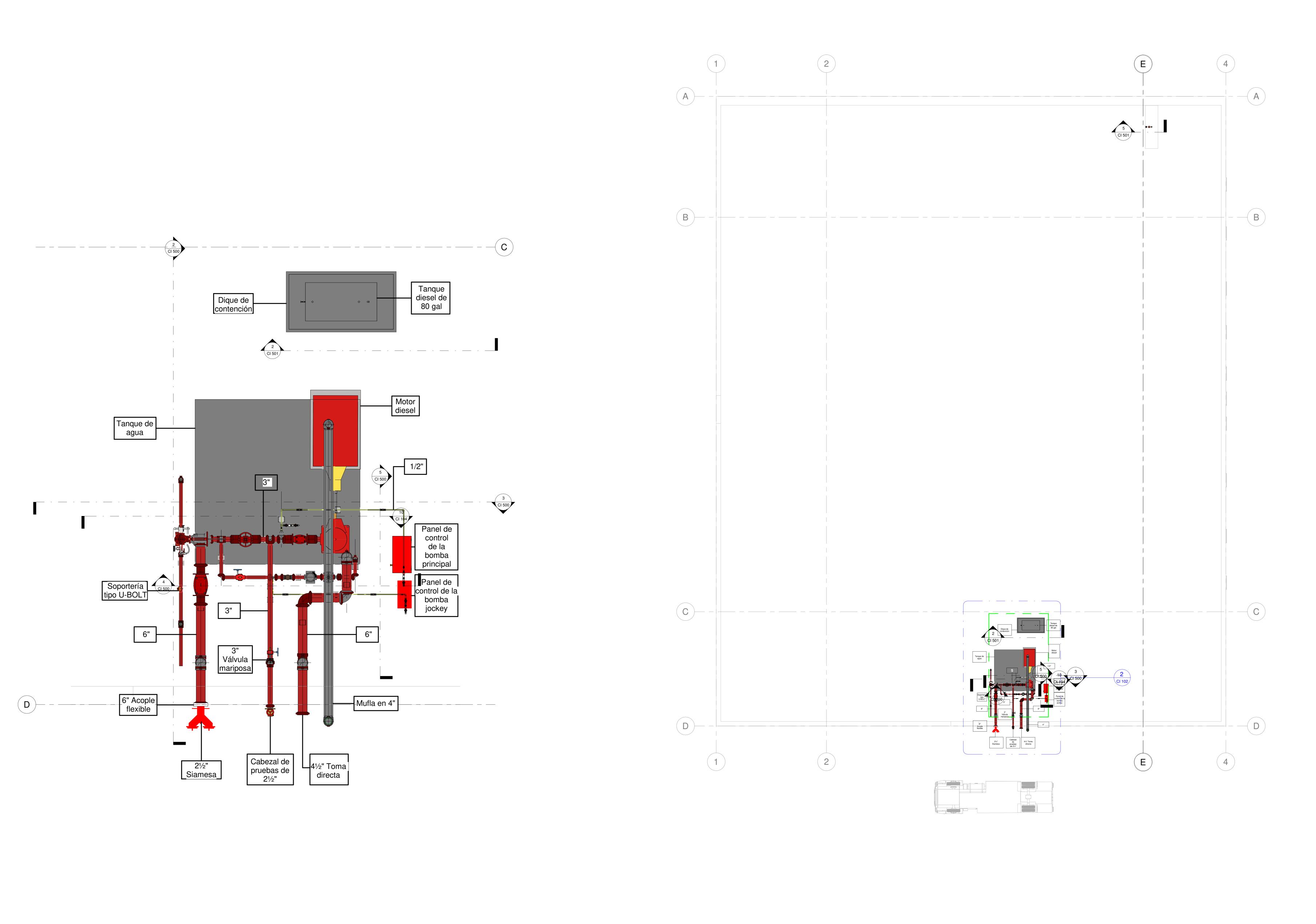
Museo Regional de San Ramón

Nivel 1

Project number 2023/03/02 Diana Vega Valerio Drawn by CI 100

www.autodesk.com/revit

Notas:


1. La simbología se observa en la lámina CI 000.

2. En esta hoja se muestra la tubería contra incendios ubicada en nivel

Museo Regional de San Ramón

Nivel 2

Project number 2023/03/02 Diana Vega Valerio Drawn by CI 101 1:100

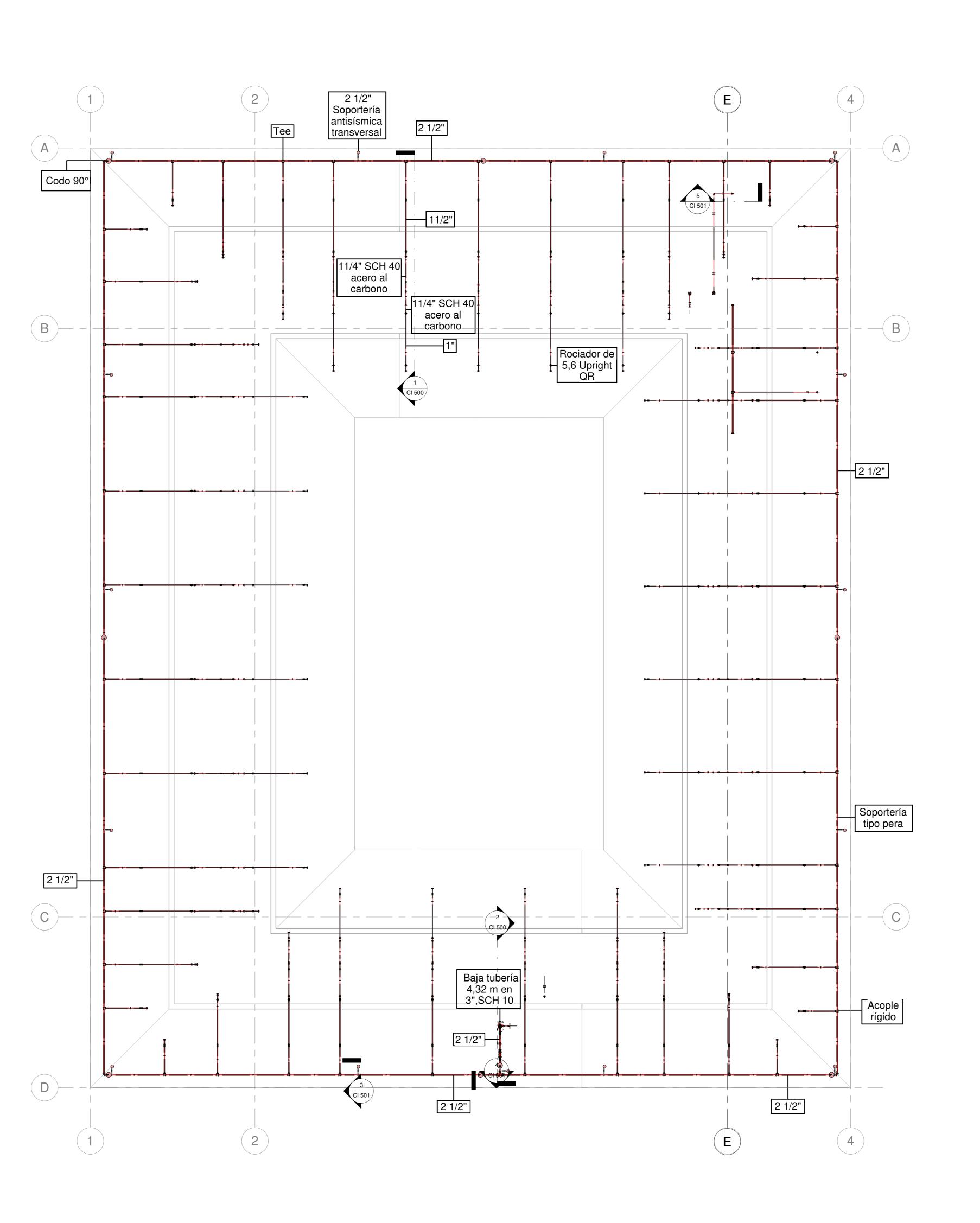
www.autodesk.com/revit

Notas:

1. La simbología se observa en la lámina CI 000.

2. En esta hoja se muestra el sistema de protección contra incendios en casa de máquinas.

Museo Regional de San Ramón


Casa de máquinas

2023/03/02 Diana Vega Valerio Drawn by CI 102 Como se indica

Casa de máquinas -Llamada 1

Casa de máquinas

1:100

1 Ático 1:100

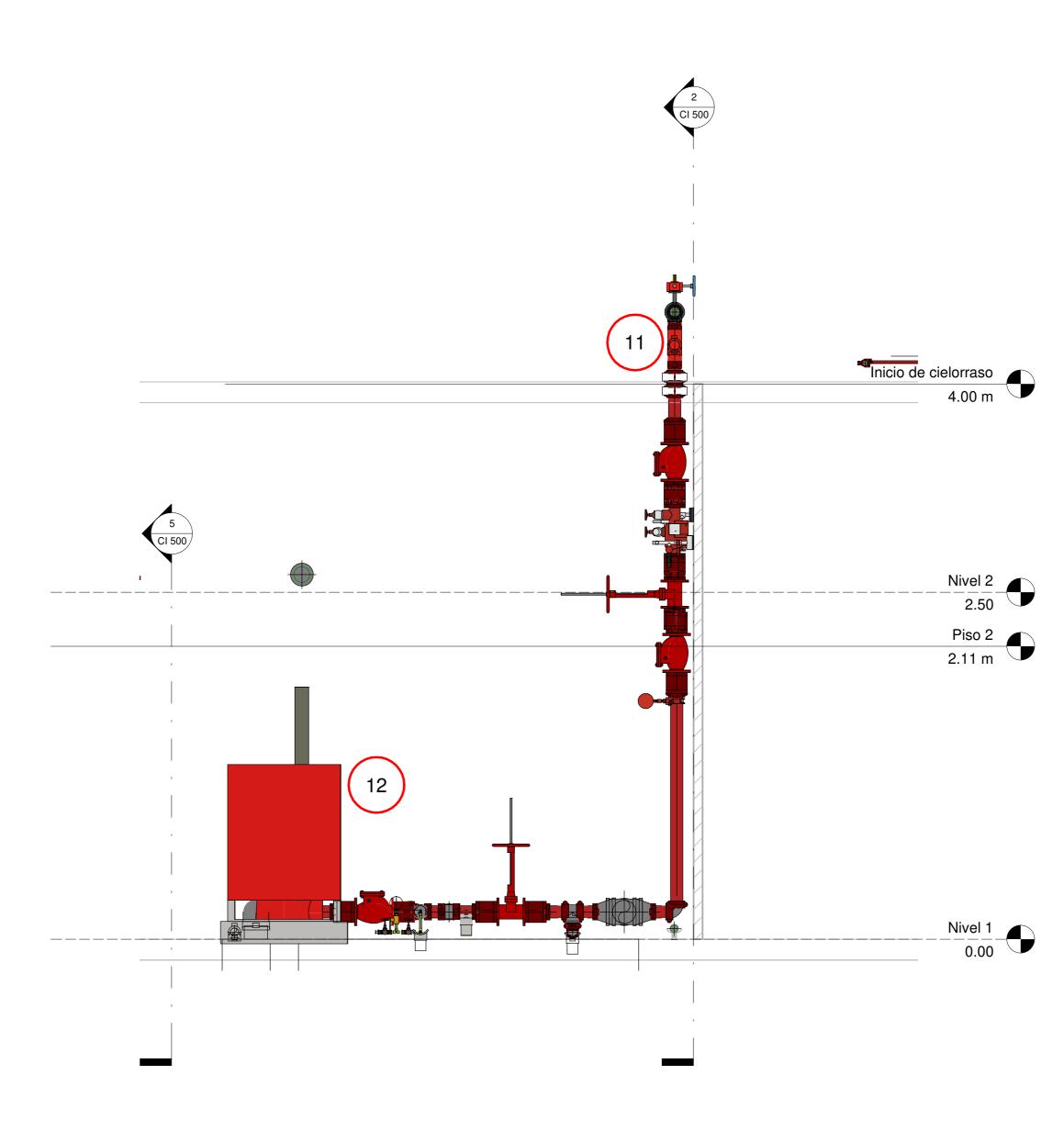
www.autodesk.com/revit

Notas:

1. La simbología se observa en la lámina CI 000.

2. En esta hoja se muestra la tubería contra incendios localizada en el ático del museo.

Museo Regional de San Ramón


Ático

Project number 2023/03/02 Diana Vega Valerio

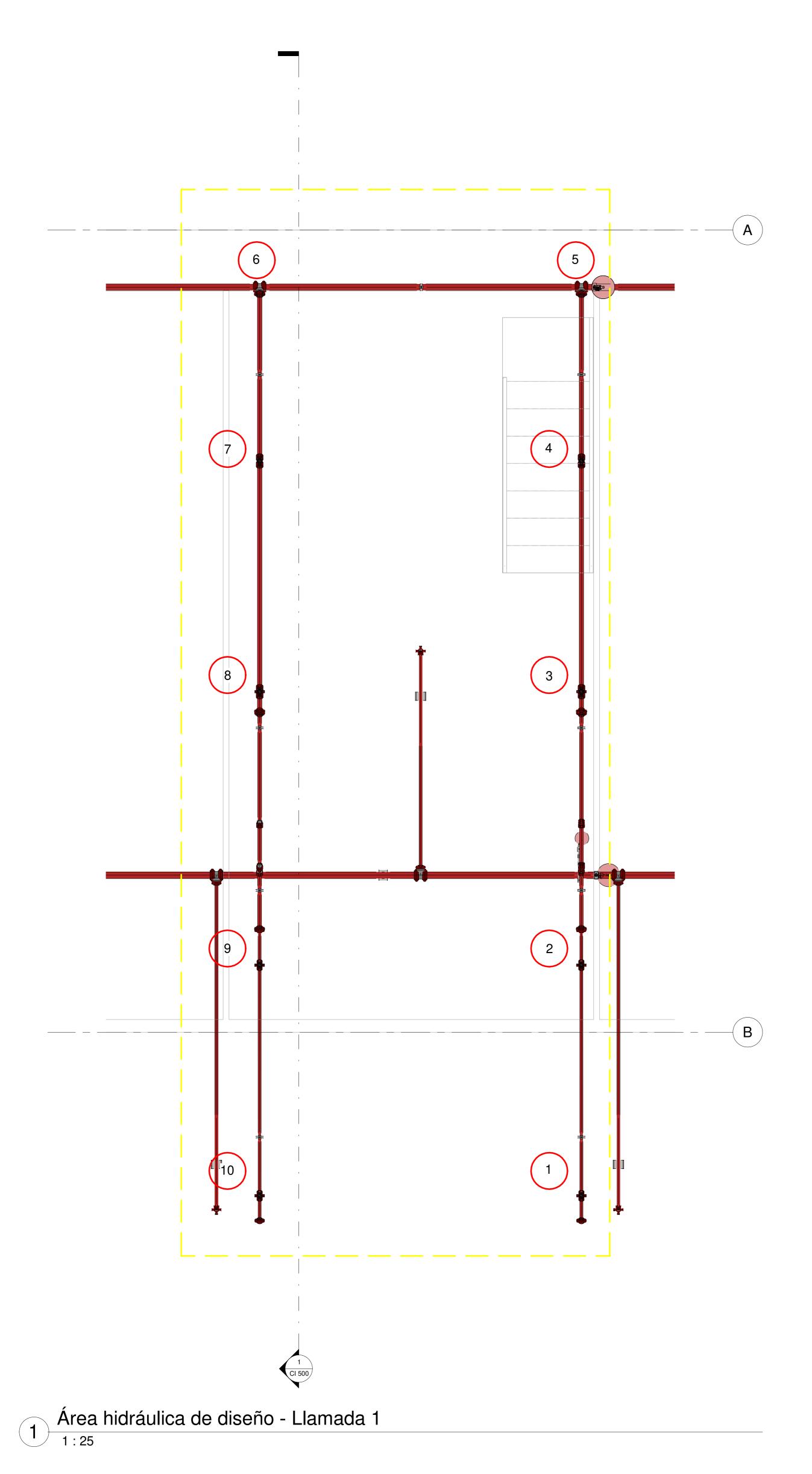
CI 103

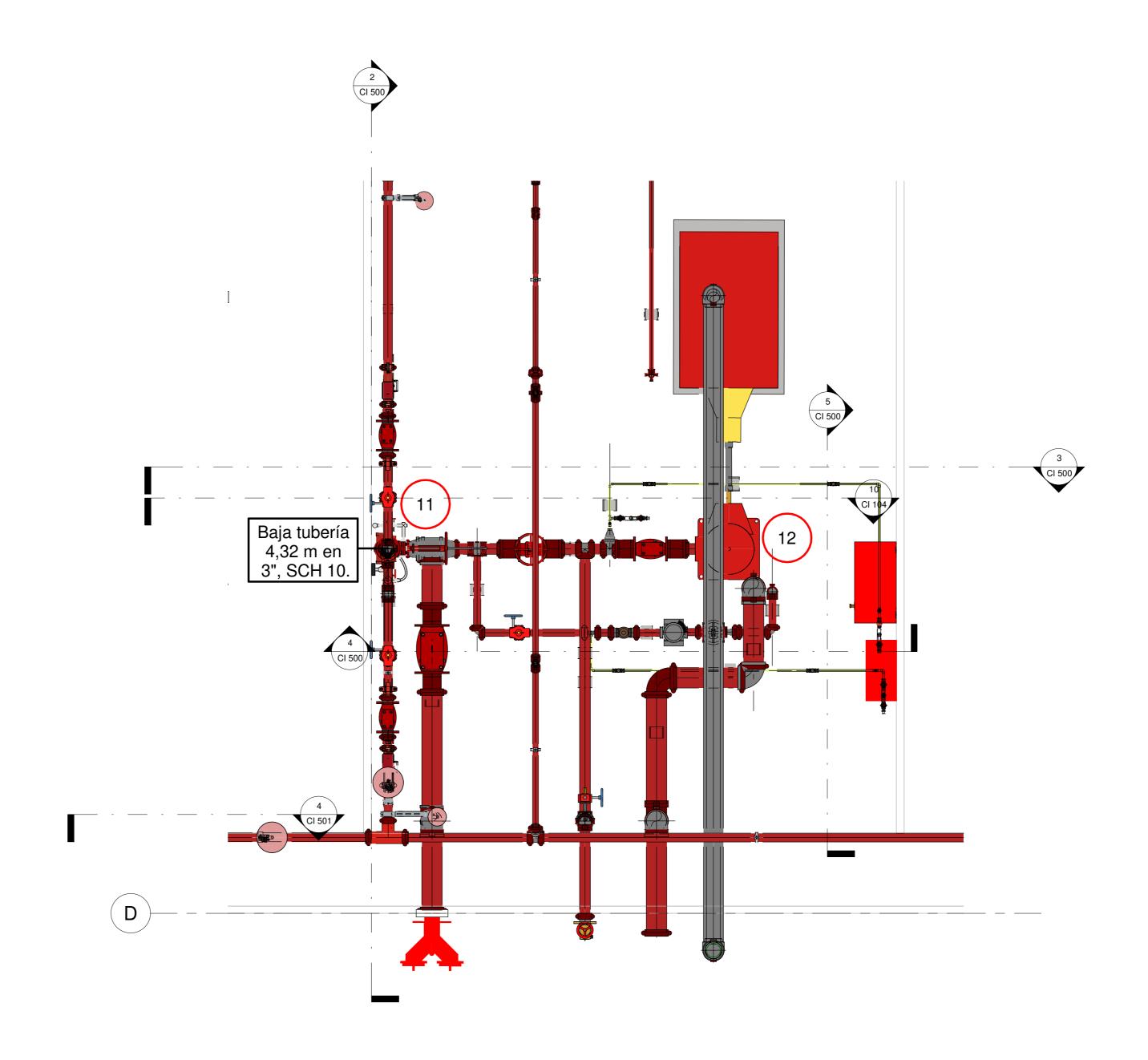
1:100

Section 10 1:25

www.autodesk.com/revit

Notas:


 La simbología se observa en la lámina CI 000.
 En esta hoja se contempla el área de diseño hidráulico considerado para el sistema de protección contra incendios en el museo.Va del ático a la bomba de turbina vertical localizada en cuarto de


máquinas.
3. Hojas de diseño la Cl 104 y la Cl 105.

Museo Regional de San Ramón

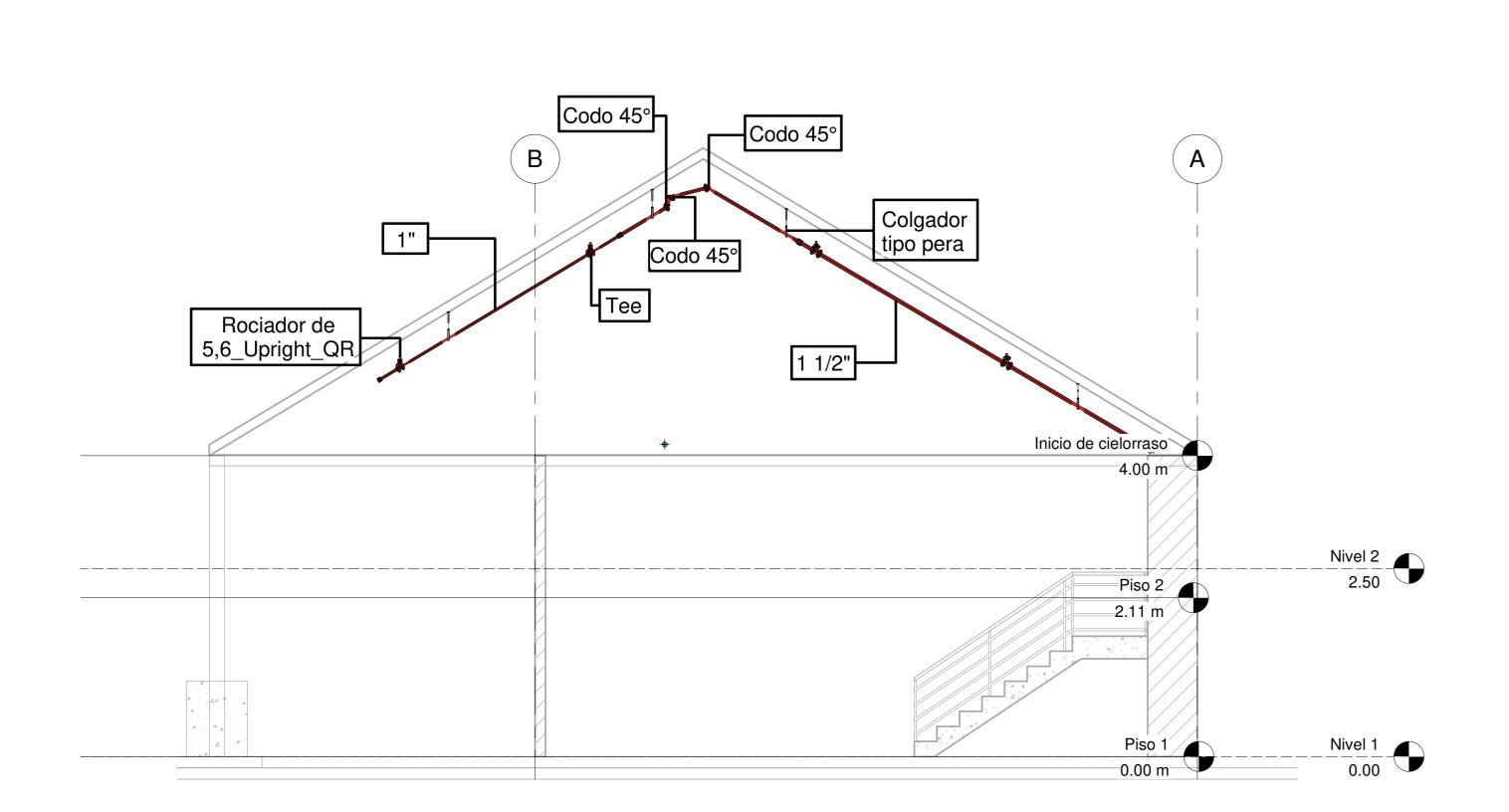
Área de diseño

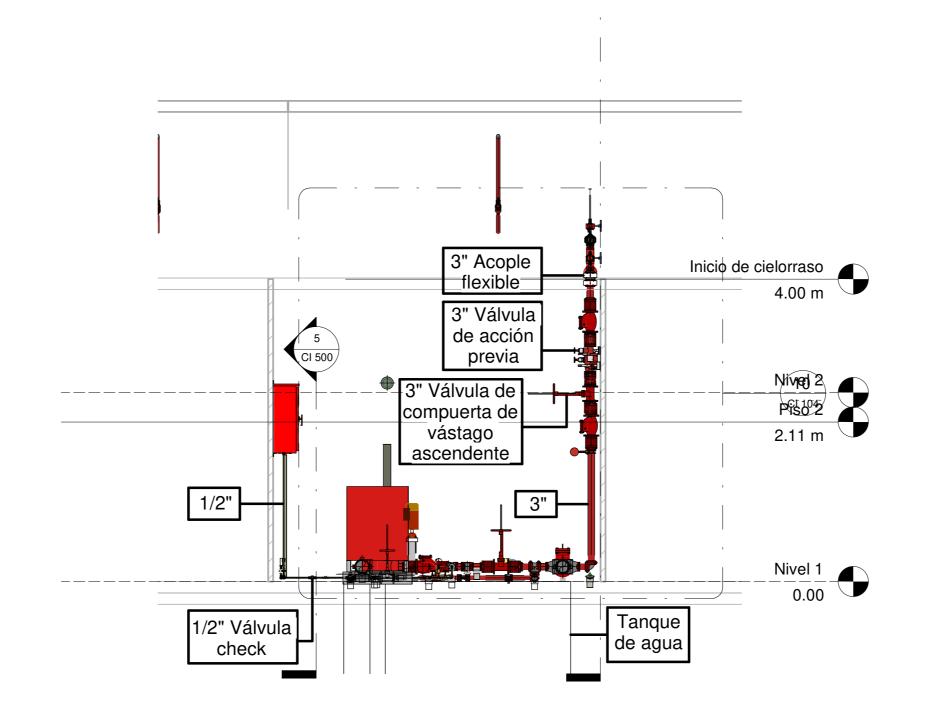
2023/03/02 Diana Vega Valerio Drawn by CI 104 Como se indica

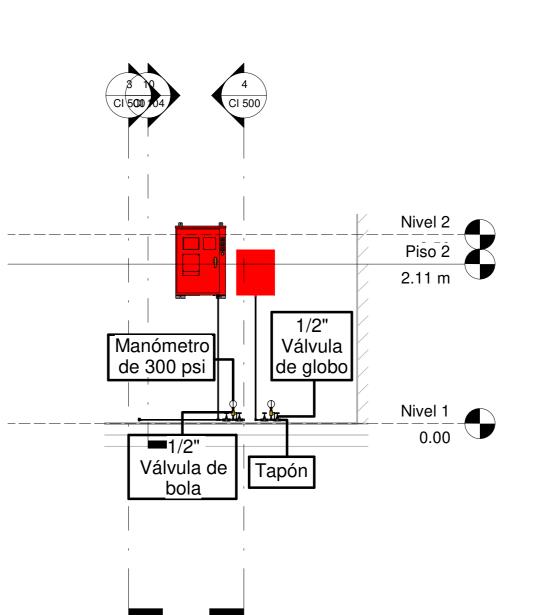
Área hidráulica de diseño - Llamada 2

AUTODESK

www.autodesk.com/revit

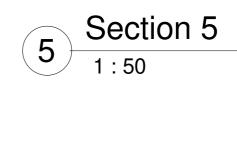

- Notas:

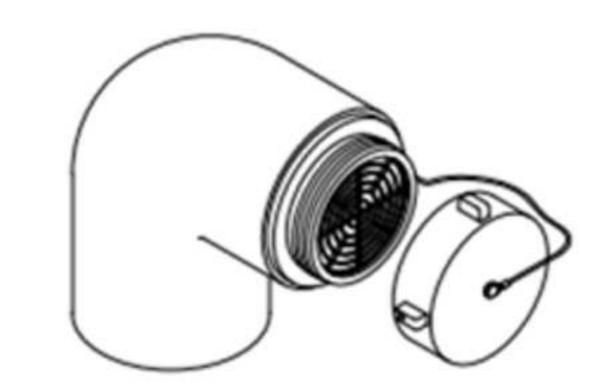

 1. La simbología se observa en la lámina CI 000.
- 2. En esta hoja se contempla el área de diseño hidráulico considerado para el sistema de protección contra incendios en el museo.Va del ático a la bomba de turbina vertical localizada en cuarto de
- máquinas.
 3. Hojas de diseño la Cl 104 y la Cl 105.

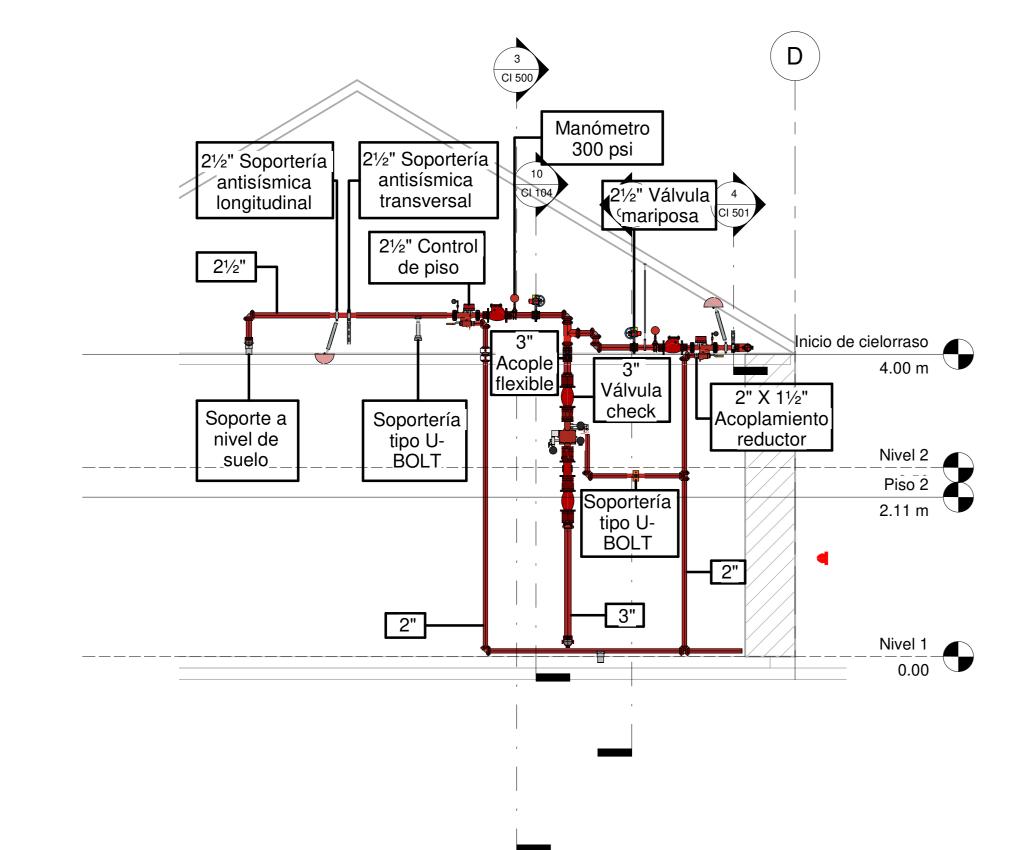

Museo Regional de San Ramón

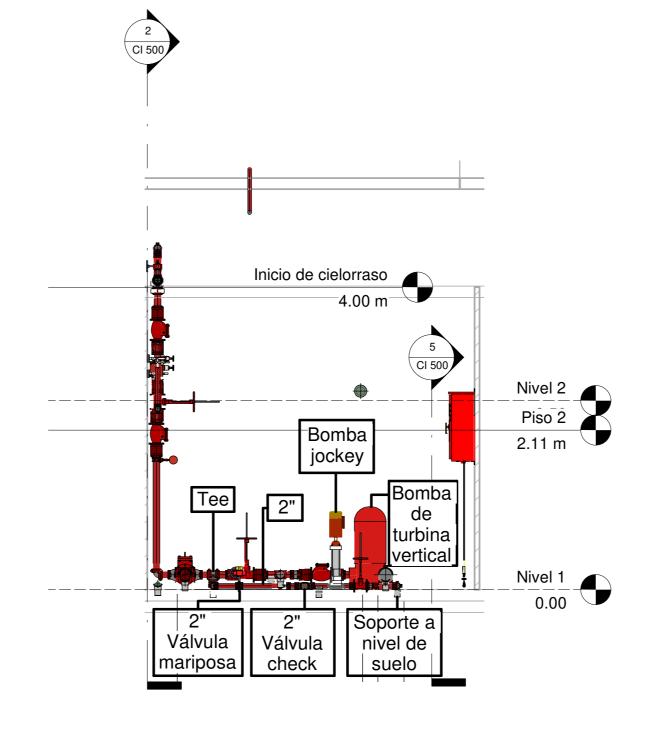
Área de diseño

2023/03/02 Diana Vega Valerio CI 105

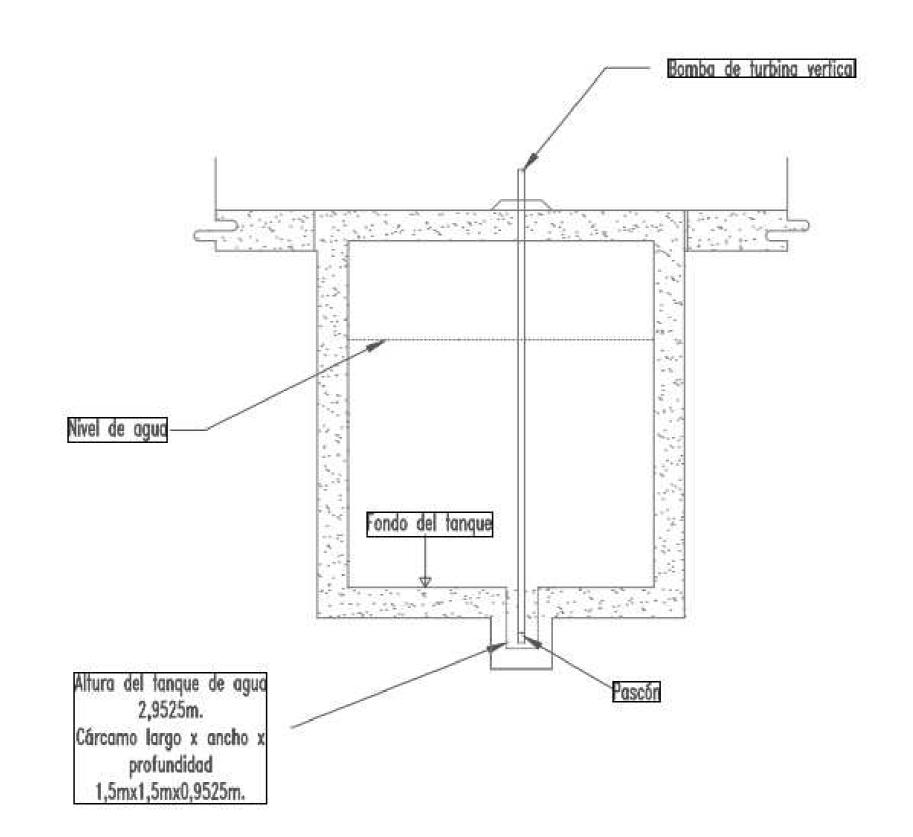


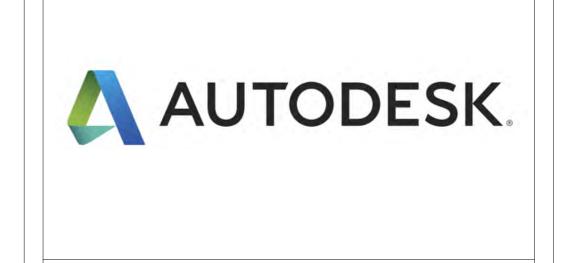






Detalle de toma directa con rosca macho 41/2" NST



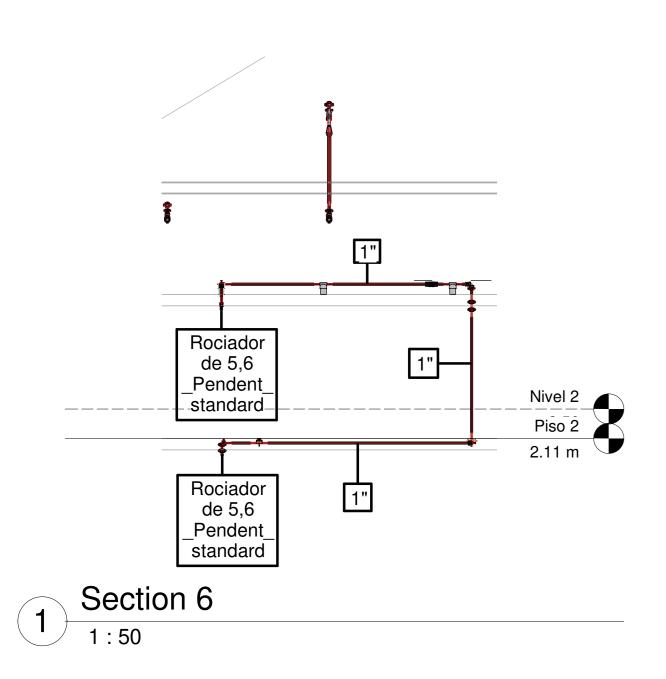


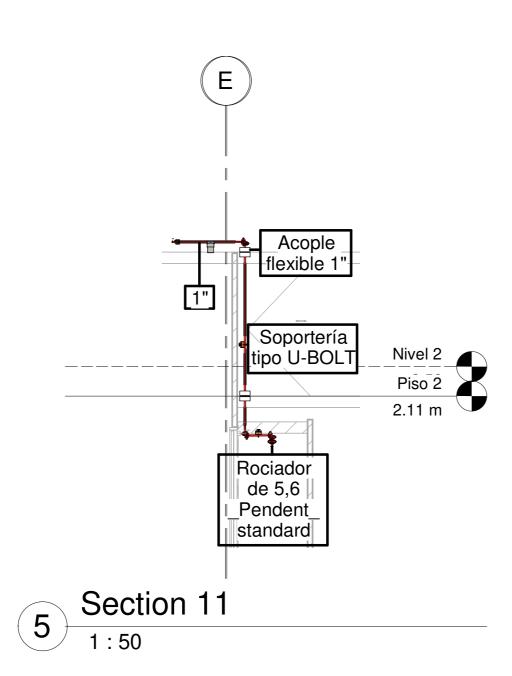
Section 4

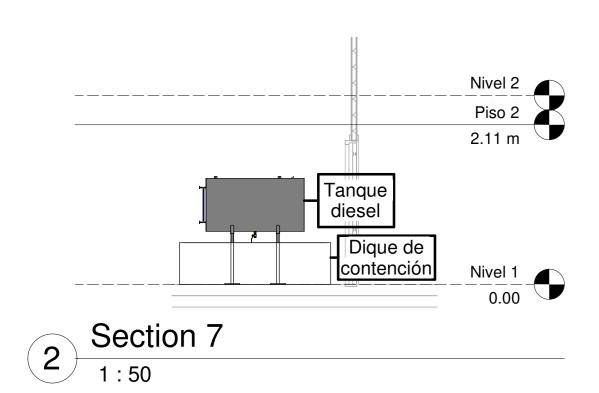
1:50

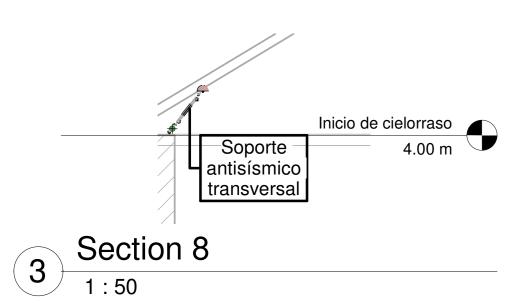
Detalle del tanque de agua

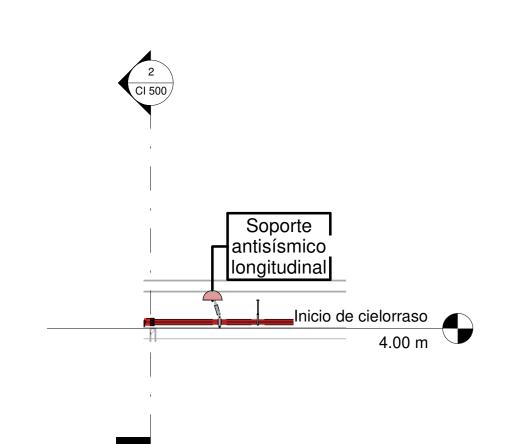
www.autodesk.com/revit


Notas:


- La simbología se observa en la lámina CI 000.
 En esta hoja se aprecian detalles de cortes del sistema de protección contra incendios diseñado para el museo.
- 3. Hojas de detalles la CI 500 y la CI 501.


Museo Regional de San Ramón


Detalles


Project number 2023/03/02 Diana Vega Valerio Drawn by CI 500 1:50

Section 9

1:50

www.autodesk.com/revit

- Notas:

 1. La simbología se observa en la lámina CI 000.
- 2. En esta hoja se aprecian detalles de cortes del sistema de protección contra incendios diseñado para el museo. 3. Hojas de detalles la CI 500 y la CI 501.

Detalles

Project number 2023/03/02 Diana Vega Valerio Drawn by CI 501 1:50