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Abstract

Chou-Chen, S.W. Locally Stationary Processes with Stable and Tempered Stable

Innovations. 2020. Thesis (PhD) - Instituto de Matemática e Estat́ıstica, Universidade de

São Paulo, 2020.

In the literature, the class of locally stationary processes assumes that there is a time-

varying spectral representation, i.e. the existence of finite second moment. In this work,

we first propose the α-stable locally stationary process by modifying the innovations into

stable distributions, which has heavy tail, and the indirect inference to estimate this type

of model. Due to the infinite variance, some of interesting properties such as time-varying

autocorrelation cannot be defined. However, since the α-stable family of distributions, as

a generalization of the Gaussian distribution, is closed under linear combination, which in-

cludes the possibility of handling asymmetry and thicker tails, the proposed model presents

the same tail behavior throughout the time. We carry out simulations to study the perfor-

mance of the indirect inference and compare it to the existing methodology, blocked Whittle

estimation. When the process has stable innovations, the indirect inference presents more

promising results than the existing methodology because of infinite variance. Next, we con-

sider the locally stationary process with tempered stable innovations, whose center is similar

to that of a stable distribution, but its tails are lighter (semi-heavy tail) and all moments are

finite. We present some theoretical results of this model and propose a two-step estimation

to estimate the parametric form of the model. Simulations suggest that the time-varying

structure can be estimated well, but the parameters related to the innovation are biased

for small time series length. However, the bias disappears when time series length increases.

Finally, an empirical application is illustrated.

Keywords: Locally stationary process, stable distribution, tempered stable distribution,

indirect inference, two-step estimation.
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Resumo

Chou-Chen, S.W. Processos Localmente Estacionários com Inovações Estáveis e

Estáveis Temperadas. 2020. Tese (Doutorado) - Instituto de Matemática e Estat́ıstica,

Universidade de São Paulo, 2020.

Na literatura, a classe dos processos localmente estacionários supõe que existe a repre-

sentação espectral variando no tempo, i.e. a existência do segundo momento finito. Neste

trabalho, propomos primeiro o processo localmente estacionário α−estável modificando as

inovações em distribuição estável, a qual tem cauda pesada, e a inferência indireta para

estimar este tipo de modelo. Devido à variância infinita, algumas propriedades interessantes

como as autocorrelações variando no tempo não podem ser definidas. Contudo, como a

famı́lia das distribuições α−estáveis, como uma generalização da distribuição Gaussiana, é

fechada sob combinações lineares, na qual inclui a possibilidade de manipular assimetria

e cauda mais pesada, o modelo proposto apresenta o mesmo comportamento de cauda ao

longo do tempo. Simulações são feitas para estudar o desempenho da inferência indireta e

para compará-lo com uma metodologia existente, estimação de Whittle em blocos. Quando

o processo tem inovações estáveis, a inferência indireta apresenta resultados promissores que

os métodos existentes porque o modelo tem variância infinita. Em seguida, consideramos

o processo localmente estacionário com inovações estáveis temperadas, do qual o centro é

similar ao caso estável, mas suas caudas são mais leves (cauda semi-pesada) e todos os seus

momentos são finitos. Apresentamos alguns resultados teóricos desse modelo e propomos a

estimação em dois passos para estimar a forma paramétrica do modelo. Simulações sugerem

que a estrutura variando no tempo pode ser estimada satisfatoriamente, mas os parâmetros

relacionados às inovações são viesados para séries temporais curtas. Porém, o viés desaparece

quando o comprimento da série aumenta. Finalmente, uma aplicação emṕırica é ilustrada.

Palavras-chave: Processo localmente estacionário, distribuição estável, distribuição estável

temperada, inferência indireta, estimação em dois passos.
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Chapter 1

Introduction

Dahlhaus (1996a, 1997) introduced the class of locally stationary processes that describes

the types of processes that are approximately stationary in a neighborhood of each time point

but its structure, such as covariances and parameters, gradually changes throughout the time

period. This type of processes has been proved to achieve meaningful asymptotic theory by

applying infill asymptotics. The idea of this approach is that the time varying parameters

are rescaled to the unit interval, and thus, more available observations imply obtaining

more contribution for each local structure. Consequently, statistical asymptotic results such

as consistency, asymptotic normality, efficiency, locally asymptotically normal expansions,

etc. are obtained. There is an extensive literature about estimation and hypothesis testing

methods, e.g. Chan and Palma (2019) cites recent advanced papers on this topic.

Most results of locally stationary processes assume innovations with finite second mo-

ment. However, different areas, such as actuarial science, biostatistics, computer science,

finance and physics, have been observed phenomena with heavy tail distributions and/or

infinite variance (Grabchak, 2016a). In this thesis, we consider that the locally stationary

process assume heavy-tailed innovations. Specifically, two classes of distributions are consid-

ered: α−stable distribution and the tempered stable distribution.

The advantage of assuming α−stable distributions is its flexibility for asymmetry and

thick tails. Additionally, it is closed under linear combinations and includes the Gaussian

distribution as a special case. In this case, the process is α−stable and we call this kind of

process α−stable locally stationary process (strictly sense because of the infinite variance).

However, its estimation is difficult since the density function does not have a closed-form

and its moments of order greater than two do not exist. Therefore, the usual estimation

methods such as maximum likelihood and method of moments do not work.

On the other hand, the tempered stable distribution is obtained by changing the tail

behavior of a stable distribution. Its center is similar to stable distribution, but its tails

are lighter, which is called semi-heavy tails. This distribution keeps most of the attractive

properties and still has all finite moments. However, it is closed under linear combinations

only under some restrictive conditions.

1



2 INTRODUCTION

In the stable innovation case, alternative estimation approaches such as methods based on

quantiles (McCulloch, 1986) or on the empirical characteristic function (Koutrouvelis, 1981)

are proposed. However, those methods are only useful for the estimation of the α−stable

distribution parameters and, therefore, they are difficult to apply for more complex models.

The strategy to estimate this kind of process is the indirect inference proposed by

Gourieroux et al. (1993) and Gallant and Tauchen (1996). Since α−stable distributions can

be easily simulated, the indirect approach, which is an intensive computationally simulation

based method, can be a solution to overcome the estimation problem. Models involving sta-

ble distribution were successfully implemented in indirect inference for independent samples

from the α-stable distributions and α−stable ARMA processes (Lombardi and Calzolari

(2008)). Moreover, some time series models involving stable distributions are also success-

fully implemented using indirect inference (Calzolari and Halbleib, 2018; Calzolari et al.

, 2014; Sampaio and Morettin, 2015, 2018).

In the tempered stable innovation case, the model presents less attractive properties,

such as closeness under linear combinations. Nevertheless, since its moments of all orders

are finite, time series models involving tempered stable innovations can be estimated using

traditional methods with weakly stationary assumption, e.g. Feng and Shi (2017) investi-

gated Fractional integrated GARCH model with tempered stable distribution. Important

properties of tempered stable distributions and their associated processes are covered in

Grabchak (2016a); Küchler and Tappe (2013).

There are different extensions or subclasses of tempered stable distribution, e.g. mixed

tempered stable distribution (Hitaj et al., 2018; Rroji and Mercuri, 2015), modified tem-

pered stable distribution (Kim et al., 2006) and KR distribution (Kim et al., 2008). Despite

of these variations, we will focus on the standardized classical tempered stable distribution,

which is implemented in GARCH models in Kim et al. (2008). The attractive feature of

this distribution is that it has zero mean and unit variance, and the parameters can be

estimated using two-step estimation. In our case, the parametric time varying structure can

be estimated by using blocked Whittle likelihood, proposed by Dahlhaus (1997). Next, by

supposing independent standardized classical tempered stable innovations, recovering from

the residuals of the model, consistent estimation related to the tempered stable distribution

can be obtained by maximum likelihood estimation.

Our contribution in the α−stable innovation case is twofolds. Firstly, we present proper-

ties of the α−stable locally stationary processes. Second, we carried out simulations by using

indirect inference for this type of models with linear coefficients throughout the time. When a

time series has infinite variance, simulations suggests that indirect inference performs better

than the blocked Whittle estimation in term of bias and standard error. However, estimation

is more time consuming. Furthermore, in the tempered stable innovation case, we performed

simulation studies in order to evaluate the consistency of the estimation. Biased estimators

in the second step are detected for relatively small time series and the bias is reduced when

the time series length increases. Finally, we illustrate an application with models assuming
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α−stable and tempered stable innovations. The program and routines were performed in R

version 3.5.3 R Core Team (2019).

1.1 Organization of the thesis

We organize this thesis as follows. The first part consists of a brief review of important

concepts in this work: locally stationary process (Chapter 2), α−stable and tempered sta-

ble distribution (Chapter 3), and the indirect inference (Chapter 4). Then, we present the

properties of the α−stable locally stationary processes and some examples in Chapter 5.

In Chapter 6, we perform several simulations to study the indirect inference and illustrate

an application by assuming known index of stability α. In the same way, we carried out

simulations for the unknown index of stability α and present an application in Chapter 7.

Next, the locally stationary processes with tempred stable innovations is covered in Chapter

8. Finally, conclusions and future works are presented in Chapter 9.
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Chapter 2

Locally Stationary Processes

In time series, stationary processes have been well studied due to important properties

such as invariant mean and variance and covariance structure depending on difference of

times. However, most real world time series data are not stationary and fitting a stationary

process to a nonstationary time series could be inappropriate and it will usually lead to

wrong conclusions.

To deal with nonstationarity, there are some well-known techniques that convert nonsta-

tionary time series into stationary ones, such as differentiation, trend removal and regression

analysis based on other input variables.

Dahlhaus (2012) pointed out some difficulties on developing nonstationary processes:

1. There is no natural generalization from stationary to nonstationary time series, ex-

cept those nonstationary models which are generated by a time invariant generation

mechanism such as integrated or cointegrated models.

2. It is not clear how to set down a meaningful asymptotic theory for nonstationary

processes.

One way to generalize the stationary process is the idea of locally stationarity. This is

the case where a stochastic process Xt might be stationary over small periods of time, but

this property of stationarity changes slowly over the longer period of time. Priestley (1965)

introduced the processes with a time-varying spectral representation

Xt =

∫ π

−π
eiλtAt(λ)dξ(λ), t ∈ Z,

where ξ(λ) is an orthogonal increment process and At(λ) is a time-varying transfer function.

Note that when At(λ) is constant with respect to t, then we obtain the special case when

Xt is globally stationary.

Since future observations of a nonstationary process may not contain any information

at the probabilistic structure of the process at present, the theory of locally stationary

processes is based on infill asymptotic approach. As in nonparametric statistics, the idea of

5
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infill asymptotic is that the functions over time are rescaled to the unit interval in order to

achieve some meaningful asymptotic theory.

We will introduce the theory of locally stationary process 1 by giving a simple example

of time varying AR(1) process,

Xt + αtXt−1 = σtεt, with εt
iid∼ N (0, 1). (2.1)

Applying infill asymptotics means that αt and σt are replaced by α( t
T

) and σ( t
T

) with

curves α(·) : [0, 1] → (−1, 1) and σ(·) : [0, 1] → (0,∞). Note that if we fit the parametric

model αθ,t = b+ct+dt2 to the non-rescaled model (2.1), it is easy to construct estimators such

as maximum likelihood estimator; however, it is nearly impossible to derive the finite sample

properties of these estimators. Moreover, classical non-rescaled asymptotic considerations

have no sense since αθ,t →∞, if t→∞ while |αt| < 1 in the observed segment.

On the other hand, using infill asymptotic, as T →∞, we obtain more and more avail-

able observations for contributing each local structure, and there are statistical asymptotic

results such as consistency, asymptotic normality, efficiency, locally asymptotically normal

(LAN) expansions, etc. for non-stationary processes. Moreover, note that classical asymp-

totics for stationary processes arise as a special case of this infill asymptotics in case where

all parameter curves are constant.

2.1 Linear locally stationary processes

The formal definition of a linear locally stationary processes is as follows.

Definition 2.1. (Linear locally stationary processes) The sequence of stochastic processes

Xt,T (t = 1, ..., T ) is a linear locally stationary processes if Xt,T has a representation

Xt,T = µ

(
t

T

)
+

∞∑
j=−∞

at,T (j)εt−j, (2.2)

where some regularity conditions are satisfied for µ, αt,T and εt.

Note that if the εt are stationary, it can be represented as

εt =
1√
2π

∫ π

−π
eiλtdξ(λ),

where ξ(λ) is a process with zero mean and orthonormal increments. Then, the representation

(2.2) is basically equivalent to

Xt,T = µ

(
t

T

)
+

∫ π

−π
eiλtAt,T (λ)dξ(λ), (2.3)

1this chapter is based on Dahlhaus (2012), which contains an overview of the theory of locally stationary
processes.
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with the transfer function At,T (λ) :=
∞∑

j=−∞
at,T (j)e−iλj.

To continue with the regularity conditions of the linear locally stationary process defined

in (2.2), let V (g) be the total variation of a function g on [0, 1], that is

V (g) = sup

{
m∑
k=1

|g(xk)− g(xk−1)| : 0 ≤ x0 < ... < xm ≤ 1,m ∈ N

}
,

and for some κ > 0 let

`(j) :=

{
1, |j| ≤ 1

|j| log1+κ |j| |j| > 1.
(2.4)

Assumption 2.1. Suppose that the sequence of stochastic process Xt,T has a representation

as in (2.2) and satisfies the following conditions:

(i)

sup
t
|at,T (j)| ≤ K

`(j)
, with K independent of T; (2.5)

(ii) there exist funcions a(·, j) : (0, 1]→ R with

sup
u
|a(u, j)| ≤ K

`(j)
, (2.6)

sup
j

T∑
t=1

∣∣∣∣at,T (j)− a
(
t

T
, j

)∣∣∣∣ ≤ K, (2.7)

V (a(·, j)) ≤ K

`(j)
, (2.8)

(iii) µ has finite total variation, and the εt are i.i.d. with E [εt] = 0, E [εs, εt] = 0 for s 6= t

and E [ε2
t ] = 1.

For some local results, stronger smoothness assumptions have to be imposed. For exam-

ple, for some i,

sup
u

∣∣∣∣∂iµ(u)

∂ui

∣∣∣∣ ≤ K, (2.9)

sup
u

∣∣∣∣∂ia(u, j)

∂ui

∣∣∣∣ ≤ K

`(j)
, for j = 0, 1, ... (2.10)

and a stronger assumption than (2.7) is

sup
t,T

∣∣∣∣at,T (j)− a
(
t

T
, j

)∣∣∣∣ ≤ K

T`(j)
. (2.11)

Consequently, the stationary approximation of (2.2) can be constructed

X̃t(u) = µ(u) +
∞∑

j=−∞

a (u, j) εt−j.
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Definition 2.2. (Time-varying spectral density and covariance) Let Xt,T be a stochastic

process with representation as in (2.2). The function

f(u, λ) :=
1

2π
|A(u, λ)|2 (2.12)

is the time-varying spectral density of Xt,T , where A(u, λ) :=
∞∑

j=−∞
a(u, j)e−iλj is the time-

varying transfer function, and

c(u, k) :=

∫ π

−π
f(u, λ)eiλkdλ =

∞∑
j=−∞

a(u, k + j)a(u, j) (2.13)

is the time-varying covariance of lag k at rescaled time u.

Under Assumption 2.1 with the condition (2.11), it can be shown that

cov
(
X[uT ],T , X[uT ]+k,T

)
= c(u, k) +O(T−1), (2.14)

uniformly in u and k. Moreover, the condition (2.11) implies that

sup
t,λ

∣∣∣∣At,T (λ)− A
(
t

T
, λ

)∣∣∣∣ ≤ KT−1. (2.15)

Consider the Wigner-Ville spectrum for fixed T (Martin and Flandrin, 1985)

fT (u, λ) :=
1

2π

∞∑
s=−∞

cov
(
X[uT−s/2],T , X[uT+s/2],T

)
e−iλs. (2.16)

Dahlhaus (1996a) showed that under Assumption 2.1 and the condition (2.10) for all j, that

fT (u, λ) tends in squared mean to f(u, λ) as defined in (2.12), for all u ∈ (0, 1), that is∫ π

−π
|fT (u, λ)− f(u, λ)|2 dλ = o(1), for all u ∈ (0, 1). (2.17)

This result justifies the so called instantaneous spectrum. As the time-varying spectral

density f(u, λ) is uniquely defined, A(u, λ), a(u, j), and µ(t/T ) are also uniquely determined

(Dahlhaus, 2012).

As stated in Dahlhaus (2012), all theorems that will be presented here use “under

suitable regularity conditions” and they have slightly different conditions, but all results are

conjecturable to be prove under Assumption 2.1.

At the end of this section, we present the following proposition which presents the time-

varying ARMA as an example of locally stationary process (see Dahlhaus and Polonik, 2009,

Proposition 2.4).
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Proposition 2.1. (tvARMA). Consider the system of difference equations

p∑
j=0

αj

(
t

T

)
Xt−j,T =

q∑
k=0

βk

(
t

T

)
σ

(
t− k
T

)
εt−k (2.18)

where εt are i.i.d. with Eεt = 0, E|εt| < ∞, α0(u) ≡ β0(u) ≡ 1 and αj(u) = αj(0),

βk(u) = βk(0) for u < 0. If all αj(·) and βk(·), as well as σ2(·), are of bounded variation

and
∑p

j=0 αj(u)zj 6= 0 for all u and all 0 < |z| ≤ 1 + δ for some δ > 0, then there exists a

solution of the form

Xt,T =
∞∑
j=0

at,T (j)εt−j

which fullfills (2.6), (2.7) and (2.8) of Assumption 2.1. If the parameters are differentiable

with bounded derivatives, then also (2.9), (2.10) and (2.11) are fulfilled (for i = 1). Moreover,

the time-varying spectral density is given by

f(u, λ) =
σ2(u)

2π

∣∣∣∣ q∑
k=0

βk(u)eiλk
∣∣∣∣2∣∣∣∣∣ p∑j=0

αj(u)eiλj

∣∣∣∣∣
2 . (2.19)

2.2 Time-varying autoregressive processes

In this section, we will present the time-varying autoregressive process as a special case

of linear locally stationary process. The time-varying autoregressive process (tvAR(p)) has

the following representation

Xt,T +

p∑
j=1

αj

(
t

T

)
Xt−j,T = σ

(
t

T

)
εt, t ∈ Z, (2.20)

where the εt are independent random variables with mean zero and variance 1. We assume

σ(u) = σ(0), αj(u) = αj(0) for u < 0, j = 1, ..., p, and σ(u) = σ(1), αj(u) = αj(1) for

u > 1, j = 1, ..., p. Moreover, we also assume some smoothness conditions on σ(·) and

αj(·), j = 1, ..., p.

The idea of locally stationary process is that given a fixed time point u0 = t0
T

, the process

Xt,T can be approximated by a stationary process X̃t(u0) defined by

X̃t(u0) +

p∑
j=1

αj(u0)X̃t−j(u0) = σ(u0)εt, t ∈ Z. (2.21)

Dahlhaus (2012) states that under some suitable regularity conditions, it can be shown

that ∣∣∣Xt,T − X̃t(u0)
∣∣∣ = OP

(∣∣∣∣ tT − u0

∣∣∣∣+
1

T

)
,
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which justifies the notation “locally stationary process”. Moreover, Xt,T has unique time-

varying spectral density which is locally the same as the spectral density of X̃t(u),

f(u, λ) =
σ2(u)

2π

∣∣∣∣∣1 +

p∑
j=1

αj(u)e−ijλ

∣∣∣∣∣
−2

. (2.22)

Furthermore, Xt,T has locally the same autocovariance than X̃t(u) which is

c(u, j) :=

∫ π

−π
eijλf(u, λ)dλ, j ∈ Z.

2.2.1 Parametric Whittle-type estimates

A well-known estimation approach is assuming that the (p + 1)-dimensional parameter

curve can be parameterized by a finite-dimensional parameter, that is

θ(·) =
(
α1(·), ..., αp(·), σ2(·)

)
= θη(·), η ∈ Rq.

Then, the stationary Whittle estimate, introduced by Whittle (1953), can be applied

for the parameter curve θ(·) on a segment about u0

θ̂
W

T (u0) := argmin
θ∈Θ

LWT (u0,θ) (2.23)

where LWT (u0,θ) is the Whittle likelihood

LWT (u0,θ) :=
1

4π

π∫
−π

{
log 4π2fθ(λ) +

IT (u0, λ)

fθ(λ)

}
dλ, (2.24)

with the tapered periodogram on a segment about u0 given by

IT (u0, λ) :=
1

2πHN

∣∣∣∣∣
N∑
s=1

h
( s
N

)
X[u0T ]−N/2+s,T e

−iλs

∣∣∣∣∣
2

, (2.25)

where h : [0, 1] → R is a data taper with h(x) = h(1 − x), and HN :=
∑N−1

j=0 h2
(
j
N

)
∼

N
∫ 1

0
h2(x)dx is the normalizing factor.

For fitting globally the parametric model θη(·) with time-varying spectrum fη(u, λ) :=

fθη(u)(λ), Dahlhaus (1997) considered the block Whittle estimates

η̂BWT (u0) := argmin
η∈Θη

LBWT (η) (2.26)

where

LBWT (η) :=
1

4π

1

M

M∑
j=1

π∫
−π

{
log 4π2fη(uj, λ) +

IT (uj, λ)

fη(uj, λ)

}
dλ (2.27)
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is the block Whittle likelihood with uj := tj/T , tj := S(j − 1) + N/2, j = 1, ...,M and

T = S(M − 1) +N . More details of this approach is presented in Section 2.6.

2.2.2 Inference for nonparametric tvAR models

If the time series is short or there is a specific parametric model, parametric estimates

for tvAR(p) that were presented before are a good option. However, nonparametric models

are preferred due to its flexibility.

Consider the (negative) conditional log-likelihood at time t of a tvAR(p)

`t,T (θ) := − log fθ(Xt,T |Xt−1,T , ..., X1,T ) (2.28a)

=
1

2
log(2πσ2) +

1

2σ2

(
Xt,T +

p∑
j=1

αjXt−j,T

)2

, (2.28b)

where θ = (α1, ..., αp, σ
2)′. Based on this conditional likelihood, several estimates can be

constructed:

1. A Kernel estimate defined by

θ̂(u0) = argmin
θ

1

bT

T∑
t=1

K

(
u0 − t/T

b

)
`t,T (θ), (2.29)

where K : R → [0,∞) is a kernel with K(x) = K(−x),
∫
K(x)dx = 1, K(x) = 0 for

x /∈ [−1
2
, 1

2
] and b is the bandwidth.

2. A local polynomial fit defined by θ̂(u0) = ĉ with

(ĉ0, ..., ĉd)
′ = argmin

c0,...,cd

1

bT

T∑
t=1

K

(
u0 − t/T

b

)
`t,T

(
d∑
j=0

cj

(
t

T
− u0

)j)
, (2.30)

which is investigated by Kim (2001).

3. An orthogonal series estimate defined by

β̄ = argmin
β

1

T

T∑
t=1

`t,T

J(T )∑
j=0

βjψj

(
t

T

) , (2.31)

where {ψj(·)} forms an orthonormal basis for functions in some function space.

4. A nonparametric maximum likelihood estimate defined by

θ̂(·) = argmin
θ(·)∈Θ

1

T

T∑
t=1

`t,T

(
θ

(
t

T

))
, (2.32)
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where Θ is an adequate function space.

5. Finally, a parametric fit for the curves θ(·) = θη(·) with η ∈ Rq defined by

η̂ = argmin
η

1

T

T∑
t=1

`t,T

(
θη

(
t

T

))
. (2.33)

2.3 Local likelihood

In this section, a more general theoretical framework of nonparametric inference for time

series with time-varying finite-dimensional parameters θ(·) is presented. The idea is that

at each time point u0 ∈ (0, 1), we approximate a stationary process X̃t(u0) to the original

process Xt,T .

Suppose that we estimate the multivariate parameter curve θ(·) by minimizing the local

(negative) conditional log-likelihood

θ̂
C

T (u0) := argmin
θ∈Θ

LCT (u0,θ)

where

LCT (u0,θ) :=
1

T

T∑
t=1

1

b
K

(
u0 − t/T

b

)
`t,T (θ). (2.34)

and

`t,T (θ) := − log fθ (Xt,T |Xt−1,T , ..., X1,T )

where K is a kernel defined as in (2.29). We assume that b = bT → 0 and bT → ∞ as

T →∞.

We approximate LCT (u0,θ) with L̃CT (u0,θ) which is defined by

L̃CT (u0,θ) :=
1

T

T∑
t=1

1

b
K

(
u0 − t/T

b

)
˜̀
t,T (θ) (2.35)

with the local (negative) conditional log-likelihood for the process X̃t(u0)

˜̀
t(u0,θ) := − log fθ(X̃t(u0)|X̃t−1(u0), ..., X̃1(u0)).

To continue, we present the derivation of the asymptotic bias, mean-squared error, con-

sistency and asymptotic normality of θ̂T (u0) for local minimum-distance function LT (u0,θ)

such as (2.34). Typically, both LT (u0,θ) and L̃T (u0,θ) will converge to the same limit-

function L(u0,θ). Let

θ0(u0) := argmin
θ∈Θ

L(u0,θ).
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and let

BT (u0,θ) := LT (u0,θ)− L̃T (u0,θ)

Theorem 2.1.

(i) Suppose that Θ is compact with θ0(u0) ∈ Int(Θ), the function L(u0,θ) is continuous

in θ and the minimum θ0(u0) is unique. If

sup
θ∈Θ

∣∣∣L̃T (u0,θ)− L(u0,θ)
∣∣∣ P−→ 0, and (2.36)

sup
θ∈Θ
|BT (u0,θ)| P−→ 0 (2.37)

then

θ̂T (u0)
P−→ θ0(u0). (2.38)

(ii) Suppose in addition that L(u, θ) and θ0(u) are uniformly continuous in u and θ, and

the convergence in (2.36) and (2.37) is uniformly in u0 ∈ [0, 1]. Then

sup
u0∈[0,1]

∣∣∣θ̂T (u0)− θ0(u0)
∣∣∣ P−→ 0. (2.39)

To continue, the results on asymptotic normality is stated. Denote ∇ the derivatives with

respect to the θi, i.e., ∇ :=
(

∂
∂θi

)
i=1,...,d

.

Theorem 2.2. Let θ0 := θ0(u0). Suppose that LT (u0,θ), L̃T (u0,θ), and L(u0,θ) are twice

continuously differentiable in θ with nonsingular matrix Γ(u0) := ∇2L(u0,θ0). Let further

√
bT∇L̃T (u0,θ0)

D−→ N (0, V (u0))

with some sequence b = bT , where b→ 0 and bT →∞ and

sup
θ∈Θ

∣∣∣∇2L̃T (u0,θ)−∇2L(u0,θ)
∣∣∣ P−→ 0.

If in addition
√
bT

(
Γ(u0)−1∇BT (u0,θ0)− b2

2
µ0(u0)

)
= oP (1)

with some µ0(·) and

sup
θ∈Θ

∣∣∇2BT (u0,θ)
∣∣ P−→ 0,

then

√
bT

(
θ̂T (u0)− θ(u0) +

b2

2
µ0(u0)

)
D−→ N

(
0,Γ(u0)−1V (u0)Γ(u0)−1

)
. (2.40)
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2.4 Kullback-Leibler information for Gaussian processes

In this section we present some results from the linear local stationary processes (2.2) in

the Section 2.1 with Gaussian innovations.

Consider the exact Gaussian maximum likelihood estimate

η̂ML
T := argmin

η∈Θη

LET (η) (2.41)

where η is a finite-dimensional parameter such as in (2.26), and

LET (η) =
1

2
log(2π) +

1

2T
log det Ση +

1

2T
(X − µη)′Σ−1

η (X − µη) , (2.42)

with X = (X1,T , ..., XT,T )′, µη = (µη(1/T ), ..., µη(T/T ))′, and Ση the covariance matrix of

the model. Under certain regularity conditions η̂ML
T will converge to

η0 := argmin
η∈Θη

L(η) (2.43)

where

L(η) := lim
T→∞

ELET (η). (2.44)

The following theorem states that L(η) is equivalent to the calculation of the Kullback-

Leibler information divergence.

Theorem 2.3. Let Xt,T be a locally stationary process with true mean and spectral density

curves µ(·), f(u, λ) and model curves µη(·), fη(u, λ), respectively. Under suitable regularity

conditions, we have

L(η) = lim
T→∞

LET (η)

=
1

4π

∫ 1

0

∫ π

−π

{
log 4π2fη(u, λ) +

f(u, λ)

fη(u, λ)

}
dλdu+

1

4π

∫ 1

0

(µη(u)− µ(u))2

fη(u, 0)
du.

(2.45)

Note that if we suppose a stationary model, i.e., fη(λ) := fη(u, λ) and m := µη(u) does

not depend on u, the Kullback-Leibler information divergence for stationary processes is

obtained from the above theorem:

L(η) =
1

4π

∫ π

−π

{
log 4π2fη(λ) +

∫ 1

0

f(u, λ)du

fη(λ)

}
dλ+

1

4π
fη(0)−1

∫ 1

0

(m− µ(u))2du. (2.46)

Based on (2.45), consider a quasi-likelihood criterion

LQLT (η) =
1

4π

∫ 1

0

∫ π

−π

{
log 4π2fη(u, λ) +

f̂(u, λ)

fη(u, λ)

}
dλdu+

1

4π

∫ 1

0

(µη(u)− ˆµ(u))2

fη(u, 0)
du.

(2.47)

where f̂(u, λ) and ˆµ(u) are suitable nonparametric estimates of f(u, λ) and µ(u), respectively.
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In order to study efficiency of parameter estimates, we define the Fisher information

matrix as

Γ := lim
T→∞

T Eη0
{

(∇LET (η0))(∇LET (η0))′
}
,

and its following representation (for more details see Dahlhaus, 1996b).

Theorem 2.4. Let Xt,T be a locally stationary process with correctly specified mean curve

µη(u) and time-varying spectral density fη(u, λ). Under suitable regularity conditions, we

have

Γ =
1

4π

∫ 1

0

∫ π

−π
(∇ log fη0)(∇ log fη0)

′dλdu

+
1

2π

∫ 1

0

(∇µη0(u))(∇µη0(u))′f−1
η0

(u, 0)du.

(2.48)

Finally, we will present how the time-varying spectral density can be estimated. Let

f̂T (u, λ) :=
1

bf

∫
Kf

(
λ− µ
bf

)
IT (u, µ)dµ (2.49)

where Kf is a symmetric kernel with
∫
Kf (x)dx = 1, bf is the bandwidth in frequency

direction, and IT (u, λ) is the tapered periodogram on a segment of length N about u as

defined in (2.25).

Theorem 2.5. Let Xt,T be a locally stationary process with µ(·) ≡ 0. Under suitable regu-

larity conditions, we have

(i) E {IT (u, λ)} = f(u, λ) + 1
2
b2
t

1/2∫
−1/2

x2Kt(x)dx ∂2

∂u2
f(u, λ) + o(b2

t ) +O
(

log(btT )
btT

)
;

(ii) E
{
f̂T (u, λ)

}
= f(u, λ)+1

2
b2
t

1/2∫
−1/2

x2Kt(x)dx ∂2

∂u2
f(u, λ)+1

2
b2
f

(
1/2∫
−1/2

x2Kf (x)dx

)
∂2

∂λ2
f(u, λ)+

o(b2
t + b2

f + log(btT )
btT

);

(iii) V ar
{
f̂T (u, λ)

}
= (btbfT )−12πf(u, λ)2

1/2∫
−1/2

Kt(x)2dx
1/2∫
−1/2

Kf (x)2dx(1 + δλ0).

Finally, minimizing the relative mean-squared error

RMSE(f̂) := E(f̂(u, λ)/f(u, λ− 1)2 (2.50)

with respect to bt, bf , Kf and Kt, Dahlhaus (1996c) proved that with

∆u :=
∂2

∂u2
f(u, λ)

f(u, λ)
and ∆λ :=

∂2

∂λ2
f(u, λ)

f(u, λ)
,

the optimal RMSE is obtained with

boptt = T−1/6(576π)1/6 ∆λ

∆5
u

1/12

and boptf = T−1/6(576π)1/6 ∆u

∆5
λ

1/12

,
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and optimal kernels Kopt
t (x) = Kopt

f (x) = 6(1/4− x2) with optimal rate T−2/3.

2.5 Gaussian likelihood theory for locally stationary

processes

In case of stationary processes, the Whittle likelihood is an approximation of the negative

log Gaussian likelihood (2.42) (cf. Dzhaparidze and Kotz, 2012), that is,

1

4π

∫ π

−π

{
log 4π2fη(λ) +

IT (λ)

fη(λ)

}
dλ, (2.51)

where IT (λ) is the periodogram. In order to introduce the Generalized Whittle Likelihood,

the periodogram can be decomposed as follows

IT (λ) =
1

2πT

∣∣∣∣∣
T∑
r=1

Xre
−iλr

∣∣∣∣∣
2

=
1

T

T∑
t=1

JT

(
t

T
, λ

)
, (2.52)

with the preperiodogram

JT (u, λ) :=
1

2π

∑
1≤[uT+0.5+k/2],[uT+0.5−k/2]≤T

X[uT+0.5+k/2],TX[uT+0.5−k/2],T e
−iλk. (2.53)

Observe that the preperiodogram can be interpreted as a local version of the periodogram

at time t (for more details see Dahlhaus, 2012).

Then, we can define the generalized Whittle likelihood by replacing IT (λ) in (2.51) by

the average of the preperiodogram and the model spectral density fη(λ) by the time-varying

spectral density fη(u, λ) of a nonstationary model, that is

LGWT (η) :=
1

T

T∑
j=1

1

4π

π∫
−π

{
log 4π2fη(

t

T
, λ) +

JT ( t
T
, λ)

fη(
t
T
, λ)

}
dλ. (2.54)

Observe that if the fitted model is stationary, then it is identical to the Whittle likelihood,

thus the classical Whittle estimator is obtained. Let

η̂GWT := argmin
η∈Θη

LGWT (η) (2.55)

be the quasi-likelihood estimate, and η̂ML
T be the Gaussian maximum likelihood estimator

(MLE) defined in (2.41). In the following theorem, the asymptotic normality result in the

parametric case is presented.

Theorem 2.6. Let Xt,T be a locally stationary process. Under suitable regularity conditions
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we have in the case µ(·) = µη(·) = 0

√
T (η̂GWT − η0)

D−→ N (0,Γ−1V Γ−1)

and √
T (η̂ML

T − η0)
D−→ N (0,Γ−1V Γ−1)

where

Γij =
1

4π

∫ 1

0

∫ π

−π
(f − fη0)∇ijf

−1
η0
dλdu+

1

4π

∫ 1

0

∫ π

−π
(∇i log fη0)(∇j log fη0)dλdu

and

Vij =
1

4π

∫ 1

0

∫ π

−π
(∇if

−1
η )(∇jf

−1
η )dλdu.

If the model is correctly specified, then V = Γ which is defined as in (2.48). This means that

both estimates are asymptotically Fisher efficient. Even more the sequence of experiments is

locally asymptotically normal (LAN) and both estimates are locally asymptotically minimax.

Finally, the following theorem states the properties of the different likelihoods discussed

above.

Theorem 2.7. Under suitable regularity conditions, we have for k = 0, 1, 2,

(i) supη∈Ωη

∣∣∇k
{
LGWT (η)− LET (η)

}∣∣ P−→ 0,

(ii) supη∈Ωη

∣∣∇k
{
LGWT (η)− L(η)

}∣∣ P−→ 0,

(iii) supη∈Ωη

∣∣∇k
{
LET (η)− L(η)

}∣∣ P−→ 0.

Under stronger assumptions, we can obtain η̂GWT − η̂ML
T = OP (T−1+ε) (for more details

see Dahlhaus, 2000).

2.6 Blocked Whittle estimation

In this section, we present a general estimation approach proposed by Dahlhaus (1997).

Suppose that we are interested in fitting a locally stationary model with time-varying spectral

density fθ(u, λ), θ ∈ Θ ⊂ RP to observations X1,T , ..., XT,T . Let h : R → R be a data taper

with h(x) = 0 for x /∈ [0, 1) and (for N even),

dN(u, λ) =
N−1∑
s=0

h
( s
N

)
X[uT ]−N/2+s+1,T exp(−iλs), (2.56)

Hk,N(λ) =
N−1∑
s=0

h
( s
N

)k
exp(−iλs), (2.57)

IN(u, λ) :=
1

2πH2,N(0)
|dN(u, λ)|2 . (2.58)



18 LOCALLY STATIONARY PROCESSES

IN(u, λ) is the periodogram over a segment of length N with midpoint [uT ]. We shift by

Q from segment to segment and calculate IN over segments with midpoints tj := Q(j− 1) +

N/2, j = 1, ...,M where T = Q(M − 1) +N , and uj := tj/T is the rescaled midpoint. Next,

define the blocked Whittle estimator

θ̂
BW

T = argmin
θ∈Θ

LBWT (θ) (2.59)

where

LBWT (θ) :=
1

4π

1

M

M∑
j=1

π∫
−π

{
log fθ(uj, λ) +

IT (uj, λ)

fθ(uj, λ)

}
dλ (2.60)

is the blocked Whittle likelihood.

The justification of the blocked Whittle likelihood comes as follows. Let f̄ and f be the

probability density of the observations and the true spectral density, respectively, and f̄θ

and fθ be the corresponding probability density and the density of the proposed model,

respectively. In Gaussian case, Dahlhaus (1996b) proved that the asymptotic Kullback-

Leibler information divergence is

lim
T→∞

1

T
Ef̄ log(f̄/f̄θ) =

1

4π

∫ 1

0

∫ π

−π

{
log fθ(u, λ) +

f(u, λ)

fθ(u, λ)

}
dλdu+ constant. (2.61)

Therefore,

L(θ) =
1

4π

∫ 1

0

∫ π

−π

{
log fθ(u, λ) +

f(u, λ)

fθ(u, λ)

}
dλdu (2.62)

may be considered as a distance between the true process with spectral density f(u, λ) and

the proposed model with spectral density fθ(u, λ). If the model is correct,

θ0 = argmin
θ∈Θ

L(θ) (2.63)

is the true parameter of the model.

Theorem 2.8. Suppose that we observe the realization X1,T , ..., XT,T from a locally station-

ary process of Definition 2.1 with µ(u) = 0 satisfying the Assumption 2.1 and the equation

(2.11). Moreover, suppose that the Assumption 3.1 from Dahlhaus (1997) holds. Then

θ̂BWT → θ0

in probability. Moreover,

√
T
(
θ̂BWT − θ0

)
D−→ N (0, chΓ

−1(V +W )Γ−1) (2.64)
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with

Γ =
1

4π

∫ 1

0

∫ π

−π
(f(u, λ)− fθ0(u, λ))∇2fθ0(u, λ)−1dλdu

+
1

4π

∫ 1

0

∫ π

−π
(∇ log fθ0(u, λ)) (∇ log fθ0(u, λ))′ dλdu

V =
1

4π

∫ 1

0

∫ π

−π
f(u, λ)2∇fθ0(u, λ)−1∇fθ0(u, λ)−1dλdu

W =
1

8π

∫ 1

0

∫ π

−π

∫ π

−π
f(u, λ)f(u, µ)∇f−1

θ0
(u, λ)∇f−1

θ0
(u, µ)′g4(λ,−λ, µ)dλdµdu,

and ch = H4/H
2
2 if S = N , ch = 1 if S/N → 0, and g4 is defined in the Definition 2.1 in

Dahlhaus (1997).

2.7 Prediction

There are few works that address the problem for predicting and forecasting locally

stationary processes, since the infill asymptotics is employed and the interest of researchers

is generally focused on the behavior of the observed time period.

Van Bellegem and von Sachs (2004) apply locally stationary processes to predict eco-

nomic data by considering the observed values X0,T , · · · , XT−h−1,T and rescaling the time

interval to
[
0, 1− h+1

T

]
, where h is the forecasting horizon and the ratio h/T tends to zero

as T tends to infinity. On the other hand, Palma et al. (2013) proposed a state space

framework for estimating, prediction and making statistical inferences for Gaussian locally

stationary processes with short and long memory, and the possibility of handling missing

values. The Kalman filter proposed makes the possibility of obtaining the exact and approx-

imate maximum likelihood estimates, one-step and multi-step predictors along with their

error bands.

On the other hand, Bardet and Doukhan (2017) introduced a new class of time-varying

AR(1) which is locally stationary but with periodic parameter functions. We will explore

the possibility of predicting this process because of the periodic feature of the present time

period could be extended to the future time period.
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Chapter 3

Stable and tempered stable

distributions

Most statistical models assume Gaussian error distribution due to the fact that it is the

domain of attraction from all distributions with the finite variance, and thus, its theoretical

results are easier to handle. However, different areas, such as actuarial science, biostatis-

tics, computer science, finance and physics, have been observed phenomena with heavy tail

distributions and/or infinite variance (Grabchak, 2016a). Hence, considering heavy tail dis-

tributions could be an alternative to model this kind of phenomena.

Stable distribution presents attractive theoretical properties, such as the extremely heavy

tails and stability under linear combinations, but the fact that moments of order greater

than two do not exist is a restrictive assumption in real-world applications. However, it is

closed under linear combination which includes the possibility of handling asymmetry and

thicker tails. On the other hand, a tempered stable distribution is obtained by changing

the tail behavior of a stable distribution. As a result, its center is similar to that of the

stable distribution, but its tails are lighter, which is called semi-heavy tails. In contrast to

the stable distributions, tempered stable distribution keeps most of the attractive properties

and still has all finite moments.

In this chapter, we will present the relevant results on the theory of stable distributions

and tempered stable distributions.

21
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3.1 Stable distribution

3.1.1 Stable distribution definition and its characteristic function

In this section, following the approach of Samorodnitsky and Taqqu (1994), four equiv-

alent definitions of a stable distribution are presented, in which the last one is based on its

characteristic function.

Definition 3.1. A random variable X is said to have a stable distribution if for any positive

numbers A and B, there is a positive number C and a real number D such that

AX1 +BX2
d
= CX +D, (3.1)

where X1 and X2 are independent copies of X, and where
d
= denotes equality in distribution.

A random variable X is called strictly stable if in (3.1) holds with D = 0, and a stable

random variable X is called symmetric stable if its distribution is symmetric, i.e. if X and

−X have the same distribution. As a result, a symmetric stable random variable is strictly

stable, but strictly stable random variable is not necessarily symmetric.

Definition 3.2. A random variable X is said to have a stable distribution if for any n ≥ 2,

there is a positive number Cn and a real number Dn such that

X1 +X2 + ...+Xn
d
= CnX +Dn, (3.2)

where X1, X2, ..., Xn are independent copies of X.

Definition 3.3. A random variable X is said to have a stable distribution if it has a domain

of attraction, i.e., if there is a sequence of i.i.d. random variables Y1, Y2, ... and a sequence

of positive numbers {dn} and real numbers {an}, such that

Y1 + Y2 + ...+ Yn
dn

+ an
d⇒ X. (3.3)

The notation
d⇒ denotes convergence in distribution.
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Definition 3.4. A random variable X is said to have a stable distribution if there are

parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1 and µ real such that its characteristic function

has the following form:

φX(u) := E
(
eiθX

)
=

exp
{
−σα|θ|α(1− iβ(sign θ) tan πα

2
) + iµθ

}
if α 6= 1,

exp
{
−σ|θ|(1 + iβ 2

π
(sign θ) log |θ|) + iµθ

}
if α = 1.

(3.4)

The parameter α is the index of stability and

sign θ =


1 if θ > 0,

0 if θ = 0,

−1 if θ < 0.

(3.5)

The definitions 3.1, 3.2, 3.3, 3.4 are equivalent. Especially, for the Definition 3.1, it can

be showed that Cα = Aα + Bα. In addition, for the Definition 3.2, Cn = n1/α (for more

details see Samorodnitsky and Taqqu, 1994).

Note that the characteristic function of a stable function in (3.4) is characterized by four

parameters where α ∈ (0, 2] is the index of stability. Then, we will refer a random variable

with stable distribution as α-stable random variable, and we will denote it by Sα(σ, β, µ).

The probability densities of α-stable random variable are continuous, but they do not

have closed form with three exceptions:

(i) (Gaussian distribution) When α = 2 and β = 0, X ∼ S2(σ, 0, µ) = N (µ, 2σ2) has

density

f(x) =
1

2σ
√
π
e
−(x−µ)2

4σ2 .

(ii) (Cauchy distribution) When α = 1 and β = 0, X ∼ S1(σ, 0, µ) has density

f(x) =
σ

π((x− π)2 + σ2)
.

(iii) (Lévy distribution) When α = 1/2 and β = 1, X ∼ S1/2(σ, 1, µ) has density

f(x) =
( σ

2π

)1/2

e−
σ

2(x−µ) I(x>µ).
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(iv) X ∼ Sα(0, 0, µ) has the degenerate distribution for any 0 < α ≤ 2, which is not the

interest of this research.

Figure 3.1 compares the standard Gaussian distribution, standard Cauchy distribution,

standard Lévy distribution and t-distribution (ν = 3). Note that the tail behavior of the

Cauchy distribution is much heavier than the t-distribution and normal distribution. On the

other hand, the Lévy distribution is asymmetric, while others are symmetric.
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Figure 3.1: Density function of standard Normal S2(1/
√

2, 0, 0), standard Cauchy S1(1, 0, 0),
standard Lévy S1/2(1, 1, 0) and t-distribution (ν = 3).

Figure 3.2 presents how varying each parameter can change the density function behavior:

α indicates the tail heaviness, β controls the skewness, σ is the scale parameter, and µ is

the shift parameter. In the next section, we will present properties of α-stable distribution

to justify the theoretical meaning of these parameters.

3.1.2 Properties

Some important properties of stable random variables are presented.

Proposition 3.1. Let X1 and X2 be independent random variables with Xi ∼ Sα(σi, βi, µi), i =

1, 2. Then X1 +X2 ∼ Sα(σ, β, µ), with

σ = (σα1 + σα2 )1/α, β =
β1σ

α
1 + β2σ

α
2

σα1 + σα2
, µ = µ1 + µ2.

.,. 
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(c) S1(σ, 0, 0) varying σ.
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Figure 3.2: Density functions of α-stable distributions varying their parameters.
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Proposition 3.2. Let X ∼ Sα(σ, β, µ) and let a be a real constant. Then X+a ∼ Sα(σ, β, µ+

a).

Proposition 3.3. Let X ∼ Sα(σ, β, µ) and let a be a non-zero real constant. Then

aX ∼ Sα(|a|σ, sign(a)β, aµ) if α 6= 1

aX ∼ S1

(
|a|σ, sign(a)β, aµ− 2

π
a(ln |a|)σβ

)
if α = 1

(3.6)

Thus, the parameter σ is called the scale parameter. However, observe that when α = 1

and β 6= 0, this name does not make sense since the multiplication by a constant affects the

shift parameter in a non-linear way. When µ = 0, we have the following proposition.

Proposition 3.4. For any 0 < α < 2. Then

X ∼ Sα(σ, β, 0)⇔ −X ∼ Sα(σ,−β, 0). (3.7)

Proposition 3.5. Let X ∼ Sα(σ, β, µ).

(i) If α 6= 1, then X is strictly stable if and only if µ = 0.

(ii) X with α = 1 is strictly stable if and only if β = 0.

The next proposition describes α as a tail heaviness parameter. For α close to 2 indicates

that the tail is thinner (closer to the normal distribution), while decreasing α means that

the tail will get heavier.

Proposition 3.6. Let X ∼ Sα(σ, β, µ) with α < 2. Then


lim
λ→∞

λαP {X > λ} = Cα
(

1+β
2

)
σα,

lim
λ→∞

λαP {X > −λ} = Cα
(

1−β
2

)
σα,

(3.8)

where

Cα =

(∫ ∞
0

x−α sinxdx

)−1

=


1−α

Γ(2−α)cos(πα/2)
if α 6= 1,

2/π if α = 1.

Proposition 3.6 describes the tail behavior and it leads to the following property related

to its moments.
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Proposition 3.7. Let X ∼ Sα(σ, β, µ) with 0 < α < 2. Then

E|X|p <∞ for any 0 < p < α,

E|X|p =∞ for any p ≥ α
(3.9)

Proposition 3.8. Let X ∼ Sα(σ, β, 0) with 0 < α < 2 and β = 0 in the case α = 1. Then,

for every 0 < p < α, there is a constant cα,β(p) such that

(E|X|p)1/p = cα,β(p)σ. (3.10)

The constant cα,β(p) = (E|X0|p)1/p where X0 ∼ Sα(1, β, 0) and

(cα,β(p))p =
2p−1Γ

(
1− p

α

)
p
∫∞

0
u−p−1 sin2 udu

(
1 + β2 tan2 απ

2

)p/2α
cos
( p
α

arctan
(
β tan

απ

2

))
. (3.11)

Proposition 3.9. When 1 < α ≤ 2, the shift parameter µ equals the mean.

Proposition 3.10. (Laplace transform) The Laplace transform Ee−γX , γ ≥ 0, of a random

variable X ∼ Sα(σ, 1, 0), 0 < α ≤ 2, σ > 0, is

Ee−γX =

exp
{
− σα

cos πα
2
γα
}

if α 6= 1,

exp
{
σ 2
π
γ ln γ

}
if α = 1.

(3.12)

3.1.3 Symmetric α-stable random variables

In this section, we describe some important results of a symmetric random variable and

then some main properties of a symmetric α-stable random variable are stated. A random

variable X is called symmetric if X
d
= −X.

Proposition 3.11. Let X
d
= F . Then, F is symmetric if, and only if, its characteristic

function ΦX(t) is real.

Proposition 3.12. If U and V are independent and symmetric, then U −V and U +V are

symmetric.

Proposition 3.13. Let X1, · · · , Xn be independent copies of X. If X is symmetric, then

Sn = X1 + · · ·+Xn is symmetric.
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Proposition 3.14. If X is symmetric and E(X) exists, then E(X) = 0.

In case of a stable random variable, we have:

Proposition 3.15. If X is stable and independent of Y with Y
d
= X, then X − Y is stable

and symmetric.

Proposition 3.16. X ∼ Sα(σ, β, µ) is symmetric if and only if β = 0 and µ = 0. It is

symmetric about µ if and only if β = 0.

Since X is SαS (symmetric α-stable) if and only if X ∼ Sα(σ, 0, 0), then its characteristic

function is given by

E
(
eiθX

)
= e−σ

α|θ|α . (3.13)

The distribution S ∼ Sα(σ, β, 0) is said to be skewed to the right if β > 0 and skewed

to the left if β < 0. Moreover, it is said to be totally skewed to the right if β = 1 and

totally skewed to the left if β = −1. Therefore, the parameter β is identified as a skewness

parameter.

3.1.4 Dependence structure

In case of Gaussian random variables, the existence of the second moment allows the

definition of the covariance function and, hence, the study of dependence structure. In the

case of stable random variable, however, the second moment does not exist (Proposition

3.7). The concept of covariation and codifference are basically measures of dependence for

infinite variance random variables in order to replace the covariance (Kokoszka and Taqqu,

1994, 1995). The first one is defined only for 1 < α < 2 and it is not a useful tool compared

to the codifference, which is defined for all 0 < α ≤ 2. The advantage of this measure is that

it does not require conditions on moments of the random variables and is defined in term of

the characteristic functions.

First consider two random variables X and Y , and define a function IX,Y (ξ1, ξ2)

IX,Y (ξ1, ξ2) = − lnE
[
ei(ξ1X+ξ2Y )

]
+ lnE

[
eiξ1X

]
+ lnE

[
eiξ2Y

]
. (3.14)
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If both random variables are Gaussian (α = 2), that is, X ∼ N (µX , σX), Y ∼ N (µY , σY )

and Cov (X, Y ) = σX,Y . Then,

E
[
eiξ1X

]
= eiξ1µXe−

1
2
σXξ

2
1

E
[
eiξ2Y

]
= eiξ1µY e−

1
2
σY ξ

2
2

E
[
ei(ξ1X+ξ2Y )

]
= ei(ξ1µX+ξ2µY )e−

1
2(ξ21σX+ξ22σY +2ξ1ξ2σX,Y )

Substituting in the equation (3.14), it is straightforward to obtain

IX,Y (ξ1, ξ2) = ξ1ξ2σX,Y .

This means that IX,Y is proportional to the covariance. Kokoszka and Taqqu (1995)

suggest to define the codifference by taking ξ1 = 1 and ξ2 = −1 and then,

Cov(X, Y ) = σX,Y = −IX,Y (1,−1).

Definition 3.5. The codifference between two random variables X and Y is defined as

τ(X, Y ) = −IX,Y (1,−1) = lnE
[
ei(X−Y )

]
− lnE

[
eiX
]
− lnE

[
e−iY

]
. (3.15)

3.2 Tempered stable distributions

In this section, we present the tempered stable distribution and some of their relevant

properties. A random variable X follows a tempered stable distribution, first introduced by

Koponen (1995), if its Lèvy measure1 is given by:

M(dx) =

(
C+e

−λ+x

x1+α
1(x>0) +

C−e
−λ−|x|

|x|1+α
1(x<0)

)
dx, (3.16)

where α < 2, and C+, C−, λ+, λ− ∈ (0,+∞). The reason that it is called tempered stable

distribution is because its Lèvy measure can be expressed as

1 For more details see Appendix A.
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M(dx) = q(x)Mstable(dx),

where

Mstable(dx) =

(
C+

x1+α
1(x>0) +

C−
|x|1+α

1(x<0)

)
dx

is the Lévy measure of an α−stable distribution and q : R→ R+ is a tempering function

q(x) = e−λ+x1(x>0) + e−λ−|x|1(x<0).

Remark 3.1. Cont and Tankov (2015) define the generalized tempered stable distribution

with six parameters α+, α− < 2, and C+, C−, λ+, λ− ∈ (0,+∞) with Lévy measure given by:

M(dx) =

(
C+e

−λ+x

x1+α+
1(x>0) +

C−e
−λ−|x|

|x|1+α−
1(x<0)

)
dx, (3.17)

where α+, α− < 2, and C+, C−, λ+, λ− ∈ (0,+∞). Moreover, the characteristic function is

obtained by solving the integral:

φX(u) := E
(
eiuX

)
= exp

[
iuγ0 +

∫
R

(
eiux − 1− iux

)
ν(dx)

]
. (3.18)

Moreover, by setting γ0 = µ−Γ(1−α)
(
C+λ

α−1
+ − C−λα−1

−
)
, the tempered stable distribution

has mean µ.

Proposition 3.17. Let X be a generalized tempered stable random variable. If α± 6= 1 and

α± 6= 0, its characteristic function is

φX(u) = exp

{
iuµ+ Γ(−α+)λ

α+

+ C+

[(
1− iu

λ+

)α+

− 1 +
iuα+

λ+

]
+Γ(−α−)λ

α−
− C−

[(
1 +

iu

λ−

)α−
− 1− iuα−

λ−

]}
.

(3.19)

If α+ = α− = 1,
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φX(u) = exp

{
iu(µ+ C+ − C−) + C+(λ+ − iu) log

(
1− iu

λ+

)
+C−(λ− + iu) log

(
1 +

iu

λ−

)}
,

(3.20)

and if α+ = α− = 0,

φX(u) = exp

{
iuµ+ C+

{
iu

λ+

+ log

(
1− iu

λ+

)}
− C−

{
− iu
λ−

+ log

(
1 +

iu

λ−

)}}
. (3.21)

Using the proposition 3.17, the cumulant of order n can be obtained by

cn(X) =
1

in
∂n

∂un
log
(
E
[
eiuX

]
.
)∣∣∣∣
u=0

(3.22)

Thus, the first cumulants of the generalized tempered stable distributions are:



c1(X) = E(X) = µ,

c2(X) = V ar(X) = Γ(2− α+)C+λ
α+−2
+ + Γ(2− α−)C−λ

α−−2
− ,

c3(X) = Γ(3− α+)C+λ
α+−3
+ − Γ(3− α−)C−λ

α−−3
− ,

c4(X) = Γ(4− α+)C+λ
α+−4
+ + Γ(4− α−)C−λ

α−−4
− .

(3.23)

The generalized tempered stable distribution includes several particular cases in the

literature.

• For α+ = α−, the KoBol distribution is obtained (Boyarchenko and Levendorskǐı

, 2000).

• For C+ = C− = C and α+ = α− = α, the CGMY distribution is obtained (Carr and Geman

, 2002).

• For α+ = α− and λ+ = λ−, the truncated Lévy flight is obtained (Koponen, 1995).

• For α+ = α− = 0, we have the Bilateral gamma distribution (Küchler and Tappe

, 2008).

• For α+ = α− = 0, C+ = C− = C and λ+ = λ−, we have the variance gamma

- ---
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distribution (Madan and Seneta, 1990).

Note that unlike the stable processes, the tempered stable distribution is well defined for

α < 0. In this case, the compound Poisson models are obtained. However, we only consider

the case of α > 0 so that the small jumps do have stable-like behavior2.

As in Rroji and Mercuri (2015) and Kim et al. (2008), we consider the same restrictions:

α+ = α− = α ∈ (0, 2) and γ0 = µ− Γ(1− α)
(
C+λ

α−1
+ − C−λα−1

−
)
. In this way, this random

variable is called classical tempered stable and it is denoted byX ∼ CTS(α, λ+, λ−, C+, C−, µ).

For this random variable, by applying Proposition 3.17 and setting α+ = α−, its character-

istic function is as follows:

φX(u) =



exp
{
iuµ− iuΓ(1− α)

(
C+λ

α−1
+ − C−λα−1

−
)

+ C+Γ(−α)
[
(λ+ − iu)α − λα+

]
+C−Γ(−α)

[
(λ− + iu)α − λα−

]}
, if α 6= 1,

exp
{
iu(µ+ C+ − C−) + C+(λ+ − iu) log

(
1− iu

λ+

)
+C−(λ− + iu) log

(
1 + iu

λ−

)}
, if α = 1.

(3.24)

Moreover, it is straightforward to obtain the cumulant of order n by derivating the

characteristic exponent. We obtain c1(X) = µ, and for n ≥ 2:

cn(X) = Γ(n− α)
(
C+λ

α−n
+ + (−1)nC−λ

α−n
−
)
. (3.25)

As consequences, the first four moments of the distribution are:



E(X) = c1(X) = µ

V ar(X) = c2(X) = Γ(2− α)
[
C+λ

α−2
+ + C−λ

α−2
−
]

γ1 = c3(X)

c
3/2
2 (X)

=
Γ(3−α)[C+λ

α−3
+ −C−λα−3

− ]
c
3/2
2 (X)

γ2 = 3 + c4(X)

c22(X)
= 3 +

Γ(4−α)[C+λ
α−4
+ +C−λ

α−4
− ]

c22(X)

(3.26)

Note that the sign of the skewness depends on the difference between C+λ
α−3
+ and

2 Stable and tempered stable distributions are infinitely divisible distributions and they are closely related
to Lévy processes. This class of stochastic process has interesting properties and is not covered in this thesis
(For more details cf. Cont and Tankov, 2015).
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C−λ
α−3
− . On the other hand, similar to the stable distributions, there are linear combi-

nations of tempered stable distributions that are still tempered stable distributions under

some parameter restrictions.

Proposition 3.18 (Lemma 4.1. from Küchler and Tappe, 2013).

(1) Suppose that Xi ∼ CTS(α, λ+, λ−, C+i, C−i, µi), i = 1, 2 are independent. Then,

X1 +X2 ∼ CTS(α, λ+, λ−, C+1 + C+2, C−1 + C−2, µ1 + µ2) (3.27)

(2) For X ∼ CTS(α, λ+, λ−, C+, C−, µi) and ρ > 0, we have

ρX ∼ CTS(α, λ+/ρ, λ−/ρ, C+ρ
α, C−ρ

α, µ) (3.28)

Proof. By applying equation (3.24), it can be verified for (1) φX1+X2(u) = φX1(u)φX2(u) and

for (2) φρX(u) = φX(ρu).

Proposition 3.19. For λ+ = λ− = λ, µ = 0 and C+ = C− = C, the tempered stable

distribution converges to the symmetric stable distribution when λ goes to zero.

3.2.1 Standardized classical tempered stable distributions

In this section, we introduce the standardized classical tempered stable distribution and

study some of important properties.

Definition 3.6. Let X ∼ CTS(α, λ+, λ−, C+, C−, µ). By setting µ = 0 and

C = C+ = C− =
1

Γ(2− α)
(
λα−2

+ + λα−2
−
) , (3.29)

X has zero mean and unit variance. It is called standardized classical tempered stable distri-

bution, which will be denoted by X ∼ stdCTS(α, λ+, λ−).

□ 
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By applying the proposition 3.17, its characteristic function has the following form:

E
(
eiuX

)
=


exp

{
(λ+−iu)α−λα++(λ−+iu)α−λα−

α(α−1)(λα−2
+ +λα−2

− )
+

iu(λα−1
+ −λα−1

− )

(α−1)(λα−2
+ +λα−2

− )

}
, if α 6= 1,

exp
{

1
λ−1
+ +λ−1

−

[
(λ+ − iu) log

(
1− iu

λ+

)
+ (λ− + iu) log

(
1 + iu

λ−

)]}
, if α = 1.

(3.30)

Remark 3.2. Let X ∼ stdCTS(α, λ+, λ−). X converges to the standard normal distribution

when α→ 2.

By substituting (3.29) in the equation (3.22), the cumulants of a stdCTS distribution

are c1(X) = 0 and for n ≥ 2

cn(X) =
Γ(n− α)

[
λα−n+ + (−1)nλα−n−

]
Γ(2− α)

(
λα−2

+ + λα−2
−
) . (3.31)

As consequences, the first four moments of the stdCTS distribution are:



E(X) = c1(X) = 0

V ar(X) = c2(X) = 1

γ1 = c3(X) =
(2−α)(λα−3

+ −λα−3
− )

(λα−2
+ +λα−2

− )

γ2 = 3 + c4(X) = 3 +
(3−α)(2−α)(λα−4

+ +λα−4
− )

(λα−2
+ +λα−2

− )

(3.32)

In this case, the sign of the skewness depends on the difference between λα−3
+ and λα−3

− .

For λ+ > λ−, it is positively skewed, while λ+ < λ−, it is negatively skewed. On the other

hand, the stdCTS distribution always has kurtosis greater than 3.

Figure 3.3 presents how each parameter can change the density function behavior. By

varying α, they are similar to stable distributions and still more leptokurtic than the standard

Gaussian distribution and t-distribution (ν = 3). By varying λ+ and λ−, it can be observed

that the asymmetry changes.

In order to understand the skewness and the kurtosis of the stdCTS distribution, Figures

3.4 and 3.5 present how the skewness and kurtosis changes by varying λ+ and λ− for α = 0.5

and 1.5. For lower α, the asymmetry and leptokurtisis away from the Gaussian case are more

noticeable.
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(a) stdCTS(α, 1, 1), standard-
ized normal and t distribution.
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(b) stdCTS(0.8, λ+, 1).
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Figure 3.3: Density functions of standardized tempered stable distributions varying each of their
parameters with other parameters fixed.
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Figure 3.4: Skewness of standardized tempered stable distributions with α = 0.5 and 1.5 varying
λ+ and λ−.
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Figure 3.5: Kurtosis of standardized tempered stable distributions with α = 0.5 and 1.5 varying
λ+ and λ−.

3.3 Simulation

3.3.1 Stable distribution

When a random variable has the density function and distribution function, its simulation

is an easy task. However, the general stable random variables do not have closed form.

Weron and Weron (1995) proposed an algorithm to generate α-stable distribution. In order

to simulate a random variable X ∼ Sα(1, β, 0),

1. generate a random variable U uniformly distributed on
(
−π

2
, π

2

)
, and an independent

exponential random variable W with mean 1, then

2. let Bα,β =
arctan(β tan πα

2 )
α

and Sα,β =
[
1 + β2 tan2 πα

2

]1/(2α)
, and compute

X =

Sα,β
sin(α(U+Bα,β))

(cosU)1/α

[
cos(U−α(U+Bα,β))

W

] 1−α
α

if α 6= 1,

2
π

[(
π
2

+ βU
)

tanU − β log
(
π
2
W cosU
π
2

+βU

)]
if α = 1.

(3.33)

Next, we can obtain a random variable Y ∼ Sα(σ, β, µ) by means of the standardization

formula:

Y =

 σX + µ if α 6= 1,

σX + 2
π
βσ log σ + µ if α = 1.

(3.34)
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3.3.2 Tempered stable distribution

Kawai and Masuda (2011) studied different approaches which are based on acceptance-

rejection sampling, Gaussian approximation of a small jump component, and infinite shot

noise series representations, and they concluded that the acceptance-rejection sampling pro-

posed by Baeumer and Meerschaert (2010) is both most efficient and handiest in terms of

computational issues.

The acceptance-rejection sampling method is carried out by the following steps. For

α ∈ (0, 1), the centered and totally positively skewed (one-sided) tempered stable distribu-

tion X with parameter vector (α, λ, C) can be simulated exactly as follows:

1. Generate a random variable U uniformly distributed on (0, 1).

2. Let σ =
(
−CΓ(−α) cos

(
πα
2

))1/α
and simulate V ∼ Sα(σ, 1, 0).

3. If U ≤ e−λV , exit with V − Γ(1− α)Cλα−1. Otherwise, return to Step 1.

For α ∈ (1, 2), the above exact acceptance-rejection method cannot be applied due to the

fact that the support of the one-sided tempered stable distribution is whole R instead of R+.

The approximative acceptance-rejection sampling, proposed by Baeumer and Meerschaert

(2010), consists of the follow steps:

1. Fix c > 0.

2. Generate a random variable U uniformly distributed on (0, 1).

3. Let σ =
(
−CΓ(−α) cos

(
πα
2

))1/α
and simulate V ∼ Sα(σ, 1, 0).

4. If U ≤ e−λ(V+c), exit with V − Γ(1− α)Cλα−1. Otherwise, return to Step 1.

For both cases, the shift term −Γ(1− α)Cλα−1 is included in order to center the distri-

bution. Note that the simulation for α ∈ (1, 2) is done by choosing c > 0 which acts as a

truncation due to the support of the whole real line R. Baeumer and Meerschaert (2010)

presents the basic properties of this algorithm. The simulated distribution converges in L1(R)

to its target density as c → ∞. However, it is not viable to obtain a smaller distribution
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error by taking a large c, since the algorithm becomes extremely inefficient because of the

low acceptance rate.

Finally, the bilateral tempered stable distribution X ∼ CTS(α, λ+, λ−, C+, C−, 0) is

simulated by implementing the algorithm at least twice; once for the positive component

and the other for the negative, i.e. X = X+−X− where X+ is the one-sided tempered stable

distribution with parameter vector (α, λ+, C+) and X− is the one with (α, λ−, C−).



Chapter 4

Indirect Inference

The advantage of using the class of α-stable distributions is their flexibility for asymmetry

and heavy tails, and moreover, they are closed under linear combinations, which includes

the Gaussian distribution as a particular case. However, its estimation is difficult since its

density function does not have a closed-form and the moments of order greater than two

do not exist. Therefore, the usual estimation methods such as the maximum likelihood and

method of moments do not work.

Alternative estimation approaches such as methods based on quantiles (McCulloch, 1986)

or on the empirical characteristic function (Koutrouvelis, 1981) are proposed. However, they

are only useful for the estimation of the stable distributions parameters and are difficult to

apply for more complex models.

Since stable distributions can be easily simulated, the indirect approaches proposed

by Gourieroux et al. (1993) and Gallant and Tauchen (1996) could be the solution to

more complex models involving stable distributions. The indirect inference was proposed

by Gourieroux et al. (1993) in the context of econometric models with latent variables, but

it has been proved to be useful in situations where the direct maximization of the likelihood

function is not available. For instance, Lombardi and Calzolari (2008) employed this ap-

proach to estimate α-stable parameters and ARMA models with α-stable distributions with

a constrained approach; and Sampaio and Morettin (2015, 2018) also used this method to

estimate the parameters of randomized generalized autoregressive conditional heteroskedas-

tic models.

4.1 The principle of the approach

In this section, the principle of the indirect inference is presented based on the fourth

chapter of Gouriéroux and Monfort (1997). Suppose we have a sample of T observations y

and a model of interest (IM) whose likelihood function L∗T (y; θ) is difficult to handle and

maximize (the model could depend on a matrix of explanatory variable X). Consequently,

39
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the maximum likelihood of θ ∈ Θ, given by

θ̂T = argmax
θ∈Θ

L∗T (θ;y) = argmax
θ∈Θ

T∑
t=1

ln `∗(θ; yt), (4.1)

is unavailable. In addition, consider an alternative model, depending on a parameter vector

λ ∈ Λ, called auxiliary model (AM). Suppose that the likelihood function LT (y;λ) of the

AM is easier to handle. However, its estimator

λ̂T = argmax
λ∈Λ

LT (λ;y) = argmax
λ∈Λ

T∑
t=1

ln `T (λ; yt), (4.2)

is not necessarily consistent since the model is misspecified. The idea is to perform simula-

tions under the IM to correct the bias of the estimator λ̂.

To continue, we describe the general procedure of the indirect inference.

Step 1 : Compute the maximum likelihood estimate of λ based on T observations y, which

will be denoted as λ̂T .

Step 2 : Simulate a set of S vectors of size T from the IM on the basis of an arbitrary parame-

ter vector θ̂(0). Let us denote each of those vectors as ỹs(θ̂(0)) =
{
ỹs1(θ̂(0)), · · · , ỹsT (θ̂(0))

}
for s = 1, · · · , S.

Step 3 : Then, estimate parameters of the AM using simulated values from the IM

λ̃sT (θ̂(0)) = argmax
λ∈Λ

LT
(
λ; ỹs(θ̂(0))

)
(4.3)

for each s = 1, · · · , S and compute the mean

λ̃TS(θ̂(0)) =
1

S

S∑
s=1

λ̃sT (θ̂(0)). (4.4)

Step 4 : Numerically update the initial guess θ̂(0) in order to minimize the distance[
λ̂T − λ̃TS(θ)

]′
Ω
[
λ̂T − λ̃TS, (θ)

]
(4.5)

where Ω is a symmetric nonnegative matrix defining the metric.

As a result, the indirect inference estimator is defined by

θ̂TS = θ̂TS(Ω) = argmin
θ∈Θ

[
λ̂T − λ̃TS(θ)

]′
Ω
[
λ̂T − λ̃TS(θ)

]
. (4.6)

Generally, the estimation step is performed with a numerical algorithm, such as Newton-

Raphson. Then, for a given estimate θ̂(p), the procedure yields θ̂(p+1) and the process will be

-
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repeated until the series of θ̂(p) converges. The estimator is then given by

θ̂ = lim
p→∞

θ̂(p). (4.7)

Similarly, we can consider another indirect inference estimator. In Step 2, 3 and 4 above,

we can change the procedures by computing

θ̌TS = θ̌TS(Ω) = argmin
θ∈Θ

[
λ̂T − ˜̃λTS(θ)

]′
Ω
[
λ̂T − ˜̃λTS(θ)

]
, (4.8)

where
˜̃λTS(θ) = argmin

λ∈Λ
LTS

(
λ, ỹTS(θ)

)
(4.9)

and ỹTS(θ) is the simulated path of length TS given θ. These two indirect inference estima-

tors have the same asymptotic properties.

Finally, an alternative but similar method proposed by Gallant and Tauchen (1996)

considers the score function of the AM:

T∑
t=1

∂`(λ; yt)

∂λ
, (4.10)

which is zero for the quasi-maximum likelihood estimator of λ. The idea is similar: we

minimize the distance of score computed on the simulated observations

min
θ

{
S∑
s=1

T∑
t=1

∂ ln `(λ̂; yst (θ̂))

∂λ

}′
Σ

{
S∑
s=1

T∑
t=1

∂ ln `(λ̂; yst (θ̂)

∂λ

}
. (4.11)

where Σ is a symmetric nonnegative definite matrix. The same numerical algorithm can be

applied to obtain the estimate, and it is given by

θ̌∗ = lim
p→∞

θ̌(p)
∗ . (4.12)

This approach is useful when an analytic expression for the gradient of the AM is avail-

able, since in this case, the numerical optimization routine for the λ̂S can be avoided.

Finally, it is important that the dimension of the AM parameter λ must be larger or

equal to the dimension of θ in order to guarantee the uniqueness of the solution. When the

dimension of the parameter vectors agrees, i.e. dimλ = dim θ, these three types of indirect

inference are consistent for any Ω and Σ.

Proposition 4.1. If dimλ = dim θ and for T sufficiently large:

(i) θ̂(Ω) = θ̂ and θ̌(Ω) = θ̌ are independent of Ω;

(ii) θ̌∗(Σ) = θ̌∗ is independent of Σ;

(iii) θ̂ = θ̌∗.
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In this way, these three approaches are equivalent, and choosing which method to use

will depend on the practical problem to be analyzed.

4.2 Asymptotic properties

In this section, we present the asymptotic properties of indirect inference estimators. This

section is similar and it is based on Gourieroux et al. (1993) but we modify some conditions

that exclude covariables X and we state the conditions which include the possibility of infill

asymptotics.

Suppose that we have a sample of T observations y and a model of interest (IM) whose

(negative) likelihood function1 L∗T (y; θ) with θ ∈ Θ is difficult to handle. Consider an

auxiliary model (AM) with (negative) likelihood function LT (λ;y) with λ ∈ Λ and the

maximum likelihood estimator is given by

λ̂T = argmin
λ∈Λ

LT (λ;y) . (4.13)

Suppose that we have the following conditions:

(C1) The likelihood function LT of the AM tends almost surely, as T → ∞, to a non-

stochastic limit, which depends on the unknown auxiliary parameter λ and the true

parameter θ0, that is

lim
T→∞

LT (λ;y) = L (θ0, λ) . (4.14)

(C2) The limit of the likelihood function is continuous with respect to λ and has an unique

minimum

λ0 = argmin
λ∈Λ

L (θ0;λ) . (4.15)

(C3) Define the binding function

b(θ) = argmin
λ∈Λ

L (θ;λ) , (4.16)

which is a one-to-one mapping from Θ onto Λ and its first derivative with respect to

θ is of full column rank.

(C4) The negative of the Hessian matrix of the likelihood function of the AM converges to

a non-stochastic limit J0, that is

J0 = lim
T→∞

− ∂2

∂λ∂λT
LT (λ0;y), (4.17)

1The negative likelihood function is considered here because of the Definition in Section 2.2.2, but the
optimization is the same since maximization of the likelihood function is equivalent to minimize the negative
likelihood function.
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where λ0 is defined in (4.15).

(C5) The gradient of the likelihood function of the AM converges in distribution to a Gaus-

sian law. Let I0 be the asymptotic variance-covariance matrix

I0 = lim
T→∞

V ar

[√
T
∂

∂λ
LT (λ0;y)

]
.

(C6) The asymptotic covariance between the gradients of the likelihood function of the AM

at two units s1 and s2 from the simulated sample is constant, that is, for s1 6= s2

lim
T→∞

Cov

{√
T
∂

∂λ
LT (λ0; ỹs1(θ0)),

√
T
∂

∂λ
LT (λ0; ỹs2(θ0))

}
= K. (4.18)

In our case, we have K = 0 since we are not dealing with exogenous variable.

Given θ, simulate a set of S vectors of size T which will be denoted by ỹs(θ) =

{ỹs1(θ), · · · , ỹsT (θ)} for s = 1, · · · , S. Next, we can compute

λ̃sT (θ) = argmin
λ∈Λ

LT (λ; ỹs(θ)) , (4.19)

for each s = 1, · · · , S and

λ̃TS(θ) =
1

S

S∑
s=1

λ̃sT (θ). (4.20)

Under usual regularity conditions, we have

lim
T→∞

λ̃TS(θ) = b(θ), and lim
T→∞

λ̃T = b(θ0) = λ0,

where λ̃T is defined in (4.13).

Then, the indirect inference estimator is defined by

θ̂TS = θ̂TS(Ω) = argmin
θ∈Θ

[
λ̂T − λ̃TS(θ)

]′
Ω
[
λ̂T − λ̃TS(θ)

]
, (4.21)

where Ω is a symmetric nonnegative matrix defining the metric.

Proposition 4.2. Under the conditions (C1), (C2) and (C3), the indirect inference estima-

tor θ̂TS is consistent for fixed S and T →∞.

Proposition 4.3. Under the conditions (C1)-(C6), the indirect inference estimator θ̂TS is

asymptotically normal for fixed S and T →∞, that is

√
T (θ̂TS − θ)

d−→ N [0,W (S,Ω)] , (4.22)
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where the asymptotic variance-covariance matrix is

W (S,Ω) =

(
1 +

1

S

){
∂b′(θ0)

∂θ
Ω
∂b(θ0)

∂θ′

}−1 [
∂b′(θ0)

∂θ

]
Ω

× J−1
0 [I0 −K] J−1

0 Ω

[
∂b(θ0)

∂θ′

]{
∂b′(θ0)

∂θ
Ω
∂b(θ0)

∂θ′

}−1

.

(4.23)

Proof. The consistency of the estimator follows by the limit of the optimization problem:

min
θ∈Θ

[b(θ0)− b(θ)]′Ω [b(θ0)− b(θ)] . (4.24)

To continue with the distribution of θ̂TS, we consider the first derivative of DTS(θ) =[
λ̂T − λ̃TS(θ)

]′
Ω
[
λ̂T − λ̃TS(θ)

]
, which is

∂DTS(θ)

∂θ
= 2

[
λ̂T − λ̃TS(θ)

]′
Ω

[
− 1

S

S∑
s=1

∂λ̃ST (θ)

∂θ

]
. (4.25)

Then, the first-order condition is[
1

S

S∑
s=1

∂λ̃ST (θ̂TS)′

∂θ

]
Ω
[
λ̂T − λ̃TS(θ̂TS)

]
= 0. (4.26)

Note that the first-order expansion of λ̃TS(θ̃) around θ0 is

λ̃TS(θ̃) =
1

S

S∑
s=1

λ̃sT (θ̃) ≈ 1

S

S∑
s=1

λ̃sT (θ0) +
1

S

S∑
s=1

∂λ̃sT (θ0)

∂θ′

(
θ̃ − θ0

)
.

Plugging it into (4.26), we obtain[
1

S

S∑
s=1

∂λ̃ST (θ̂TS)′

∂θ

]
Ω

{
λ̂T −

1

S

S∑
s=1

λ̃sT (θ0)− 1

S

S∑
s=1

∂λ̃sT (θ0)

∂θ′

(
θ̂TS − θ0

)}
≈ 0

⇒

{[
1

S

S∑
s=1

∂λ̃ST (θ̂TS)′

∂θ

]
Ω

[
1

S

S∑
s=1

∂λ̃sT (θ0)

∂θ′

]}(
θ̂TS − θ0

)
≈[

1

S

S∑
s=1

∂λ̃sT (θ̂TS)

∂θ

]
Ω

[
λ̂T −

1

S

S∑
s=1

λ̃sT (θ0)

]
.

For sufficiently large T ,

√
T
(
θ̂TS − θ0

)
≈
{[

∂b′(θ0)

∂θ

]
Ω

[
∂b(θ0)

∂θ′

]}−1 [
∂b′(θ0))

∂θ

]
Ω
√
T
(
λ̂T − λ̃TS(θ0)

)
. (4.27)

The asymptotic distribution of
√
T
(
λ̂T − λ̃TS(θ0)

)
is given as follows.
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Since ∂
∂λ
LT (λ̂T ;y) = 0, expanding it around λ0 we have

∂

∂λ
LT (λ0;y) +

∂2

∂λ∂λT
LT (λ0;y)

(
λ̂T − λ0

)
≈ 0

⇒
√
T
∂

∂λ
LT (λ0;y) +

∂2

∂λ∂λT
LT (λ0;y)

√
T
(
λ̂T − λ0

)
≈ 0

⇒
√
T
(
λ̂T − λ0

)
≈
[
− ∂2

∂λ∂λT
LT (λ0;y)

]−1 [√
T
∂

∂λ
LT (λ0;y)

]
≈ J−1

0

[√
T
∂

∂λ
LT (λ0;y)

]
.

Similarly, for λ̃sT (θ0) we have

√
T
(
λ̂sT (θ0)− λ0

)
≈ J−1

0

[√
T
∂

∂λ
LT (λ0; ỹs (θ0))

]
.

Then, we have

√
T
[
λ̂T − λ̃TS(θ0)

]
=
√
T
[(
λ̂T − λ0

)
−
(
λ̃TS(θ0)− λ0

)]
=
√
T
(
λ̂T − λ0

)
−
√
T

[
1

S

S∑
s=1

(
λ̃sT (θ0)− λ0

)]

≈ J−1
0

[
√
T
∂

∂λ
LT (λ0;y)−

√
T

1

S

S∑
s=1

∂

∂λ
LT (λ0; ỹs (θ0))

]
.

Define ∆T :=
√
T ∂
∂λ
LT (λ0;y)−

√
T 1
S

S∑
s=1

∂
∂λ
LT (λ0; ỹs (θ0)).

Under the conditions (C1)-(C6), ∆T is asymptotically normal with zero mean and the

asymptotic variance-covariance matrix given by

W = lim
T→∞

V ar(∆T )

= I0 +
1

S
I0 − 2K + 2

S(S − 1)

2S2
K

=

(
1 +

1

S

)
I0 − 2K +

(S − 1)

S
K

=

(
1 +

1

S

)
I0 −K

(
1 +

1

S

)
=

(
1 +

1

S

)
[I0 −K] .
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Next, the asymptotic variance-covariance matrix of
√
T
[
λ̂T − λ̃TS(θ0)

]
is given by

V ar
[√

T
(
λ̂T − λ̃TS(θ0)

)]
= J−1

0 V ar [∆T ] J−1
0

=

(
1 +

1

S

)
J−1

0 [I0 −K] J−1
0 .

Finally, we can conclude from (4.27) that the asymptotic variance-covariance matrix of√
T
(
θ̂TS − θ0

)
is

V ar
[√

T
(
θ̂TS − θ0

)]
=

(
1 +

1

S

){
∂b′(θ0)

∂θ
Ω
∂b(θ0)

∂θ′

}−1 [
∂b′(θ0)

∂θ

]
Ω

× J−1
0 [I0 −K] J−1

0 Ω

[
∂b(θ0)

∂θ′

]{
∂b′(θ0)

∂θ
Ω
∂b(θ0)

∂θ′

}−1

.

Similarly, the alternative indirect inference estimator θ̌TS has the same asymptotic prop-

erties as in Proposition 4.3.

Proof. Similarly to the previous proof, we have

√
T
(
θ̌TS − θ0

)
≈

{[
∂ ˜̃λTS(θ̌TS)

∂θ

]
Ω

[
∂ ˜̃λTS(θ0)

∂θ′

]}−1 [
∂ ˜̃λTS(θ̌TS))

∂θ

]
Ω
√
T
(
λ̂T − ˜̃λTS(θ0)

)
.

(4.28)

Following the same direction, the same asymptotic properties are obtained since

√
T
(

˜̃λTS (θ0)− λ0

)
≈ J−1

0

S∑
s=1

√
T

S

∂

∂λ
LT
(
λ0; ỹTS (θ0)

)
.

4.3 Constrained indirect estimation

One condition in the indirect estimation proposed by Gourieroux et al. (1993) is that the

parameters of the auxiliary model are unrestricted. Therefore, the asymptotic distribution of

the pseudo-maximum likelihood estimator is normal with a full rank covariance matrix under

standard regularity conditions. This assumption is not realistic, and in most situations, it is

necessary to add some restrictions to the parameters. Calzolari et al. (2004) generalized the

indirect inference to include the possibility of handling equality or inequality restriction on

the parameter λ ∈ Λ of the auxiliary model. In this case, the maximum likelihood estimator

□ 

□ 
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of the auxiliary model under the constraints is optimizing the Lagrange function

Q(λ) = L̃(λ,y) + λh′(λ), (4.29)

where h′(λ) is a vector of functions summarizing the constraints and λ is a vector of Lagrange

multipliers. Then, the binding function can be obtained by a constrained maximization of

the likelihood function of the auxiliary model. Moreover, Calzolari et al. (2004) showed

that the asymptotic normal distribution can be obtained by appropriate changes in three

conditions on the unconstrained case.
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Chapter 5

tvARMA process with α−stable

innovations

In this chapter, we present theoretical results of a tvARMA process with α-stable inno-

vations. Recalling the tvARMA process from (2.18) and assuming that the innovations are

α-stable, the system of difference equations is defined by

p∑
j=0

αj

(
t

T

)
Xt−j,T =

q∑
k=0

βk

(
t

T

)
γ

(
t− k
T

)
εt−k, (5.1)

where εt are i.i.d. and εt ∼ Sα(1/
√

2, β, 0) with α ∈ (0, 2). Assume α0(u) ≡ β0(u) ≡ 1 and

αj(u) = αj(0), βk(u) = βk(0) for u < 0. Suppose also that all αj(·) and βk(·), as well as

γ2(·)1, are of bounded variation. The reason that the scale parameter of the innovations is

set to be σ = 1/
√

2 is when α = 2, the standardized Gaussian innovation is obtained.

It is possible to define the equation (5.1) as:

Φt,T (B)Xt,T = Θt,T (B)zt,T , (5.2)

where zt,T = γ( t
T

)εt; Φt,T (B) = 1 + α1( t
T

)B + · · · + αp(
t
T

)Bp and Θt,T (B) = 1 + β1( t
T

)B +

· · ·+βq(
t
T

)Bq are the autoregressive (AR) and moving average (MA) operators, respectively.

There are several works related to stable linear processes. For instance, chapter 7 of

Embrechts et al. (1997) and Chapter 13 of Brockwell and Davis (1991) give a general

review of stable linear processes. Kokoszka and Taqqu (1994) study the infinite variance

stable ARMA processes and Kokoszka and Taqqu (1995) study fractional ARIMA with

stable innovations. Mikosch et al. (1995) proposed a Whittle-type estimator to estimate

the coefficients of the ARMA model. In the stable innovation and time-varying coefficient

context, Shelton Peiris and Thavaneswaran (2001a,b) considered the univariate and mul-

tivariate case of the system (5.2) with symmetric stable innovations and assume γ(·) = 1.

However, they considered time-dependent coefficient without the local stationarity condition.

1We use γ(·) instead of σ(·) to avoid confusion with σ, the scale parameter of α-stable innovations.

49
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5.1 Existence and Uniqueness of a Solution

Before we study the local stationarity conditions on the time-varying coefficients, we

present a set of regularity conditions of existence and uniqueness of solution of the system

based on the concepts defined by Shelton Peiris and Thavaneswaran (2001a,b).

Definition 5.1.

• The process (5.2) is AR regular (or causal) if there exist at,T (j) such that

Xt,T =
∞∑
j=0

at,T (j)εt−j. (5.3)

satisfying
∞∑
j=0

|at,T (j)|δ <∞ for all t and δ = min{1, α}.

• The process (5.2) is MA regular (or invertible) if there exist bt,T (j) such that

εt =
∞∑
j=0

bt,T (j)Xt−j,T . (5.4)

satisfying
∞∑
j=0

|bt,T (j)|δ <∞ for all t and δ = min{1, α}.

We will show that the random series in (5.3) converges a.s. if and only if
∞∑
j=0

|at,T (j)|α <∞,

and by applying the Proposition 13.3.1 in Brockwell and Davis (1991), it converges abso-

lutely if and only if
∞∑
j=0

|at,T (j)|δ <∞ with δ = min{1, α}. Similar arguments are applied to

(5.4).

Proposition 5.1. The random series in (5.3) converges a.s. if and only if

∞∑
j=0

|at,T (j)|α <∞.

Proof. Suppose that
∞∑
j=0

|at,T (j)|α <∞. Using the Propositions 3.3 and 3.8, we have

at,T (j)εt−j ∼ Sα

(
1√
2
|at,T (j)|, sign [at,T (j)])β, 0

)
, (5.5)

and for 0 < p < α,

E|at,T (j)εt−j|p = cα,β(p)p
(

1√
2

)p
|at,T (j)|p,
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where cα,β(p) is a constant. Next,

∞∑
j=0

E|at,T (j)εt−j|p = cα,β(p)p
(

1√
2

)p ∞∑
j=0

|at,T (j)|p <∞.

Since
∞∑
j=0

E|at,T (j)εt−j|p < ∞, it follows that (5.3) converges a.s. (see Chow and Teicher

, 2003, Corollary 3 on p. 117).

Conversely, the random series in (5.3) converges a.s. implies that at,T (j)εt−j
a.s.−−→ 0.

Then, since {at,T (j)εt−j} is an independent sequence, it is straightforward that from the

Borel-Cantelli lemma there exists K1 > 0 such that

∞∑
j=0

P (|at,T (j)εt−j| > K1) <∞.

From the Proposition 3.6, we obtain

lim
λ→∞

λα
∞∑
j=1

P (|at,T (j)εt−j| > λ) = Cα

(
1√
2

) ∞∑
j=1

|at,T (j)|α.

In other words, for all ε > 0 there exists K2 such that for all λ > K2,

Cα

(
1√
2

)∑∞
j=1 |at,T (j)|α − ε

λα
<
∞∑
j=1

P (|at,T (j)εt−j| > λ) <
Cα

(
1√
2

)∑∞
j=1 |at,T (j)|α + ε

λα
.

Let K = max(K1, K2) and we have

Cα

(
1√
2

)∑∞
j=1 |at,T (j)|α − ε

Kα
<
∞∑
j=1

P (|at,T (j)εt−j| > K) <∞.

Then, we conclude that
∞∑
j=1

|at,T (j)|α <∞.

To continue, we omit the subscript T from above notation. Consider the homogeneous

difference equation

Φt(B)ut = 0. (5.6)

If αp(
t
T

) 6= 0 for any t, there exist p linearly independent solution ψ1,t, ψ2,t, ..., ψp,t such that

Ψ(t) =


ψ1,t · · · · · · ψp,t

ψ1,t−1
. . . ψp,t−1

...
. . .

...

ψ1,t−p+1 · · · · · · ψp,t−p+1

 (5.7)

□ 
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is invertible for any t (see Miller, 1968). Therefore, we can define

G(t, s) = Ψ(t) [Ψ(s)]−1 , (5.8)

the one-sided Green’s function matrix associated with the AR operator Φt(B). It can be

showed that G(t, s) is unique and invariant under different solutions Ψ(t) obtained from

the homogeneous difference equation (5.6). Furthermore, the one-sided Green’s function

associated with the AR operator Φt(B) is defined as the upper left-hand element in the

matrix (5.8),

g(t, s) = [G(t, s)]11 , (5.9)

which is also unique and invariant. Now, we are ready to establish the conditions for AR

regularity and MA regularity.

Theorem 5.1. Let {Xt,T} be a sequence of stochastic process that satisfies (5.2). Suppose

that αp(
t
T

) 6= 0 for all t, and g(t, s), the one-sided Green’s functions associated with Φt(B),

is such that
t∑

s=−∞
|g(t, s)|δ < ∞, for all t. Assume also that

q∑
s=−0

|βj(·)|2 < ∞ for all t,

and Φt(z) (Φt(z) 6= 0 for |z| ≤ 1) and Θt(z) have no common roots. Then, there is a valid

solution, given by

Xt,T =
∞∑
j=0

at,T (j)εt−j, (5.10)

to (5.2) with coefficients uniquely determined by

at,T (j) =



0, j < 0,

γ( t−j
T

), j = 0,

γ( t−j
T

)
k∑
j=0

βk(
t−j+k
T

)g(t, t− j + k), 0 ≤ j ≤ q,

γ( t−j
T

)
q∑
j=0

βk(
t−j+k
T

)g(t, t− j + k), j > q.

(5.11)

Proof. By setting zt,T = γ( t
T

)εt, along with the absolute convergence conditions above, the

proof is similar to Shelton Peiris and Thavaneswaran (2001b).

Theorem 5.2. Let {Xt,T} be a sequence of stochastic process that satisfies (5.2). Suppose

that βq(
t
T

) 6= 0 for all t, and h(t, s), the one-sided Green’s function associated with Θt(B),

is such that
t∑

s=−∞
|h(t, s)|δ <∞, for all t. Assume also that

p∑
s=−0

|αj(·)|2 <∞ for all t, and

Φt(z) and Θt(z) (Θt(z) 6= 0 for |z| ≤ 1) have no common roots. Then, the process (5.2) is

invertible and its explicit inversion is given by

εt =
∞∑
j=0

bt,T (j)Xt−j,T . (5.12)

□ 
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where Xt,T denotes an arbitrary solution and the coefficients are uniquely determined by

bt,T (j) =



0, j < 0,
1

γ( t
T

)
, j = 0,

1
γ( t
T

)

k∑
l=0

αk(
t−j+k
T

)h(t, t− j + k), 0 ≤ j ≤ p,

1
γ( t
T

)

q∑
l=0

αk(
t−j+k
T

)h(t, t− j + k), j > p.

(5.13)

Theorem 5.3. Let {Xt,T} be a sequence of stochastic process that satisfies (5.1) that is AR

regular. The solution Xt,T of the form (5.3) is strictly stable and Xt,T ∼ Sα(σ∗, β∗, 0), with

σ∗ =

(
1√
2

){ ∞∑
j=0

|at,T (j)|α
}1/α

, and β∗ = β


∞∑
j=0

sign [at,T (j)] |at,T (j)|α

∞∑
j=0

|at,T (j)|α

 .

Proof. The explicit form of the solution is straightforward using Propositions 3.1 and 3.3.

Moreover, the Proposition 3.5 implies that for each t, the solution Xt,T is strictly stable since

each of them has location parameter equals to 0.

5.2 Local Stationarity

Similar to the Proposition 2.1, we can present the corresponding version for stable in-

novations. Since it is not a second-order process, the time-varying spectral density does not

exist.

Theorem 5.4. Consider the system of difference equations in (5.1) satisfying the AR regular

conditions stated above. Suppose that all αj(·) and βk(·), as well as γ2(·) are of bounded

variation. Then, there exists a solution of the form

Xt,T =
∞∑
j=0

at,T (j)εt−j,

which fullfills (2.6), (2.7) and (2.8) of Assumption 2.1.

Proof. We give the proof for tvAR(p) process (i.e. q = 0) and then the extension to

tvARMA(p,q) is straightforward. Since the process (5.1) is AR regular, there exists a solution

of the form

Xt,T =
∞∑
j=0

at,T (j)εt−j,

□ 
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that is well defined and the coefficients are given by

at,T (j) =

[
j−1∏
`=0

α

(
t− `
T

)]
11

γ

(
t− j
T

)

with

α(u) =



−α1(u) −α2(u) · · · · · · −αp(u)

1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


(for more detail see Miller, 1968). Then, to prove the existence of the functions α(·, j)
satisfying (2.6), (2.7) and (2.8) of Assumption 2.1 follows the same proof to that of finite

innovation case (see Appendix in Dahlhaus and Polonik, 2009).

Remark 5.1.

(i) Note that since at,T (j) ≈ a
(
t
T
, j
)
, Xt,T can be approximated by

X̃t,T =
∞∑
j=0

a

(
t

T
, j

)
εt−j, (5.14)

which converges a.s. if and only if
∞∑
j=0

∣∣a ( t
T
, j
)∣∣α <∞.

Moreover, X̃t,T ∼ Sα(σ+, β+, 0), with

σ+ =
1√
2

{
∞∑
j=0

∣∣∣∣a( t

T
, j

)∣∣∣∣α
}1/α

, and β+ = β


∞∑
j=0

sign
[
a
(
t
T
, j
)] ∣∣a ( t

T
, j
)∣∣α

∞∑
j=0

∣∣a ( t
T
, j
)∣∣α

 .

(ii) Since Xt,T in (5.3) can be expressed as a linear combination of α-stable random vari-

ables, Xt,T is strictly stable with the same index of stability α.

(iii) Observe that Xt,T is not strictly stationary, but it can be approximated by X̃t,T which

is locally (strictly) stationary and strictly stable with the same index of stability.

(iv) Weak stationarity does not make sense since the second moment does not exist. Con-

sequently, (2.19) does not exist.

(v) Let X1,T , ..., XT,T be the sequence of solutions defined in (5.3) and X̃1,T , ..., X̃T,T be

the sequence of the stochastic process defined in (5.14). Both processes are strictly

α−stable, since all linear combinations are strictly stable with the same index of stabil-

ity. This means that the weak stationarity is lost but it is substituted by the same tail

□ 
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behavior throughout the time. This is the reason we call this process α−stable locally

(strictly) stationary process.

5.3 tvARMA with symmetric α−stable innovations

In this section, we will consider the special case with symmetric α−stable (SαS) inno-

vations.

Corollary 5.1. Consider the system of difference equations in (5.1) with i.i.d. SαS inno-

vations, that is, εt ∼ Sα(1/
√

2, 0, 0) with α ∈ (0, 2), satisfying AR regular conditions stated

above. Suppose that all αj(·) and βk(·), as well as γ2(·) are of bounded variation. Then, there

exists a solution of the form

Xt,T =
∞∑
j=0

at,T (j)εt−j,

which fullfills (2.6), (2.7) and (2.8) of Assumption 2.1. Moreover, this solution Xt,T is SαS

and Xt,T ∼ Sα(σ∗, 0, 0), with

σ∗ =
1√
2

{
∞∑
j=0

|at,T (j)|α
}1/α

.

Similarly to the general case, Xt,T can be approximated by X̃t,T ∼ Sα(σ+, 0, 0) as in (5.14),

with

σ+ =

{
∞∑
j=0

∣∣∣∣a( t

T
, j

)∣∣∣∣α
}1/α

.

Remark 5.2.

(i) Note that in the case of SαS innovations, since Xt,T in (5.3) can be expressed as

a linear combination of SαS random variables, Xt,T is SαS with the same index of

stability α.

(ii) At the same time, Xt,T is not strictly stationary, but it can be approximated by X̃t,T

which is locally (strictly) stationary and SαS with the same index of stability.

(iii) Weak stationarity does not make sense since the second moment does not exist. Con-

sequently, (2.19) does not exist.

(iv) In the same way, consider X1,T , ..., XT,T be the sequence of solutions defined in (5.3)

and X̃1,T , ..., X̃T,T be the sequence of the stochastic process defined in (5.14). Both

processes are symmetric α−stable, since all linear combinations are symmetric stable

with the same index of stability. This means that the weak stationarity is lost but it is

substituted by the same tail behavior throughout the time.



56 TVARMA PROCESS WITH α−STABLE INNOVATIONS

5.4 Some examples

Example 5.1. The tvMA(q) model with stable innovations:

Xt,T =

q∑
k=0

βk

(
t

T

)
γ

(
t− k
T

)
εt−k. (5.15)

Example 5.2. Consider the tvAR(p) model with stable innovations

p∑
j=0

αj

(
t

T

)
Xt−j,T = γ

(
t

T

)
εt. (5.16)

Under the regularity conditions, Xt,T does not have a solution of the form

Xt,T =
∞∑
k=0

ak

(
t

T

)
εt−k,

but only of the form (5.3) with

at,T (j) =

[
j−1∏
`=0

α

(
t− `
T

)]
11

γ

(
t− j
T

)
(5.17)

with

α(u) =



−α1(u) −α2(u) · · · · · · −αp(u)

1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


and α(u) = α(0) for u < 0 (see Appendix in Dahlhaus and Polonik, 2009). Moreover, at,T (j)

can be approximated by a(u, j) = (α(u)j)11 γ(u) which satisfies Assumption 2.1, (ii).

Figure 5.1 presents simulated tvAR(1) process of T = 1000 observations with different

innovation distribution (Gaussian, t(3) and symmetric stable innovations, α = 1.8, 1.6, 1.4)

and a linear coefficient α1(u) = −0.2 + 0.6u and γ(u) = 1. We observe that for smaller α,

the process seems to have more outliers.

5.5 Indirect inference for α-stable locally stationary

processes

As we presented in Chapter 3, models involving α-stable random variable are difficult to

estimate because its likelihood function is not available. However, the indirect inference can

be employed due to the simulation easiness. As mentioned in Chapter 4, several works that
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Figure 5.1: Simulated tvAR(1) with Gaussian, t(3) and symmetric stable innovations
(α = 1.7, 1.4, 0.9, 0.6), and time-varying coefficient α1(u) = −0.2 + 0.6u and γ(u) = 1.

include stationary processes with α-stable random variables have been proved useful, since

their simulation is straightforward.

In the case of locally stationary processes, Chapter 2 presented the possibility of em-

ploying infill asymptotic approach for the auxiliary model to achieve meaningful asymptotic

theory such as consistency and normality. In our case, the IM will be the α-stable locally sta-

tionary process and the AM will be the corresponding locally stationary process with skew-t

innovations. We will study the case of a parametric model of α-stable locally stationary

process with innovation εt ∼ Sα(1/
√

2, β, 0) with α ∈ (0, 2).

5.6 Prediction

There are basically two problems in prediction of α−stable locally stationary processes.

First, as presented in the Section 2.7, there are few work related to prediction in locally

stationary processes. Since the infill asymptotic is applied, the more observations are ob-

tained, the more information are obtained in the time period [ 1
T
, ..., T

T
]. The interesting

approach applied by Van Bellegem and von Sachs (2004) is by considering the observed

values X1,T , · · · , XT−h−1,T and rescaling the time interval to
[
0, 1− h+1

T

]
, where h is the

forecasting horizon and the ratio h/T tends to zero as T tends to infinity. Second, the finite

variance for traditional time series models allows the possibility of the best linear prediction

based on the minimum mean square error.

Recalling that α−stable tvARMA has infinite variance, prediction results based on stable

ARMA processes with dependent coefficients are presented by Shelton Peiris and Thavaneswaran

L...,----------~--------,--,1 1 ~~-,+------v--

~~~"'111\' 1 jL,------~--------'.-----
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(2001a,b). Then, it is possible to predict future values along with the approach applied by

Van Bellegem and von Sachs (2004). Consider that the innovations are SαS random vari-

ables.

Suppose that we have the system of differential equation (5.1) that satisfies above regular

conditions, and X0,T , · · · , XT ′,T with T ′ = T − h − 1 are observed. We are interested in

prediction the h horizon, i.e. XT−h,T , ..., XT,T .

Since Xt,T is AR regular, it can be expressed as

Xt,T =
∞∑
j=0

at,T (j)εt−j. (5.18)

Let X̂T ′(l) be the best linear predictor of XT ′+l,T for l = 1, ..., h

X̂T ′(l) =
∞∑
j=0

A(T ′, T ′ − j)εT ′−j, (5.19)

where A(T ′, T ′ − j) are some functions. Since the prediction error eT ′(l) = X̂T ′+h,T −XT ′(l)

is also SαS random variable, it is possible to define its dispersion as d = σα with σ its scale

parameter. The idea is to minimize the dispersion d. Note that

eT ′(l) = XT ′+l,T − X̂T ′(l)

=
∞∑
j=0

aT ′+l,T (j)εT ′+l−j −
∞∑
j=0

A(T ′, T ′ − j)εT ′−j

=
l−1∑
j=0

aT ′+l,T (j)εT ′+l−j +
∞∑
j=l

aT ′+l,T (j)εT ′+l−j −
∞∑
j=0

A(T ′, T ′ − j)εT ′−j

=
l−1∑
j=0

aT ′+l,T (j)εT ′+l−j +
∞∑
j=0

(aT ′+l,T (j + l)− A(T ′, T ′ − j)) εT ′−j.

(5.20)

Then, assuming εt ∼ Sα( 1√
2
, 0, 0) and using properties of SαS random variables, its disper-

sion is

disp [eT ′(l)] =

(
1√
2

)α l−1∑
j=0

|aT ′+l,T (j)|α +

(
1√
2

)α ∞∑
j=0

| (aT ′+l,T (j + l)− A(T ′, T ′ − j)) |α.

(5.21)

Minimizing the expression (5.21), we obtain the following theorem.

Theorem 5.5. The minimum dispersion predictor is given by

X̂T ′(l) =
∞∑
j=0

aT ′+l,T (j + l)εT ′−j. (5.22)
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Proof. From (5.21), it is straightforward to obtain

min disp [eT ′(l)] =

(
1√
2

)α l−1∑
j=0

|aT ′+l,T (j)|α,

with aT ′+l,T (j + l) = A(T ′, T ′ − j) for j = 0, 1, .... □ 
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Chapter 6

Indirect inference for α-stable

tvARMA process

In this chapter, we study the parameter estimation of a parametric tvARMA model with

α-stable innovations. We consider the case with known parameters of the stable innovations.

6.1 tvARMA process with known parameters innova-

tions

In this situation, the model of interest is the tvARMA with innovation εt ∼ Sα(1/
√

2, β, 0)

with known α and β. It means that the model of interest with the parameter curves can

be parametrized by a finite-dimensional parameter θ. The estimation strategy is to consider

an auxiliary model with the same parametric time-varying coefficient structure where the

innovations εt are i.i.d. with E [εt] = 0 and E [ε2
t ] = 1.

At first sight, it is convenient to consider the block Whittle likelihood discussed in Sec-

tion 2.2.1 or the generalized Whittle likelihood in Section 2.5 due to the rigorous asymptotic

properties such as consistency and normality. Moreover, the dimension of the parameter

space of the model of interest and the auxiliary model is the same. However, we carried

out several simulation experiments and they turned out to be inappropriate and the con-

vergence of indirect estimation is either difficult or slow. The possible reason is that using

these auxiliary estimators involves the time-varying spectral density and its estimates, the

preperiodogram, but the α-stable tvARMA process do not have the second moment. Al-

though the Whittle’s likelihood has been widely used for non-Gaussian models because of

its flexible estimation procedure, it has been proved to produce unreliable estimates in some

non-Gaussian cases (Contreras-Cristán et al., 2006).

Then, due to the fact that the skew-t distribution, introduced by Azzalini and Capitanio

(2003), was successfully implemented in indirect inference for independent samples from the

α-stable distributions and α−stable ARMA processes from Lombardi and Calzolari (2008),

we adapt the same methodology of assuming the skew-t distribution for the auxiliary model.

61
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The probability density function of the skew-t distribution is defined by

f(x; ν, β̃, σ, µ) =
2

σ
ft(z; ν)Ft

(
β̃z

√
ν + 1

z2 + ν
; ν + 1

)

= 2
Γ
(
ν+1

2

)
σΓ
(
ν
2

)√
πν

[
1 +

z2

ν

]− ν+1
2

Ft

(
β̃z

√
ν + 1

z2 + v
; ν + 1

)
,

(6.1)

where z = x−µ
σ

.

The advantage of using this distribution is that it has four parameters in which σ is scale

parameter, µ is the location parameter, ν controls the heaviness of the tail and β̃ is in charge

of the asymmetry of the distribution. Therefore, it is similar to the α-stable distribution and

the likelihood function is available. Hence, we will use the standardized t-distribution with

ν = 3 degrees of freedom for the case of known parameters since its tail is heavier than the

Gaussian one. We will discuss the case when α is unknown in Chapter 7.

6.2 Indirect inference for the α-stable tvAR(1)

Consider the case of tvAR(p) with p = 1 and γ
(
t
T

)
= γ

Xt,T + α1

(
t

T

)
Xt−1,T = γεt, (6.2)

where εt ∼ Sα (1/
√

2, β, 0) with known α and β. Note that there is a solution of the form (5.3)

with

at,T (j) = γ

j−1∏
`=0

[
−α1

(
t− `
T

)]
.

Consequently, there is a function a(u, j) = γ (−α1(u))j which satisfies Assumption 2.1, (ii).

In other words, Xt,T can be locally approximated by a stationary process.

To continue, we illustrate how the indirect inference can be employed to the tvAR(1) in

(6.2) with the linear parametric form of the time-varying coefficient α1 (u) = θ0 + θ1u, and

we consider that εt ∼ Sα(1/
√

2, β, 0) for known α and β. Therefore, the parameter vector of

the model of interest is θ = (θ0, θ1, γ).

We use the same parametric form of the process with the scaled t-density with ν = 3 as

the auxiliary model with the likelihood function defined in (2.33).

The scaled t density function is defined by

f(x; ν, σ) =
Γ
(
ν+1

2

)
σΓ
(
ν
2

)√
πν

[
1 +

(
x
σ

)2

ν

]− ν+1
2

. (6.3)

Consequently, the vector of parameters of the auxiliary model is λ =
(
θ

(A)
0 , θ

(A)
1 , σ(A)

)
.
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6.2.1 Simulation results

The first simulation was performed by assuming two different scenarios. The first one

assumes known parameters α = 1.3 and β = 0 and unknown (θ0, θ1, γ) = (0.35, 0.4, 1.2).

In the second scenario, known parameters α = 1.9 and β = 0.9 and unknown (θ0, θ1, γ) =

(−0.3, 0.8, 1) are assumed. We carried out simulations for T = 500, 1000 and 1500 obser-

vations based on R = 1000 independent replications each scenario. The indirect inference

was carried out using S = 100. At the same time, we also performed the blocked Whittle

estimation presented in the Section 2.2.1 considering the suggestion of block size N = bT 0.8c
and shifting each block by Q = b0.2Nc time units from Dahlhaus and Giraitis (1998). It is

important to report that in the first scenario (α = 1.3) the results from the blocked Whittle

estimates in the Table 6.1 are only based on R = 945, 898 and 891 replications included

for T = 500, 1000, and 1500, respectively, since these excluded replications either presented

convergence problem or fail to satisfy the locally stationary condition. At the same time, all

replications for the blocked Whittle estimates for the second (α = 1.9) converged. This out-

come is expected since the innovation distributions approximate to the Gaussian distribution

for α close to 2.

Table 6.1 reports the Monte Carlo mean and standard error of both estimation methods.

We notice that the Monte Carlo mean from the indirect estimates seems to be consistent,

that is, they approximate to the real parameters and present lower standard errors as T

increases. On the other hand, the Monte Carlo mean of the blocked Whittle estimates are

farther from the real parameters and they present higher standard errors compared to our

estimation approach. Moreover, Table 6.2 presents the kurtosis and skewness of all estimates

from both methods. In general, all indirect estimates present lower kurtosis and the skewness

close to 0. It is important to notice that since the second moment of the process does not

exist, the parameter γ estimates from the blocked Whittle likelihood present highly positive

asymmetry and they subestimate the true parameter.

Scenario
Indirect estimates

Blocked Whittle estimates1
Model of Interest Auxiliary model

(α, β, θ0, θ1, γ) T θ0 θ1 γ θ
(A)
0 θ

(A)
1 γ(A) θ

(W )
0 θ

(W )
1 γ(W )

(1.3, 0, 0.35, 0.4, 1.2)

500
0.3492 0.4003 1.1999 0.3492 0.4004 1.4149 0.3366 0.3947 7.2051

(0.0282) (0.0457) (0.0674) (0.0281) (0.0457) (0.1587) (0.1193) (0.2075) (7.0580)

1000
0.3500 0.3997 1.1990 0.3500 0.3997 1.4108 0.3465 0.3984 8.5515

(0.0176) (0.0286) (0.0470) (0.0175) (0.0285) (0.1102) (0.0585) (0.1029) (10.5234)

1500
0.3503 0.3996 1.1978 0.3503 0.3996 1.4073 0.3514 0.3937 9.0899

(0.0122) (0.0202) (0.0367) (0.0121) (0.0202) (0.0863) (0.0527) (0.0927) (9.0223)

(1.9, 0.9,−0.3, 0.8, 1)

500
-0.2952 0.7897 0.9966 -0.2952 0.7893 0.6571 -0.2880 0.7825 1.2086
(0.0881) (0.1523) (0.0366) (0.0878) (0.1520) (0.0481) (0.1172) (0.2216) (0.6352)

1000
-0.2975 0.7926 0.9996 -0.2972 0.7923 0.6603 -0.2917 0.7845 1.2197
(0.0585) (0.1028) (0.0260) (0.0584) (0.1023) (0.0343) (0.0811) (0.1545) (0.4734)

1500
-0.2974 0.7958 0.9997 -0.2975 0.7955 0.6603 -0.2940 0.7926 1.2709
(0.0494) (0.0793) (0.0209) (0.0491) (0.0792) (0.0274) (0.0639) (0.1162) (0.8738)

Table 6.1: Monte Carlo mean and standard error (in parentheses) for different sample sizes (T = 500, 1000, 1500) using indirect
estimators (both model of interest and auxiliary model) and blocked Whittle estimates assuming known α and β from α-stable tvAR(1)
based on R = 1000 replications.

1In tvAR(1) simulations, the blocked Whittle estimates did not converge in some cases. Therefore, ex-
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Scenario Indirect estimates Blocked Whittle estimates1

(α, β, θ0, θ1, γ) T θ0 θ1 γ θ
(W )
0 θ

(W )
1 γ(W )

(1.3, 0, 0.35, 0.4, 1.2)

500
Kur 6.9415 4.9937 3.1057 9.7077 6.2082 38.8804
Skw -0.2709 -0.1038 0.0924 -1.6850 0.3139 4.8177

1000
Kur 5.2264 5.1948 3.0838 7.4547 6.0051 79.2429
Skw -0.2613 -0.0110 0.1894 -0.7995 0.1690 7.2834

1500
Kur 4.7557 4.1868 3.0163 25.1581 40.4760 76.0068
Skw -0.1881 -0.0876 0.1757 -0.7907 -2.0097 6.8018

(1.9, 0.9,−0.3, 0.8, 1)

500
Kur 3.0330 2.8565 3.1076 3.3783 3.0944 375.8563
Skw 0.1388 -0.1354 0.1241 -0.0129 -0.0875 16.6778

1000
Kur 3.1678 3.2835 2.7390 2.8722 2.9543 95.2261
Skw 0.0341 -0.0260 0.0437 0.0057 -0.1047 8.4487

1500
Kur 3.1024 3.0645 2.9329 3.7487 6.1799 187.9560
Skw -0.0299 0.0248 0.0026 0.1707 -0.5935 12.4661

Table 6.2: Kurtosis and skewness of indirect estimates and blocked Whittle estimates for different
sample sizes (T = 500, 1000, 1500) assuming known α and β from α-stable tvAR(1) based on R = 1000
replications.

Moreover, Figures 6.1 and 6.2 show the density estimates of each parameter for both

scenarios. The density estimates show that the standard error become smaller as T increases.

Along with the results from Tables 6.1 and 6.2, we can conclude that indirect estimates

behave better than the blocked Whittle estimates in term of mean, standard error, skewness

and kurtosis. Therefore, the simulation results show that the indirect inference is satisfactory.
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Figure 6.1: Density estimates of θ0, θ1 and γ for different sample sizes based on R = 1000
replications from α-stable tvAR(1) with α = 1.3, β = 0, θ0 = 0.35, θ1 = 0.4, γ = 1.2 using
indirect inference.

6.3 Indirect inference for the α-stable tvMA(1)

In this section, we carried out the second simulation with the case of tvMA(q) with q = 1

and γ
(
t
T

)
= γ, that is,

Xt,T = γ

{
εt + β1

(
t

T

)
εt−1

}
, (6.4)

where εt ∼ Sα (1/
√

2, β, 0) with known α and β.

cluding those cases, for the first scenario (α = 1.3) R = 945, 898 and 891 replications are included for
T = 500, 1000, and 1500, respectively. For the second scenario (α = 1.9), all cases converged.
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Figure 6.2: Density estimates of θ0, θ1 and γ for different sample sizes based on R = 1000
replications from α-stable tvAR(1) with α = 1.9, β = 0.9, θ0 = −0.3, θ1 = 0.8, γ = 1 using
indirect inference.

To continue, we illustrate how the indirect inference can be employed to the tvMA(1) in

(6.4) with the linear parametric form of the time-varying coefficient β1 (u) = θ0 + θ1u, and

we consider that εt ∼ Sα(1/
√

2, β, 0) for known α and β. Therefore, the parameter vector of

the model of interest is θ = (θ0, θ1, γ).

We use the same strategy to estimate this model with the auxiliary model with the

parametric form of the process with the scaled t-distribution with ν = 3.

6.3.1 Simulation results

Similarly to the simulation done with tvAR(1), the tvMA(1) simulations were done with

two scenarios. The first one with performed by assuming known parameters α = 1.1 and β =

−0.2 and unknown (θ0, θ1, γ) = (0.35,−0.6, 1.2). In the second scenario, known parameters

α = 1.8 and β = 0 and unknown (θ0, θ1, γ) = (−0.2, 0.7, 1.1) are assumed. Simulations

were done for T = 500, 1000 and 1500 observations with S = 100 based on R = 1000

independent replications each scenario. We also performed the blocked Whittle estimation

following the same methodology. Excluding those diverged cases, there are R = 939, 978

and 978 replications that are included for T = 500, 1000, and 1500, respectively, for the

first scenario (α = 1.1), while for the second scenario (α = 1.8), R = 996, 1000 and 1000

replications are included for T = 500, 1000, and 1500, respectively.

The Monte Carlo mean, standard error, kurtosis and skewness of estimates from the

simulation are reported in the Table 6.3 and 6.4 and the density estimates in Figures 6.3,

6.4.

We notice that the results are very similar to the case of tvAR(1). The distribution

seem to be less leptokurtic for α close to 2, and the standard error become smaller as T

increases. Specifically, for α close to 2, the distribution of indirect estimates is close to the

Gaussian distribution (kurtosis are closer to 3 compared with the blocked Whittle estimates

and they are more symmetric). On the other hand, for smaller α, the distribution of indirect

I \ 
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estimates has heavier tails, and they have similar kurtosis and skewness than the blocked

Whittle estimates, except for the parameter γ, indirect estimates behave better. However,

in term of standard error and Monte Carlo mean, they still behave better than the blocked

Whittle estimates. Therefore, we conclude that the indirect inference is satisfactory.

Scenario
Indirect estimates

Blocked Whittle estimates2
Model of Interest Auxiliary model

(α, β, θ0, θ1, γ) T θ0 θ1 γ θ
(A)
0 θ

(A)
1 γ(A) θ

(W )
0 θ

(W )
1 γ(W )

(1.1,−0.2, 0.35,−0.6, 1.2)

500
0.3561 -0.5888 1.1989 0.3562 -0.5887 3.0928 0.3424 -0.5427 18.7932
(0.0298) (0.0577) (0.0600) (0.0298) (0.0577) (0.3093) (0.1418) (0.3084) (38.4343)

1000
0.3545 -0.5953 1.1986 0.3546 -0.5952 3.0877 0.3386 -0.5532 47.5752
(0.0186) (0.0352) (0.0412) (0.0185) (0.0352) (0.2115) (0.0870) (0.1955) (232.0620)

1500
0.3536 -0.5982 1.1986 0.3537 -0.5981 3.0859 0.3357 -0.5555 49.4572
(0.0131) (0.0244) (0.0331) (0.0131) (0.0244) (0.1703) (0.0747) (0.1690) (178.3984)

(1.8, 0,−0.2, 0.7, 1.1)

500
-0.1981 0.6981 1.0988 -0.1978 0.6976 0.8297 -0.1958 0.6990 1.5694
(0.0746) (0.1257) (0.0450) (0.0746) (0.1257) (0.0678) (0.1169) (0.2178) (0.6809)

1000
-0.1991 0.6974 1.1009 -0.1991 0.6974 0.8320 -0.1970 0.6951 1.6936
(0.0517) (0.0886) (0.0303) (0.0515) (0.0884) (0.0456) (0.0785) (0.1491) (0.9625)

1500
-0.1996 0.6996 1.0995 -0.1997 0.6998 0.8298 -0.1976 0.6979 1.6855
(0.0410) (0.0677) (0.0247) (0.0410) (0.0677) (0.0370) (0.0622) (0.1135) (1.0475)

Table 6.3: Monte Carlo mean and standard error (in parentheses) for different sample sizes (T = 500, 1000, 1500) using indirect
estimators (both model of interest and auxiliary model) and blocked Whittle estimates assuming known α and β from α-stable
tvMA(1) based on R = 1000 replications.

Scenario Indirect estimates Blocked Whittle estimates2

(α, β, θ0, θ1, γ) T θ0 θ1 γ θ
(W )
0 θ

(W )
1 γ(W )

(1.1,−0.2, 0.35,−0.6, 1.2)

500
Kur 7.9023 6.3460 2.9050 6.9952 7.3434 233.1652
Skw 1.2950 0.0800 0.2117 0.1961 1.1869 13.5324

1000
Kur 9.8633 10.4926 2.8616 11.7454 8.6755 385.9194
Skw 1.6510 0.7121 0.0841 0.8633 1.5096 17.6374

1500
Kur 8.1466 20.6873 2.8140 9.7011 10.5014 156.1843
Skw 1.5194 1.4762 0.1493 -0.1837 1.9926 11.4943

(1.8, 0,−0.2, 0.7, 1.1)

500
Kur 3.3039 2.9901 2.7817 4.4813 3.1555 66.7817
Skw 0.0966 -0.0861 -0.0658 0.4187 -0.0800 6.4792

1000
Kur 3.3611 3.4395 2.8332 3.4253 3.4149 74.8992
Skw -0.0234 0.0120 0.1609 0.0556 -0.0736 7.2050

1500
Kur 3.3234 3.0226 2.7790 3.2663 3.3457 193.5169
Skw 0.0082 0.0459 -0.0775 0.1853 -0.2094 11.9289

Table 6.4: Kurtosis and skewness of indirect estimates and blocked Whittle estimates for different sample
sizes (T = 500, 1000, 1500) assuming known α and β from α-stable tvMA(1) based on R = 1000 replications.

6.4 Indirect inference for the α-stable tvARMA(1,1)

In this section, we carried out the third simulation with the case of tvARMA(p,q) with

p = 1, q = 1 and γ
(
t
T

)
= γ, that is,

Xt,T + α1

(
t

T

)
Xt−1,T = γ

{
εt + β1

(
t

T

)
εt−1

}
, (6.5)

where εt ∼ Sα (1/
√

2, β, 0) with known α and β.

We illustrate how the indirect inference can be employed to the tvARMA(1,1) in (6.5)

with the linear parametric form of the time-varying coefficients α1 (u) = θa0 + θa1u and

2In tvMA(1) simulations, the blocked Whittle estimates did not converge in some cases. Therefore,
excluding those cases, for the first scenario (α = 1.1) R = 939, 978 and 978 replications are included for
T = 500, 1000, and 1500, respectively. For the second scenario (α = 1.8), R = 996, 1000 and 1000 replications
are included for T = 500, 1000, and 1500, respectively.
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Figure 6.3: Density estimates of θ0, θ1 and γ for different sample sizes based on R = 1000
replications from α-stable tvMA(1) with α = 1.1, β = −0.2, θ0 = 0.35, θ1 = −0.6, γ = 1.2 using
indirect inference.
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Figure 6.4: Density estimates of θ0, θ1 and γ for different sample sizes based on R = 1000
replications from α-stable tvMA(1) with α = 1.8, β = 0, θ0 = −0.2, θ1 = 0.7, γ = 1.1 using
indirect inference.
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β1 (u) = θb0 + θb1u, and we consider that εt ∼ Sα(1/
√

2, β, 0) for known α and β. Therefore,

the parameter vector of the model of interest is θ = (θa0, θa1, θb0, θb1, γ).

We use the same strategy to estimate this model with the auxiliary model with the

parametric form of the process with the scaled t-distribution with ν = 3.

6.4.1 Simulation results

In the same way, the tvARMA(1,1) simulations were done with two scenarios. The first

one were performed by assuming known parameters α = 1.3 and β = 0 and unknown

(θa0, θa1, θb0, θb1, γ) = (−0.2,−0.4, 0.2, 0.3, 1.1). In the second scenario, known parameters

α = 1.8 and β = 0.3 and unknown (θa0, θa1, θb0, θb1, γ) = (−0.4, 0.1, 0.1, 0.3, 1.1). Again,

simulations were done for T = 500, 1000 and 1500 observations with S = 100 based on

R = 1000 independent replications each scenario. The blocked Whittle estimation following

the same methodology and excluding those cases that diverged, there are R = 908, 929 and

926 replications are included for T = 500, 1000, and 1500, respectively, for the first scenario

(α = 1.1), while for the second scenario (α = 1.8), R = 989, 996 and 994 replications are

included for T = 500, 1000, and 1500, respectively.

The Monte Carlo mean, standard error, kurtosis and skewness of estimates from the

tvARMA(1,1) simulation are reported in the Table 6.5 and 6.6 and the density estimates in

Figures 6.5, 6.6.

We again notice similar results compared to tvAR(1) and tvMA(1). Since the standard

error become smaller as T increases, simulations suggest that indirect estimates are con-

sistent. In general, the distribution of indirect estimates has heavier tails, and they have

similar kurtosis and skewness than the blocked Whittle estimates (except for the parameter

γ, indirect estimates behave better). However, in term of standard error and Monte Carlo

mean, they behave much better than the blocked Whittle estimates. Therefore, we conclude

that the indirect inference is satisfactory for tvARMA(1,1).

6.5 Application

In this section, we illustrate this methodology with two time series: the tree ring and

wind power data.

6.5.1 Tree Ring

The tree ring data was collected at Piedra del Aguila, Malleco, Chile from 1242 to

1975 provided by Holmes (2014). Figure 6.7 shows its time series and its (global) sample

3In tvARMA(1,1) simulations, the blocked Whittle estimates did not converge in some cases. Therefore,
excluding those cases, for the first scenario (α = 1.1) R = 908, 929 and 926 replications are included for
T = 500, 1000, and 1500, respectively. For the second scenario (α = 1.8), R = 989, 996 and 994 replications
are included for T = 500, 1000, and 1500, respectively.



APPLICATION 69

Scenario T
Indirect estimates

Model of Interest Auxiliary model

θa0 θa1 θb0 θb1 γ θ
(A)
a0 θ

(A)
a1 θ

(A)
b0 θ

(A)
b1 γ(A)

1

500
-0.1977 -0.4028 0.2035 0.2955 1.0977 -0.1977 -0.4029 0.2036 0.2954 1.1843
(0.0554) (0.0841) (0.0571) (0.0878) (0.0623) (0.0554) (0.0838) (0.0571) (0.0878) (0.1348)

1000
-0.1995 -0.4003 0.2017 0.2978 1.0987 -0.1994 -0.4005 0.2017 0.2978 1.1845
(0.0333) (0.0514) (0.0347) (0.0534) (0.0419) (0.0333) (0.0510) (0.0347) (0.0534) (0.0900)

1500
-0.2003 -0.3986 0.1997 0.3012 1.1009 -0.2003 -0.3990 0.1997 0.3011 1.1888
(0.0248) (0.0366) (0.0258) (0.0382) (0.0349) (0.0247) (0.0363) (0.0258) (0.0381) (0.0752)

2

500
-0.4000 0.1061 0.0987 0.3097 0.9976 -0.3998 0.1042 0.0991 0.3093 0.6867
(0.1360) (0.2222) (0.1501) (0.2395) (0.0386) (0.1352) (0.2219) (0.1496) (0.2396) (0.0529)

1000
-0.3921 0.0881 0.1064 0.2905 0.9982 -0.3913 0.0862 0.1070 0.2891 0.6868
(0.1001) (0.1617) (0.1053) (0.1652) (0.0290) (0.0999) (0.1613) (0.1051) (0.1643) (0.0400)

1500
-0.3992 0.1021 0.0988 0.3060 0.9982 -0.3993 0.1015 0.0991 0.3058 0.6865
(0.0754) (0.1269) (0.0793) (0.1285) (0.0232) (0.0748) (0.1257) (0.0786) (0.1279) (0.0315)

Blocked Whittle estimates3

θ
(W )
a0 θ

(W )
a1 θ

(W )
b0 θ

(W )
b1 γ(W )

1

500
-0.1974 -0.4031 0.2185 0.2840 5.6739
(0.1632) (0.2679) (0.1624) (0.2724) (4.7869)

1000
-0.2041 -0.4015 0.2039 0.2896 7.0926
(0.1266) (0.2032) (0.1189) (0.1941) (7.4793)

1500
-0.2048 -0.3983 0.2019 0.2916 8.1174
(0.1052) (0.1694) (0.0945) (0.1520) (9.0376)

2

500
-0.3917 0.1021 0.1078 0.3049 1.4151
(0.1952) (0.3522) (0.2130) (0.3810) (0.7603)

1000
-0.3850 0.0815 0.1105 0.2880 1.4919
(0.1409) (0.2535) (0.1470) (0.2599) (0.5806)

1500
-0.3939 0.0926 0.1055 0.2964 1.5538
(0.1085) (0.1955) (0.1155) (0.2040) (0.8009)

Table 6.5: Monte Carlo mean and standard error (in parentheses) for different sample sizes (T = 500, 1000, 1500) using
indirect estimators (both model of interest and auxiliary model) and blocked Whittle estimates assuming known α and β
from α-stable tvARMA(1,1) based on R = 1000 replications. Scenario 1 assumes α = 1.3, β = 0, θa0 = −0.2, θa1 =
−0.4, θb0 = 0.2, θb1 = 0.3, γ = 1.1 and Scenario 2 assumes α = 1.8, β = 0.3, θa0 = −0.4, θa1 = 0.1, θb0 = 0.1, θb1 =
0.3, γ = 1.

Scenario T
Indirect estimates

θa0 θa1 θb0 θb1 γ

1

500
Kur 4.7062 5.3065 5.7858 5.9446 3.1403
Skw -0.0539 0.1409 -0.1818 0.1172 0.2005

1000
Kur 4.5786 4.5836 4.3494 4.4781 3.2191
Skw 0.0217 -0.1284 -0.0273 -0.1239 0.1007

1500
Kur 6.5317 5.6912 5.4510 4.8657 2.7667
Skw -0.4095 0.3837 -0.4359 0.2636 -0.0475

2

500
Kur 3.3650 3.1791 3.3657 3.4297 2.9935
Skw 0.2754 -0.2426 -0.0746 -0.1274 0.1839

1500
Kur 3.3964 3.5054 3.4470 3.4690 3.0327
Skw 0.2002 -0.1558 0.0100 -0.1184 0.2460

1500
Kur 3.5817 3.1935 3.7052 3.3930 2.9790
Skw 0.2895 -0.1097 0.0137 -0.0730 0.0718

Blocked Whittle estimates3

θ
(W )
a0 θ

(W )
a1 θ

(W )
b0 θ

(W )
b1 γ(W )

1

500
Kur 5.4254 4.8197 5.3321 4.3749 139.1506
Skw -0.0294 0.2331 -0.0403 -0.0186 8.6437

1000
Kur 8.1137 5.1403 8.1128 5.0651 210.4645
Skw -0.3356 0.1724 -0.4294 0.1899 11.1724

1500
Kur 10.8431 8.4975 11.3543 7.8360 127.1256
Skw 0.2951 -0.1960 0.1167 -0.1974 9.2216

2

500
Kur 2.9112 3.0692 3.2168 3.2822 203.2823
Skw 0.1699 -0.1329 -0.2024 -0.0422 12.0737

1500
Kur 3.4242 3.2166 3.2601 3.0064 41.6803
Skw 0.3149 -0.2253 0.0267 -0.1713 4.9608

1500
Kur 2.9176 2.8801 3.3685 3.3091 96.2273
Skw 0.0809 0.0268 -0.1083 0.0372 7.7396

Table 6.6: Kurtosis and skewness of indirect estimates and blocked Whittle esti-
mates for different sample sizes (T = 500, 1000, 1500) assuming known α and β
from α-stable tvARMA(1,1) based on R = 1000 replications. Scenario 1 assumes
α = 1.3, β = 0, θa0 = −0.2, θa1 = −0.4, θb0 = 0.2, θb1 = 0.3, γ = 1.1 and
Scenario 2 assumes α = 1.8, β = 0.3, θa0 = −0.4, θa1 = 0.1, θb0 = 0.1, θb1 =
0.3, γ = 1.
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Figure 6.5: Density estimates of θa0, θa1, θb0, θb1 and γ for different sample sizes based on
R = 1000 replications from α-stable tvARMA(1,1) with α = 1.3, β = 0, θa0 = −0.2, θa1 =
−0.4, θb0 = 0.2, θb1 = 0.3, γ = 1.1 using indirect inference.
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Figure 6.6: Density estimates of θa0, θa1, θb0, θb1 and γ for different sample sizes based on
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0.1, θb0 = 0.1, θb1 = 0.3, γ = 1 using indirect inference.

I \ 

I 



72 INDIRECT INFERENCE FOR α-STABLE TVARMA PROCESS

autocorrelation function and partial autocorrelation function. An AR(1) model seems to be

an appropriate option, but if we analyze for different time periods, they present different

structures (Figure 6.8). Moreover, Figure 6.9 shows the blocked smooth periodogram of the

series and it presents slowly changed structure throughout the time. For the analysis below,

we subtracted the series by its mean in order to have the time series data with mean zero.
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(b) autocorrelation function (ACF) and partial
autocorrelation function (partial ACF).

Figure 6.7: Tree ring data from 1242 to 1975.

Following the methodology and codes provided by Olea et al. (2015), using block size

N = 200 and shifting each block by Q = 100 time units, 6 blocks are obtained. For each

block, a stationary AR(1) model is estimated. Then, the smoothed estimated coefficients over

time is presented in Figure 6.10. It shows that the coefficients could vary linearly throughout

the time. Consequently, a tvAR(1) model with linear coefficients, α1(u) = θ0 + θ1(u) and

γ(u) = γ0 + γ1(u), can be proposed.

One problem that we detected by using the blocked Whittle estimation is that choos-

ing different block size N yields distinct results. To illustrate it, we estimate the Model

1 by using the block size N = 180 recommended in Olea et al. (2015), then we estimate

the Model 2 by considering the suggestion of block size N = bT 0.8c = b7340.8c = 196 in

Dahlhaus and Giraitis (1998).

Table 6.7 reports the parameter estimates from both models. For both models, we no-

tice that γ(·) presents negative slope, i.e. the process has a decreasing variance throughout

the time. On the other hand, if we use 5% of significance level, there could have different

interpretations, since the first model implies time-varying autoregressive coefficient and the

second model does not. Moreover, the residual analysis shows that although the ACF indi-

cates uncorrelated residuals, the QQ-plot, box-plot and the histogram (Figure 6.11) show

that the distribution of error has heavy tail and is positively asymmetric. Additionally, we
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(c) Observation 600 to 700

Figure 6.8: Autocorrelation function and partial autocorrelation function of tree ring data for 3
different time windows.

Frequency

0.5
1.0

1.5

2.0

2.5

3.0

Time

100

200

300

400

500

S
m

ooth P
eriodogram

0.005

0.010

Figure 6.9: Blocked smooth periodogram of tree ring data.



74 INDIRECT INFERENCE FOR α-STABLE TVARMA PROCESS

●
●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

u

α(
u)

(a) α(u)

● ● ●
●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

u

γ(
u)

(b) γ(u)

Figure 6.10: Estimates of stationary AR(1) model for 6 block of size N = 200 for u = t
T .

also estimated the skewness (0.25) and kurtosis (7.73) and carrying out Shapiro-Wilk test

and Jarque-Bera test, both tests rejected the null hypothesis of normality.

Parameter
Model 1 Model 2

Estimate s.e. z-value p-value Estimate s.e. z-value p-value
θ0 -0.5006 0.0714 -7.0129 0.0000 -0.5280 0.0741 -7.1215 0.0000
θ1 -0.2542 0.1254 -2.0272 0.0426 -0.1870 0.1369 -1.3661 0.1719
γ0 0.1130 0.0028 40.4541 0.0000 0.1145 0.0028 41.2186 0.0000
γ1 -0.0121 0.0051 -2.3684 0.0179 -0.0166 0.0052 -3.1796 0.0015

Table 6.7: Blocked Whittle estimates of tvAR(1) from tree ring time series by considering different
block size N = 180 (Model 1) and N = 196 (Model 2).

Next, since the residual analysis shows that the residuals present asymmetry and heavy

tail, we propose a more flexible model, α−stable tvAR(1), by assuming the parameters of

stable innovations as estimated above, i.e. α = 1.9, β = 0.98 and use indirect inference with

S = 30 to estimate the parameter (θ0, θ1, γ0, γ1). Table 6.8 presents the indirect estimates

along with their (Monte Carlo) standard error calculated based on R = 200. Notice that the

autoregressive coefficient is not time-varying.

Parameter θ0 θ1 γ0 γ1

Indirect estimates -0.6424 -0.0674 0.1280 -0.0244
Standard error (0.0499) (0.0857) (0.0079) (0.0136)

Table 6.8: Indirect estimates of α−stable tvAR(1) with S = 40.

To evaluate the residual distribution with the stable distribution, Nolan (2002) suggested

using the stabilized probability plot (stabilized p-p plot), proposed by Michael (1983),

- - - -

- - - -- --

l 
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instead of the QQ-plot due to the fact that the last one is not suitable to evaluate stable

distributions. In case of the QQ-plot, large fluctuation for the extreme values in case of

the heavy-tailed distribution will produce very large standard errors in the tails. Also, the

standard p-p plot tend to emphasize behavior around the mode of the distribution and

the plotted points near the tails have more variation. By using the transformation below,

a stabilized p-p plot is defined to eliminates this non-uniformity so that the variance of

the plotted points are approximately equal. Let y1 ≤ · · · ≤ yn be an ordered random

sample of size n from the distribution F . The stabilized p-p plot is defined as the plot of

si =
(

2
π

)
arcsin(F

1
2 (yi)) versus ri =

(
2
π

)
arcsin

([(
i− 1

2

)
/n
] 1

2

)
.

In this way, the histogram and the stabilized p-p plot in figure 6.12 show that the stable

distribution fits well the residuals.
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(b) Stabilized p-p plot

Figure 6.12: Residual analysis from the α−stable tvAR(1) model assuming that the innovation
distribution is stable with α = 1.42 and β = 0.

In order to compare the method, we compare the Mean square error (MSE), Root mean

square error (RMSE) and Mean absolute error (MAE) from the two methods. This is im-

portant to notice that MSE and RMSE do not make sense theoretically since the α−stable

tvAR(1) does not have the second moment. On the other hand, MAE does make sense

since the process assumes the first moments finite. Nevertheless, since the time series data is

available, we calculated them to compare the two methods. From the Table 6.9, we observe

that using blocked Whittle estimation (assuming finite second moment), MSE and RMSE

are slightly lower, while using the indirect inference presents lower MAE.

As conclusion, since the residual analysis indicates heavy-tailed and skewed error, it is

reasonable to consider the α−stable tvAR(1) instead of tvAR(1) with Gaussian innovations.

In addition, by assuming α = 1.9, which is close to 2 (Gaussian case), the blocked Whittle

estimation seems to be well fitted compared to the indirect inference. However, by assuming

stable innovations, MSE and RMSE do not make sense. Based on MAE, the indirect inference
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performs slightly better, and thus, the interpretation of estimated coefficients of the model

also changed.

Accuracy Blocked Whittle estimates Indirect inference
MSE 0.015704 0.015762

RMSE 0.125315 0.125560
MAE 0.093919 0.093823

Table 6.9: Goodness of fit of two estimation methods for the tree ring data

6.5.2 Wind Power

In this subsection, we illustrate an application for the total wind power generated in

offshore wind farms in Germany from 16/06/2015 at 00:00 to 27/07/2015 at 24:00 (T = 1008

hours), obtained from the EMHIRES (European Meteorological High resolution RES time

series) datasets (Gonzales-Aparicio et al., 2016). The reason of selecting just a small segment

of the data is due to the fact that the whole time series has more complex structure, such

as seasonality, thus a non-parametric approach could be more appropriate. For daily wind

power time series, the Gaussian assumption of the innovations seems to be appropriate, but

the hourly time series present heavy tails and Gaussian assumption is inadequate as we

present below. The Figure 6.13 shows the original time series (yt) and its first difference

(∆yt). The original time series seems to be non-stationary and difficult to analyze. We focus

on the differencing time series, which shows heavy-tailed behavior.
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Figure 6.13: Wind power generated hourly from 16/06/2015 at 00:00 to 27/07/2015 at 24:00.

Figure 6.14 shows its (global) sample autocorrelation function, and partial autocorrela-

tion function. Traditional models: ARMA(1,1) and AR(4) seem to be appropriate, but the

blocked smooth periodogram shows its slowly changed structure over the time.
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(a) ACF and partial ACF.
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Figure 6.14: ACF, partial ACF and blocked smooth periodogram of wind power data.

In order to explore its local structure, we first estimate ARMA(1,1) model for 9 time

blocks following the same methodology in the previous subsection (block size N = 200 and

shifting each block by Q = 100 time units). The smoothed estimated coefficients over time

is presented in Figure 6.15. Then, we also estimate AR(4) model for 9 time blocks. The

smoothed estimated coefficients over time is presented in Figure 6.16. Both cases show that

the coefficients are approximately linear throughout the time. Consequently, two models are

proposed:

• tvARMA(1,1) model with linear coefficients, α1(u) = θa0 + θa1(u), β1(u) = θb0 + θb1(u)

and γ(u) = γ0 + γ1(u).

• tvAR(4) model with linear coefficients, α1(u) = θa0 + θa1(u), α2(u) = θb0 + θb1(u),

α3(u) = θc0 + θc1(u), α4(u) = θd0 + θd1(u) and γ(u) = γ0 + γ1(u).

After estimating both models, the residuals of tvARMA(1,1) are correlated, and thus,

we focus only on the other model. The residuals of the tvAR(4) model are approximately

white noise, and the parameter estimates of this model are reported in Table 6.10.

Figure 6.17 presents the residual analysis for the blocked Whittle estimates (assuming

finite variance) and the QQ-plot, box-plot and the histogram show that the distribution

of error has heavy tail. Additionally, we also estimated the skewness (0.31) and kurtosis

(12.86) and carrying out Shapiro-Wilk test and Jarque-Bera test, both tests rejected the null

hypothesis of normality. Moreover, Figure 6.18 presents the variogram of the first difference

of the wind data and the residuals from the tvAR(4) model. It is clear to observe that both

of the variograms do not converge.

Next, since the residual analysis shows that the residuals present heavy tail, we propose

a more flexible model, α−stable tvAR(4), by assuming the parameters of symmetric stable
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Figure 6.15: (Smoothed) α(u), β(u) and γ(u) estimates of stationary ARMA(1,1) model for 9
block of size N = 200 with u = t/T center point of each block.
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Figure 6.16: (Smoothed) α1(u), α2(u), α3(u), α4(u) and γ(u) estimates of stationary AR(4) model
for 9 block of size N = 200 with u = t/T center point of each block.
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Figure 6.17: Residual analysis using the blocked Whittle estimation (standadized residual).
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model.
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Parameter
Blocked Whittle estimates

Estimate s.e. z-value p-value
θa0 -1.5985 0.0768 -20.8171 0.0000
θa1 0.3305 0.1406 2.3508 0.0187
θb0 0.9135 0.1373 6.6536 0.0000
θb1 0.0207 0.2447 0.0847 0.9325
θc0 -0.0585 0.1372 -0.4266 0.6697
θc1 -0.7153 0.2445 -2.9254 0.0034
θd0 -0.1316 0.0767 -1.7158 0.0862
θd1 0.5454 0.1405 3.8831 0.0001
γ0 0.0077 0.0003 24.5452 0.0000
γ1 0.0152 0.0007 21.6400 0.0000

Table 6.10: Blocked Whittle estimates of tvAR(4) from wind power time series.

innovations as estimated above, i.e. α = 1.34, and use indirect inference with S = 40

to estimate the parameter (θa0, θa1, θb0, θb1, θc0, θc1, θd0, θd1, γ0, γ1). Table 6.11 presents the

indirect estimates along with their (Monte Carlo) standard error calculated based on R =

1000. Similar to the previous example, the histogram and the stabilized p-p plot in figure

6.19 show that the stable distribution fits well the residuals. Moreover, we notice that α1(u)

and α2(u) are not time-varying, while α3(u), α4(u) and γ(u) vary linearly in time.

Parameter Indirect estimate Standard error
θa0 -1.5549 0.0230
θa1 0.0102 0.0397
θb0 0.9230 0.0415
θb1 0.0370 0.0715
θc0 -0.2754 0.0412
θc1 -0.2086 0.0736
θd0 0.0436 0.0215
θd1 0.1794 0.0389
γ0 0.0067 0.0006
γ1 0.0023 0.0011

Table 6.11: Indirect estimates of α−stable tvAR(4) with S = 40.

We compare the Mean square error (MSE), Root mean square error (RMSE) and Mean

absolute error (MAE) of tvARMA(1,1) and tvAR(4) using two estimation methods (blocked

Whittle estimates and indirect estimates). As before, it is important to notice that MSE and

RMSE do not make sense theoretically since the α−stable tvAR(4) does not have the second

moment. In Table 6.12, we observe that using blocked Whittle estimation (assuming finite

second moment), MSE and RMSE are slightly lower, while using the indirect inference

presents lower MAE.

Since the residual analysis indicates heavy-tailed, α−stable tvAR(4) is a better model

to describe the data. In this case, by assuming α = 1.34, which is farther from 2 (Gaussian
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Figure 6.19: Residual analysis from the α−stable tvAR(4) model assuming that the innovation
distribution is stable with α = 1.34 and β = 0.

case), the simulation done in the previous section shows that the blocked Whittle estimation

is not appropriate. Even though MSE and RMSE are lower for blocked Whittle estimation,

they are not appropriate for α−stable process since they cannot be theoretically handled.

Based on MAE, the indirect inference performs slightly better. Moreover, the interpretation

of estimated coefficients of the model also changed.

Model MSE RMSE MAE

tvARMA(1,1) 0.000248 0.015739 0.009675
α-stable tvARMA(1,1) 0.000257 0.016028 0.009469
tvAR(4) 0.000242 0.015542 0.009468
α-stable tvAR(4) 0.000256 0.015993 0.009094

Table 6.12: Goodness of fit of different models for the wind power data.



Chapter 7

Indirect inference for α-stable

tvARMA process with unknown α.

In Section 6.1, we introduced the possibility of using the skew-t distribution and its ad-

vantage of having four parameters that are similar to the α-stable distribution and it has the

likelihood function available. Lombardi and Calzolari (2008) studied the binding function

by simulations in case of independent samples and it seems to behave well. However, the

α-stable distributions have the characteristic of the asymmetry parameter β being uniden-

tified when α approximates 2. Hence, in this chapter, we study the parameter estimation

of a parametric tvARMA model with α-stable innovations with unknown stability index α

but with known β. In this case, the standardized t distribution with unknown ν is used for

the auxiliary model. It is important to notice that we report results for α = 0.8, 0.85 and

0.9 and for small values of α, the convergence is difficult. We suspect that it is because of

highly heavy tail and the auxliary model (student-t) cannot capture well this behavior.

7.1 Indirect inference for the α-stable tvAR(1)

Similar to the Section 6.2, we consider the tvAR(1) model

Xt,T + α1

(
t

T

)
Xt−1,T = γ

(
t

T

)
εt, (7.1)

where εt ∼ Sα (1/
√

2, β, 0) with known β.

We illustrate how the indirect inference can be employed to the tvAR(1) in (6.2) with the

linear parametric form of the time-varying coefficient α1 (u) = θ0 +θ1u, and γ (u) = γ0 +γ1u.

Therefore, the parameter vector of the model of interest is θ = (θ0, θ1, α, γ0, γ1). On the other

hand, we use the same parametric form of the process with the scaled t-distribution with

unknown ν as the auxiliary model with the likelihood function defined in (2.33), that is,

λ = (θ
(A)
0 , θ

(A)
1 , ν, γ

(A)
0 , γ

(A)
1 ). We report two scenarios assuming α = 0.8 and 1.4 letting other

parameters the same (β, θ0, θ1, γ0, γ1) = (0, 0.35,−0.6, 0.5, 0.1). We carried out simulations

for T = 500, 1000 and 1500 observations based on R = 1000 independent replications each

83
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scenario. The indirect inference was carried out using S = 100.

Table 7.1 reports the Monte Carlo mean and standard error of the estimates from both

model of interest and auxiliary model. We notice that the Monte Carlo mean from the

indirect estimates seems to be consistent, that is, they approximate to the real parameters

and present lower standard errors as T increases. Table 7.2 presents the kurtosis and skewness

of indirect estimates. For both scenarios, indirect estimates related to autoregressive part

(θ0 and θ1) have high kurtosis and it is specially noticeable for α = 0.8. In general, all other

indirect estimates behave similar to the case when α is known.

We also compare two scenarios all parameters are set the same except α. We notice that

θ0 and θ1 are highly affected by the value of α, that is, they have less standard error and

high kurtosis.

α T
Indirect estimates

Model of Interest Auxiliary model

θ0 θ1 α γ0 γ1 θ
(A)
0 θ

(A)
1 ν γ

(A)
0 γ

(A)
1

0.8

500
0.3489 -0.5988 0.8002 0.4898 0.1156 0.3489 -0.5988 0.7225 0.3024 0.0708

(0.0064) (0.0111) (0.0383) (0.0799) (0.1436) (0.0064) (0.0111) (0.0479) (0.0517) (0.0886)

1000
0.3495 -0.5996 0.8000 0.4947 0.1085 0.3495 -0.5996 0.7220 0.3056 0.0669

(0.0026) (0.0048) (0.0278) (0.0563) (0.1042) (0.0026) (0.0048) (0.0348) (0.0354) (0.0644)

1500
0.3496 -0.5996 0.8013 0.4941 0.1087 0.3496 -0.5996 0.7232 0.3058 0.0669

(0.0016) (0.0027) (0.0232) (0.0472) (0.0831) (0.0016) (0.0027) (0.0293) (0.0300) (0.0514)

1.4

500
0.3482 -0.5980 1.4083 0.4922 0.1111 0.3482 -0.5980 1.8853 0.3994 0.0897

(0.0406) (0.0715) (0.0737) (0.0527) (0.0960) (0.0407) (0.0716) (0.2351) (0.0446) (0.0778)

1000
0.3492 -0.5986 1.4037 0.4974 0.1033 0.3492 -0.5986 1.8622 0.4033 0.0834

(0.0244) (0.0430) (0.0520) (0.0370) (0.0661) (0.0244) (0.0429) (0.1570) (0.0311) (0.0533)

1500
0.3498 -0.5988 1.4000 0.4976 0.1011 0.3499 -0.5988 1.8478 0.4030 0.0818

(0.0187) (0.0323) (0.0417) (0.0305) (0.0546) (0.0187) (0.0323) (0.1244) (0.0255) (0.0441)

Table 7.1: Monte Carlo mean and standard error (in parentheses) for different sample sizes (T = 500, 1000, 1500) using
indirect estimators (model of interest and auxiliary model) assuming α = 0.8, 1.4, and β = 0, θ0 = 0.35, θ1 = −0.6, γ0 =
0.5, γ1 = 0.1 with known β from α-stable tvAR(1) based on R = 1000 replications.

α T
Indirect estimates

θ0 θ1 α γ0 γ1

0.8

500
kur 26.8926 17.5308 2.8292 2.9540 3.0422
skw -1.1025 0.4991 0.2203 0.2658 0.0305

1000
kur 50.1470 71.1822 3.3781 3.2657 3.1101
skw 3.9116 -4.4294 0.0729 0.2901 -0.0323

1500
kur 19.0859 16.3044 6.8858 2.9669 2.9937
skw 1.1142 -0.7635 0.5434 0.1051 0.0270

1.4

500
kur 3.7767 3.6800 3.1078 2.8924 3.0343
skw -0.1369 0.1213 0.2730 0.1583 0.0156

1000
kur 4.7209 3.8513 2.7680 3.1397 3.0710
skw -0.1548 0.1008 0.0889 0.0672 -0.0654

1500
kur 4.2029 3.8664 2.7385 3.0881 3.0266
skw 0.1274 -0.0192 0.0967 0.0973 0.0108

Table 7.2: Kurtosis and skewness of indirect estimates for different sample sizes (T = 500, 1000, 1500) assuming α = 0.8, 1.4
and β = 0, θ0 = 0.35, θ1 = −0.6, γ0 = 0.5, γ1 = 0.1 with known β from α-stable tvAR(1) based on R = 1000 replications.

Finally, Figures 7.1 and 7.2 show the density estimates of each parameter. Similarly,

α = 0.8 scenario shows high kurtosis for autoregressive part and other indirect estimates

seem to behave well. In general, the density estimates show that the standard error become

smaller as T increases. Along with the results from Tables 7.1 and 7.2, we can conclude that

the distribution of indirect estimates is leptokurtic and suggest consistency.
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Figure 7.1: Density estimates of θ0, θ1, α, γ0 and γ1 for different sample sizes based on R = 1000
replications from α-stable tvAR(1) with α = 0.8, β = 0, θ0 = 0.35, θ1 = −0.6, γ0 = 0.5, γ1 = 0.1
using indirect inference.
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Figure 7.2: Density estimates of θ0, θ1, α, γ0 and γ1 for different sample sizes based on R = 1000
replications from α-stable tvAR(1) with α = 1.4, β = 0, θ0 = 0.35, θ1 = −0.6, γ0 = 0.5, γ1 = 0.1
using indirect inference.
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7.2 Indirect inference for the α-stable tvMA(1)

In this section, we illustrate the indirect inference for the model (6.4) with unknown α.

This implies that the parameter of model of interest is θ = (θ0, θ1, α, γ) and the parameter

of auxiliary model is λ = (θ
(A)
0 , θ

(A)
1 , ν, γ(A)). The simulation was performed by assuming

two scenarios with α = 0.85, 1.75 and (β, θ0, θ1, γ) = (0.2,−0.35, 0.4, 0.7) for three different

period of time (T = 500, 1000 and 1500) based on R = 1000 independent replications. The

indirect inference was carried out using S = 100.

Similarly to the tvAR(1) case, the Monte Carlo mean and standard error of the estimates

from both model of interest and auxiliary model are reported in Table 7.3, and kurtosis and

skewness are presented in Table 7.4. Along with the density estimates showed in Figures 7.3

and 7.4, the indirect estimates have similar behavior than the tvAR(1) case. They all seem

to be consistent with these sample path length.

Comparing two scenarios that have all parameters set the same except α. We notice

again that θ0 and θ1 are highly affected by the value of α, that is, they have less standard

error and high kurtosis. However, they are less noticeable than the tvAR(1) case.

One interesting result is that for the scenario 2, while α < 2 implies the process has

infinite variance, the auxiliary model was estimated with ν > 3, that is, it has finite variance.

α T
Indirect estimates

Model of Interest Auxiliary model

θ0 θ1 α γ θ
(A)
0 θ

(A)
1 ν γ(A)

0.85

500
-0.3450 0.3975 0.8499 0.7007 -0.3450 0.3975 0.9550 0.4631
(0.0126) 0.0220) (0.0430) (0.0634) (0.0125) (0.0220) (0.1185) (0.0628)

1000
-0.3473 0.3988 0.8498 0.7024 -0.3473 0.3988 0.9555 0.4676
(0.0065) 0.0107) (0.0192) (0.0588) (0.0065) (0.0107) (0.0826) (0.0451)

1500
-0.3486 0.3995 0.8522 0.7056 -0.3486 0.3995 0.9568 0.4712
(0.0037) 0.0065) (0.0385) (0.0409) (0.0037) (0.0065) (0.1002) (0.0426)

1.75

500
-0.3518 0.4016 1.7566 0.7008 -0.3518 0.4016 3.9795 0.3810
(0.0699) (0.1245) (0.0739) (0.0296) (0.0694) (0.1237) (1.0183) (0.0390)

1000
-0.3487 0.3987 1.7527 0.6999 -0.3486 0.3987 3.8307 0.3776
(0.0446) (0.0787) (0.0559) (0.0229) (0.0445) (0.0788) (0.6414) (0.0299)

1500
-0.3504 0.4009 1.7525 0.7003 -0.3502 0.4007 3.7874 0.3785
(0.0375) (0.0663) (0.0457) (0.0187) (0.0373) (0.0661) (0.4852) (0.0242)

Table 7.3: Monte Carlo mean and standard error (in parentheses) for different sample sizes (T = 500, 1000, 1500) using
indirect estimators (model of interest and auxiliary model) assuming α = 0.85, 1.75 and β = 0.2, θ0 = −0.35, θ1 = 0.4, γ = 0.7
with known β from α-stable tvMA(1) based on R = 1000 replications.

7.3 Indirect inference for the α-stable tvARMA(1,1)

Finally, as in Section 6.4 we study the indirect inference with simulations for the case

of tvARMA(1,1) in (6.5), but α is assumed to be unknown. The time-varying coefficients

are assumed to be linear, that is, α1 (u) = θa0 + θa1u and β1 (u) = θb0 + θb1u, and we

consider that εt ∼ Sα(1/
√

2, β, 0) for known β. Therefore, the parameter vector of the model

of interest is θ = (θa0, θa1, θb0, θb1, α, γ), while the auxiliary model has the parameter λ =(
θ

(A)
a0 , θ

(A)
a1 , θ

(A)
b0 , θ

(A)
b1 , ν, γ(A)

)
.
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α T
Indirect estimates

θ0 θ1 α γ0

0.85

500
kur 13.1427 11.6976 266.5685 8.5182
skw 2.1758 -0.2905 14.0235 1.0395

1000
kur 16.6546 15.9780 150.5931 212.2336
skw 2.6774 0.2625 -7.7802 9.8820

1500
kur 17.9085 12.2223 395.1609 36.4959
skw 2.7648 -0.1490 18.8091 3.0698

1.75

500
kur 3.8667 3.2718 2.8731 3.3445
skw -0.0413 -0.0030 -0.1140 0.0003

1000
kur 3.7260 3.4565 2.8049 2.9412
skw 0.0436 0.0582 -0.0081 0.1446

1500
kur 3.6876 3.4211 3.0489 3.0002
skw -0.0043 0.0187 -0.2133 0.0557

Table 7.4: Kurtosis and skewness of indirect estimates for different sample sizes (T = 500, 1000, 1500) assuming α = 0.85, 1.75
and β = 0.2, θ0 = −0.35, θ1 = 0.4, γ = 0.7 with known β from α-stable tvMA(1) based on R = 1000 replications.
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Figure 7.3: Density estimates of θ0, θ1, α and γ for different sample sizes based on R = 1000
replications from α-stable tvMA(1) with α = 0.85, β = 0.2, θ0 = −0.35, θ1 = 0.4, γ = 0.7 using
indirect inference.
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Figure 7.4: Density estimates of θ0, θ1, α and γ for different sample sizes based on R = 1000
replications from α-stable tvMA(1) with α = 1.75, β = 0.2, θ0 = −0.35, θ1 = 0.4, γ = 0.7 using
indirect inference.
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The simulation was performed by assuming the same values as in the first scenario in

Section 6.4, that is, (α, β, θa0, θa1, θb0, θb1, α, γ) = (1.3, 0,−0.2,−0.4, 0.2, 0.3, 1.1) for three

different period of time (T = 500, 1000 and 1500) based on R = 1000 independent replica-

tions. The indirect inference was carried out using S = 100. We also add an extra scenario

with the same parameter except α = 0.9.

The Monte Carlo mean and standard error of the estimates from both model of interest

and auxiliary model are reported in Table 7.5, and kurtosis and skewness are presented

in Table 7.6. Along with density estimates showed in Figures 7.5 and 7.6, they present

similar results than tvAR(1) and tvMA(1), i.e. they seem to be consistent. For lower α,

θa0, θa1, θb0, θb1 present high kurtosis and but lower standard error.

Finally, if we compare with simulation results from the case when α is known, they

present similar standard error, kurtosis and asymmetry.

α T
Model of Interest (indirect estimates)

θa0 θa1 θb0 θb1 α γ

0.9

500
-0.2000 -0.4002 0.2007 0.2991 0.9005 1.0974
(0.0159) (0.0248) (0.0176) (0.0275) (0.0456) (0.0806)

1000
-0.2002 -0.4000 0.2004 0.2995 0.9005 1.0974
(0.0080) (0.0123) (0.0083) (0.0129) (0.0337) (0.0588)

1500
-0.2003 -0.3998 0.2002 0.2997 0.9019 1.0982
(0.0041) (0.0065) (0.0043) (0.0069) (0.0283) (0.0469)

1.3

500
-0.2036 -0.3932 0.1971 0.3064 1.3018 1.0923
(0.0585) (0.0869) (0.0587) (0.0891) (0.0698) (0.0587)

1000
-0.2005 -0.3986 0.2003 0.3004 1.3045 1.0976
(0.0319) (0.0489) (0.0329) (0.0504) (0.0471) (0.0433)

1500
-0.1998 -0.3999 0.2012 0.2983 1.2998 1.0953
(0.0233) (0.0359) (0.0250) (0.0374) (0.0390) (0.0347)

Auxiliary model

θ
(A)
a0 θ

(A)
a1 θ

(A)
b0 θ

(A)
b1 ν γ(A)

0.9

500
-0.2001 -0.4001 0.2007 0.2991 0.8548 0.5384
(0.0158) (0.0248) (0.0175) (0.0274) (0.0635) (0.0906)

1000
-0.2002 -0.4000 0.2005 0.2995 0.8546 0.5380
(0.0080) (0.0124) (0.0082) (0.0128) (0.0452) (0.0630)

1500
-0.2003 -0.3998 0.2002 0.2997 0.8558 0.5386
(0.0041) (0.0065) (0.0043) (0.0069) (0.0375) (0.0516)

1.3

500
-0.2036 -0.3936 0.1971 0.3062 1.5904 0.7465
(0.0584) (0.0864) (0.0586) (0.0889) (0.1731) ( 0.0940)

1000
-0.2006 -0.3986 0.2003 0.3006 1.5917 0.7542
(0.0319) (0.0483) (0.0329) (0.0505) (0.1160) (0.0668)

1500
-0.1998 -0.4009 0.2012 0.2983 1.5772 0.7487
(0.0232) (0.0344) (0.0250) (0.0374) (0.0947) (0.0540)

Table 7.5: Monte Carlo mean and standard error (in parentheses) for different sample sizes (T = 500, 1000, 1500) using
indirect estimators (model of interest and auxiliary model) assuming α = 0.9, 1.3 and β = 0, θa0 = −0.2, θa1 = −0.4, θb0 =
0.2, θb1 = 0.3, γ = 1.1 with known β from α-stable tvARMA(1,1) based on R = 1000 replications.

α T
Indirect estimates

θa0 θa1 θb0 θb1 α γ

0.9

500
kur 7.6335 11.2571 26.5658 21.7708 3.8779 3.4606
skw 0.5099 -0.1177 -1.2743 -0.1933 0.3693 0.3314

1000
kur 24.0671 18.3498 24.5761 16.6943 3.2849 3.2163
skw 1.2605 -0.4986 1.8389 -0.9324 0.1080 0.0874

1500
kur 6.3449 7.1998 6.3046 7.3008 3.0136 3.2006
skw -0.0312 -0.0450 0.1387 -0.0387 0.2148 0.1162

1.3

500
kur 5.2893 4.5345 6.0807 5.5860 3.0705 3.3815
skw 0.2593 -0.1945 -0.1951 0.1297 0.1406 0.2709

1000
kur 4.6288 4.1073 4.5984 4.1306 3.4796 2.9077
skw -0.1406 0.1144 0.0360 -0.0328 0.1167 -0.0713

1500
kur 4.9301 4.0790 5.1471 4.5091 3.1301 3.0701
skw 0.0236 -0.1964 0.0964 -0.2378 0.1004 0.0833

Table 7.6: Kurtosis and skewness of indirect estimates for different sample sizes (T = 500, 1000, 1500) assuming α = 0.9, 1.3
and β = 0, θa0 = −0.2, θa1 = −0.4, θb0 = 0.2, θb1 = 0.3, γ = 1.1 with known β from α-stable tvARMA(1,1) based on
R = 1000 replications.
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Figure 7.5: Density estimates of θa0, θa1, θb0, θb1, α and γ for different sample sizes based on
R = 1000 replications from α-stable tvARMA(1,1) with α = 0.9, β = 0, θa0 = −0.2, θa1 =
−0.4, θb0 = 0.2, θb1 = 0.3, γ = 1.1 using indirect inference.
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Figure 7.6: Density estimates of θa0, θa1, θb0, θb1, α and γ for different sample sizes based on
R = 1000 replications from α-stable tvARMA(1,1) with α = 1.3, β = 0, θa0 = −0.2, θa1 =
−0.4, θb0 = 0.2, θb1 = 0.3, γ = 1.1 using indirect inference.
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7.4 Application

In this section, we illustrate this methodology with the same time series presented in

Section 6.5. For the tree ring data presented in Section 6.5.1, we use indirect inference to

estimate the parameter (θ0, θ1, γ0, α, γ1) of the same structure of the tvAR(1) but letting

α unknown. We obtained two different indirect estimates assuming β = 0.98 and β = 0.

However, we report the case assuming β = 0 since β becomes irrelevant when α is close to

2 and both estimates are very similar. In Table 7.7, indirect estimates assuming β = 0 are

reported along with their Monte Carlo standard error estimated with R = 100 replications.

Similar results are obtained as in known α case.

Parameter θ0 θ1 α γ0 γ1

Indirect estimates -0.6364 -0.0851 1.9208 0.1241 -0.0228
Standard error (0.0507) (0.0859) (0.0391) (0.0074) (0.0119)

Table 7.7: Indirect estimates and Monte Carlo standard error of α−stable tvAR(1) with S = 100
from tree ring data.

On the other hand, for the wind data (Section 6.5.2) we use indirect inference to es-

timate the parameter (θa0, θa1, θb0, θb1, θc0, θc1, θd0, θd1, α, γ0, γ1) of the same structure of the

tvAR(4) but letting α unknown. The indirect inference was done by assuming symmetric

α-stable innovations, that is, β = 0. In Table 7.8, indirect estimates are reported along with

their Monte Carlo standard error estimated with R = 1000 replications. Similar results are

obtained as in known α case, i.e. α1(u) and α2(u) are constant, while α3(u), α4(u) and γ(u)

vary linearly in time.

Parameter Indirect estimate Standard error
θa0 -1.5434 0.0251
θa1 -0.0316 0.0426
θb0 0.9036 0.0442
θb1 0.1083 0.0764
θc0 -0.2818 0.0437
θc1 -0.2235 0.0752
θd0 0.0639 0.0246
θd1 0.1496 0.0412
α 1.3875 0.0528
γ0 0.0065 0.0005
γ1 0.0033 0.0010

Table 7.8: Indirect estimates of α−stable tvAR(4) with S = 40 from wind data.

In both applications, we can observe that the indirect estimates and their associated

MC standard error are very similar with the case assuming known α. Moreover, the indirect

estimation of α is very close to the case when α is estimated using residuals from the

Whittle blocked estimation (assuming finite variance). We also did the residual analysis of
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this case, but they are not presented here because the histogram and the stabilized p-p plot

are almost the same as the case when α is known. Moreover, the MAE indicates that the

α-stable assumption is better.



Chapter 8

tvARMA process with tempered

stable innovations

In the previous chapters, we studied locally stationary processes with stable innovations

and implemented the indirect estimation to this type of processes. This allows the possibility

of modeling time series that present locally stationarity with infinite variance behavior.

Although stable distribution presents attractive theoretical properties, such as the extremely

heavy tails and stability under linear combinations, the fact that moments of order greater

than two do not exist is a restrictive assumption in real-world applications. In this Chapter,

we study the tvARMA process with tempered stable innovations.

8.1 tvARMA process with tempered stable innova-

tions

Similarly to the α−stable tvARMA presented in Chapter 5, we study the tvARMA pro-

cess from (2.18) with i.i.d. tempered stable innovations. The system of difference equations

is defined by
p∑
j=0

αj

(
t

T

)
Xt−j,T =

q∑
k=0

βk

(
t

T

)
γ

(
t− k
T

)
εt−k. (8.1)

Here, we will assume that εt are i.i.d. and εt ∼ stdCTS(α, λ+, λ−) with α ∈ (0, 2) and

λ+, λ− > 0. Moreover, the regularity conditions in proposition 2.1 are assumed. In this way,

there exists a solution of the form

Xt,T =
∞∑
j=0

at,T (j)εt−j, (8.2)

which fullfills (2.6), (2.7) and (2.8) of Assumption 2.1.

The reason we implement standardized classical tempered stable innovations is that all

moments are finite and specifically it has zero mean and unit variance.

95
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8.2 Two-step estimation

In the case of α−stable tvARMA, the absence of second moment causes the difficulty

of estimating parameters using blocked Whittle estimators. In addition, simulation study

(Chapter 6 and 7) showed that this estimation method diverges in some cases. However, by

assuming tempered stable innovations, the innovations {εt} has zero mean and unit variance.

Consequently, the blocked Whittle estimates proposed by Dahlhaus (1997) can be used.

Formally, the parameter space can be separated in two sets, i.e. θ = (θ1, θ2) where

θ1 = (α, λ+, λ−) is the parameters related to the innovations and θ2 is the parameter vector

related to the locally stationary process. The natural candidate for estimating θ is using

(2.33). However, the difficulty arises because of the absence of tempered stable density

function. It involves numerical computation of the Fourier transform of the characteristic

function.

We propose a two-step parametric estimation in the following manner. Suppose that we

are interested in estimating θ by maximizing a likelihood function LT (θ1, θ2) such as (2.33).

In the first step, we obtain the blocked Whittle estimates θ̂2, which does not depends on θ1,

since for all different values of θ1, εt has zero mean and unit variance. In the second step,

we estimate θ1 by maximizing LT (θ1, θ̂2). Note that if θ2 is known, we can recursively obtain

εt and by assuming {εt}
iid∼ stdCTS(α, λ+, λ−), consistent maximum likelihood estimates

for θ1 are obtained (see Appendix A). This estimation procedure was also implemented in

GARCH model with tempered stable innovations by Kim et al. (2008).

Although θ̂2 is asymptotically consistent and normal, it has a bias θ̂2 − θ2. Here, we will

study the parametric estimation of θ using this method.

8.3 Simulation results

In this section, we carried out simulations in order to study the parameter estimation of

the model for α ∈ (0, 1) since this case the tempered stable distribution can be simulated

exactly (see Section 3.3.2).

The estimation procedure is done as follows. First, we performed the blocked Whittle

estimation presented in the Section 2.2.1 considering the suggestion of block size N = bT 0.8c
and shifting each block by Q = b0.2Nc time units from Dahlhaus and Giraitis (1998).

After θ̂2 are obtained, we fix θ2 = θ̂2 and then we estimate the parameters of stdCTS

distribution θ1. In the second stage, it is necessary to alter the original parameter space

Θ1 = (0, 2)×(0,∞)2 into Θ∗1 = (ε, 2−ε)×(ε,M)2 in order to guarantee the strong consistency

(see Appendix A). We set ε = 0.01 and M = 3.

We performed simulations for three scenarios of the tvARMA(1,1) model with stdCTS

innovations where the coefficients are linear functions α1 (u) = θa0 + θa1u, β1 (u) = θb0 +

θb1u, and γ (u) = γ. We carried out simulations for T = 500, 1000, 1500, 2000 and 3000

observations based on R = 1000 independent replications each scenario.
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The first scenario assumes (α, λ+, λ−, θa0, θa1, θb0, θb1, γ) = (0.2, 1, 1, 0.3,−0.3,−0.5, 0.4, 1.2).

In this case, the innovation distribution is symmetric and leptokurtic. The Monte Carlo

mean, standard error, kurtosis and skewness of estimates from the tvARMA(1,1) simula-

tion are reported in the Table 8.1 and 8.2 and the density estimates in Figures 8.1. All

blocked Whittle estimates behave as expected and seem to be Gaussian. On the other hand,

λ+ and λ− estimates behave appropriately, but their sample distribution is bimodal when

T = 500. Nevertheless, its behavior disappears when T increases. α estimator is biased for

small sample path, but its Monte Carlo mean approaches to the real value when T increases.

T α λ+ λ− θa0 θa1 θb0 θb1 γ

500
0.2989 0.9663 0.9698 0.3025 -0.3235 -0.4987 0.3768 1.1913

(0.2625) (0.2446) (0.2444) (0.2285) (0.5855) (0.2260) (0.5911) (0.0794)

1000
0.2693 0.9678 0.9673 0.3068 -0.3330 -0.4950 0.3686 1.1966

(0.1829) (0.1736) (0.1743) (0.1546) (0.3992) (0.1521) (0.3953) (0.0551)

1500
0.2355 0.9876 0.9857 0.2967 -0.3055 -0.5014 0.3952 1.1976

(0.1466) (0.1403) (0.1416) (0.1234) (0.3169) (0.1198) (0.3131) (0.0452)

2000
0.2340 0.9853 0.9851 0.2983 -0.2956 -0.5003 0.4005 1.1983

(0.1260) (0.1221) (0.1224) (0.1050) (0.2674) (0.1008) (0.2600) (0.0376)

3000
0.2207 0.9902 0.9901 0.2962 -0.2987 -0.5050 0.4062 1.1995

(0.1041) (0.1017) (0.1012) (0.0822) (0.2114) (0.0777) (0.2038) (0.0325)

Table 8.1: Monte Carlo mean and standard error (in parentheses) of two-step estimators for
different T sample sizes assuming α = 0.2, λ+ = 1, λ− = 1, θa0 = 0.3, θa1 = −0.3, θb0 = −0.5, θb1 =
0.4, γ = 1.2 from tvARMA(1,1) with stdCTS innovations based on R = 1000 replications.

T α λ+ λ− θa0 θa1 θb0 θb1 γ

500
kur 2.5468 2.3023 2.2717 3.2051 3.0259 3.2725 3.0547 2.9928
skw 0.6314 -0.2488 -0.2226 -0.0605 -0.0410 0.2343 0.1258 0.2158

1000
kur 2.5576 2.5213 2.4212 3.0045 3.3690 3.1830 3.2570 3.1912
skw 0.4032 -0.0530 -0.0642 -0.0286 -0.0834 0.0935 0.0511 0.1031

1500
kur 2.7362 2.6395 2.6459 2.9303 2.9114 2.8817 3.0034 3.0287
skw 0.3650 -0.1349 -0.1544 -0.0655 0.0483 0.1590 0.1257 0.0134

2000
kur 2.8761 2.7006 2.7478 2.9323 3.0834 3.1401 3.1718 3.1502
skw 0.2672 0.0307 -0.0320 0.0287 -0.0029 0.1037 0.1469 0.1542

3000
kur 2.7710 2.8416 2.7187 3.0465 3.2093 2.8993 3.2595 2.9748
skw 0.0477 0.2253 0.1790 -0.1514 0.0557 -0.0116 0.1697 0.1015

Table 8.2: Kurtosis and skewness of two-step estimators for different T sample sizes assuming
α = 0.2, λ+ = 1, λ− = 1, θa0 = 0.3, θa1 = −0.3, θb0 = −0.5, θb1 = 0.4, γ = 1.2 from tvARMA(1,1)
with stdCTS innovations based on R = 1000 replications.

The second scenario assumes (α, λ+, λ−, θa0, θa1, θb0, θb1, γ)=(0.3, 0.5, 1,−0.3, 0.8, 0.5,−0.1, 1)

and its innovation distribution is positively asymmetric and leptokurtic. The Monte Carlo

mean, standard error, kurtosis and skewness of estimates from the tvARMA(1,1) simulation

are reported in the Table 8.3 and 8.4 and the density estimates in Figures 8.2. First, we
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Figure 8.1: Density estimates of estimators for different T sample sizes based on R = 1000
replications from tvARMA with stdCTS innovations with α = 0.2, λ+ = 1, λ− = 1, θa0 = 0.3, θa1 =
−0.3, θb0 = −0.5, θb1 = 0.4, γ = 1.2.
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notice that all blocked Whittle estimates behave appropriately, as the previous scenario.

For θ1, similar Monte Carlos mean and standard error are presented. However, the kurtosis

and skewness are far from the Gaussian case. We conclude that the simulation agree to the

theoretical result (strong consistency), but we cannot guarantee the asymptotic normality

of the estimators.

T α λ+ λ− θa0 θa1 θb0 θb1 γ

500
0.3732 0.5160 1.0100 -0.2686 0.7138 0.5245 -0.1753 0.9891

(0.1679) (0.1647) (0.1796) (0.2711) (0.7640) (0.2520) (0.7377) (0.1043)

1000
0.3612 0.4948 0.9888 -0.2931 0.7927 0.5012 -0.1017 0.9983

(0.1077) (0.1266) (0.1226) (0.1751) (0.5234) (0.1652) (0.5056) (0.0725)

1500
0.3464 0.4867 0.9908 -0.2908 0.7709 0.5074 -0.1267 0.9977

(0.0842) (0.0732) (0.0887) (0.1429) (0.4266) (0.1368) (0.4171) (0.0565)

2000
0.3318 0.4930 0.9944 -0.2934 0.7843 0.5048 -0.1152 1.0004

(0.0769) (0.0678) (0.0814) (0.1153) (0.3437) (0.1076) (0.3295) (0.0520)

3000
0.3193 0.4951 0.9982 -0.2931 0.7854 0.5053 -0.1141 0.9995

(0.0721) (0.0594) (0.0726) (0.0928) (0.2755) (0.0850) (0.2618) (0.0431)

Table 8.3: Monte Carlo mean and standard error (in parentheses) of two-step estimators for
different T sample sizes assuming α = 0.3, λ+ = 0.5, λ− = 1, θa0 = −0.3, θa1 = 0.8, θb0 = 0.5, θb1 =
−0.1, γ = 1 from tvARMA(1,1) with stdCTS innovations based on R = 1000 replications.

T α λ+ λ− θa0 θa1 θb0 θb1 γ

500
kur 6.6391 9.5239 6.1957 3.1675 3.2482 3.4967 3.5037 3.9955
skw 0.4994 1.5074 -0.0480 0.0972 -0.3716 -0.2039 -0.4640 0.5446

1000
kur 3.1408 27.3207 11.0789 3.0195 3.2693 3.2417 3.3428 3.3931
skw -0.1212 3.5038 -0.7241 0.0318 -0.2118 -0.2340 -0.2320 0.3512

1500
kur 3.5276 17.6460 3.1597 3.4821 3.9615 3.8693 4.2494 3.0668
skw -0.1706 1.8607 0.1045 -0.0142 -0.4793 -0.2568 -0.5146 0.2863

2000
kur 4.7877 16.2723 3.7344 3.2455 3.3039 3.2883 3.3466 3.3949
skw -0.5666 1.8473 0.4418 0.0362 -0.0351 -0.0549 -0.0675 0.2757

3000
kur 5.9832 7.1008 4.8855 3.0839 3.2296 3.0412 3.3390 3.2774
skw -0.9616 1.2562 0.6662 0.0384 -0.2878 -0.0336 -0.3403 0.2919

Table 8.4: Kurtosis and skewness of two-step estimators for different T sample sizes assuming
α = 0.3, λ+ = 0.5, λ− = 1, θa0 = −0.3, θa1 = 0.8, θb0 = 0.5, θb1 = −0.1, γ = 1 from tvARMA(1,1)
with stdCTS innovations based on R = 1000 replications.

Finally, the third scenario assumes (α, λ+, λ−, θa0, θa1, θb0, θb1, γ) = (0.7, 1, 0.5, 0.3,−0.3,

−0.5, 0.4, 1.2). This process has innovation with α = 0.7 which is less leptokurtic and asym-

metric. The Monte Carlo mean, standard error, kurtosis and skewness of estimates from the

tvARMA(1,1) simulation are reported in the Table 8.5 and 8.6 and the density estimates

in Figures 8.3. In this case, we notice again that the blocked Whittle estimates perform as

expected. For θ1, we notice that the estimates behave closer to the Gaussian case although

the innovation distribution is asymmetric. We conjecture that it is because α is higher than

the previous scenario.
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Figure 8.2: Density estimates of estimators for different T sample sizes based on R = 1000 repli-
cations from tvARMA with stdCTS innovations with α = 0.3, λ+ = 0.5, λ− = 1, θa0 = −0.3, θa1 =
0.8, θb0 = 0.5, θb1 = −0.1, γ = 1.
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T α λ+ λ− θa0 θa1 θb0 θb1 γ

500
0.6762 1.0782 0.5675 0.3054 -0.3306 -0.4984 0.3784 1.1857

(0.2930) (0.2935) (0.2463) (0.2269) (0.5777) (0.2198) (0.5724) (0.1020)

1000
0.6935 1.0298 0.5247 0.3025 -0.3058 -0.4954 0.3863 1.1953

(0.1983) (0.1947) (0.1604) (0.1491) (0.3818) (0.1476) (0.3797) (0.0700)

1500
0.7040 1.0094 0.5106 0.2972 -0.2978 -0.5049 0.4026 1.1996

(0.1598) (0.1554) (0.1302) (0.1187) (0.3049) (0.1177) (0.3015) (0.0561)

2000
0.7007 1.0091 0.5089 0.3006 -0.3103 -0.4962 0.3843 1.1989

(0.1439) (0.1377) (0.1160) (0.1083) (0.2739) (0.1008) (0.2594) (0.0517)

3000
0.6996 1.0071 0.5064 0.2979 -0.2976 -0.5010 0.4005 1.1972

(0.1144) (0.1104) (0.0922) (0.0770) (0.2053) (0.0758) (0.2035) (0.0402)

Table 8.5: Monte Carlo mean and standard error (in parentheses) of two-step estimators for dif-
ferent T sample sizes assuming α = 0.7, λ+ = 1, λ− = 0.5, θa0 = 0.3, θa1 = −0.3, θb0 = −0.5, θb1 =
0.4, γ = 1.2 from tvARMA(1,1) with stdCTS innovations based on R = 1000 replications.

T α λ+ λ− θa0 θa1 θb0 θb1 γ

500
kur 2.6833 3.0095 3.1353 2.9216 3.1001 3.1375 3.4460 3.7251
skw -0.5157 0.3563 0.7647 0.0513 -0.1086 0.2629 0.0768 0.6667

1000
kur 3.2161 3.0973 3.4723 2.9338 3.0667 2.9823 2.9215 2.8907
skw -0.3283 0.3894 0.6380 -0.1271 -0.0667 0.1997 -0.0237 0.3053

1500
kur 3.1654 3.1584 3.4874 3.0103 3.1361 2.9630 3.0521 3.0971
skw -0.3203 0.4250 0.5738 -0.0419 -0.0312 0.0873 0.0880 0.1313

2000
kur 3.1776 2.9805 3.3796 2.8149 2.9761 3.0181 3.0578 3.2647
skw -0.2914 0.2486 0.4563 -0.0226 0.0241 0.1353 0.0365 0.2892

3000
kur 3.4588 3.2988 3.5399 3.0361 3.2010 2.9095 2.8987 3.2337
skw -0.3294 0.2599 0.4583 0.0719 -0.0601 0.0808 0.0618 0.0516

Table 8.6: Kurtosis and skewness of two-step estimators for different T sample sizes assuming
α = 0.7, λ+ = 1, λ− = 0.5, θa0 = 0.3, θa1 = −0.3, θb0 = −0.5, θb1 = 0.4, γ = 1.2 from tvARMA(1,1)
with stdCTS innovations based on R = 1000 replications.
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Figure 8.3: Density estimates of estimators for different T sample size based on R = 1000 repli-
cations from tvARMA with stdCTS innovations with α = 0.7, λ+ = 1, λ− = 0.5, θa0 = 0.3, θa1 =
−0.3, θb0 = −0.5, θb1 = 0.4, γ = 1.2.
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8.4 Application

In this section, we continue with the application of wind data (Section 6.5.2). By as-

suming tempered stable innovations, the first step estimation procedure to estimate the

time-varying structure of the model is using the Blocked Whittle estimation and it is pre-

sented in Table 6.10. The second step of tempered stable parameter estimation is done by

maximum likelihood estimation and we obtain θ̂1 = (α̂, λ̂+, λ̂−) = (0.5017, 0.6702, 0.6798).

The disadvantage of this method is the difficulty of compute standard error of estimates.

The only property from independent and identically distributed sample from tempered sta-

ble distribution is the strong consistency. Hence, we performed parametric Bootstrapping

with R = 1000 replications to recover the standard error of estimates. The results are pre-

sented in Table 8.7. It is interesting to see that the bootstrapping standard errors and the

asymptotic standard error estimated using Blocked Whittle estimator (see Table 6.10) are

very similar. Finally, Figure 8.4 shows the histogram of the residuals from the model with

3 different assumptions (normal, stable and tempered stable innovations). It is clear to see

that the tempered stable innovations assumption is slightly better.

Parameter Estimate Standard error
α 0.5017 0.1600
λ+ 0.6702 0.1411
λ− 0.6798 0.1408
θa0 -1.5985 0.0771
θa1 0.3305 0.1356
θb0 0.9135 0.1379
θb1 0.0207 0.2351
θc0 -0.0585 0.1394
θc1 -0.7153 0.2383
θd0 -0.1316 0.0770
θd1 0.5454 0.1346
γ0 0.0077 0.0015
γ1 0.0152 0.0032

Table 8.7: two-step estimates of tvAR(4) with tempered stable innovations from wind power time
series.
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Chapter 9

Conclusions

In this thesis, we focused on two specific approaches on the locally stationary processes

with heavy-tailed innovation. First, we studied α−stable locally stationary ARMA processes

and presented their properties. In contrast to the locally stationary processes with finite sec-

ond moments, this type of processes involves the infinite variance phenomenon observed in

different fields of study. Since the α-stable family of distributions, as a generalization of the

Gaussian distribution, is closed under linear combinations which includes the possibility of

handling asymmetry and thicker tails, the proposed model presents the same tail behavior,

which is characterized by the index of stability, throughout the time. We also proposed an

indirect inference method for the process with parametric time-varying coefficients. Specif-

ically, we performed simulations for some basic models with linear parametric coefficients

for known and unkown α. The results show that indirect inference is unbiased and suggest

consistency. Thus, we conclude that the estimation methodology is satisfactory.

Then, we studied the locally stationary process with tempered stable innovations. In this

case, the process presents less attractive properties because it is not closed under linear com-

binations. However, since its moments of all orders are finite, time series models involving

tempered stable innovations can be estimated using traditional methods with weakly sta-

tionary assumption. We concentrate in the standardized tempered stable innovation, so that

a two-step estimation can be performed. In the first step, the blocked Whittle estimation

can be used to estimate the time-varying structure of the process. In the second step, by

assuming independent innovations, recovering from residuals of the model, consistent esti-

mation related to the tempered stable distribution can be obtained by maximum likelihood

estimation. Simulations were done to study the properties of the estimators. As expected,

blocked Whittle estimates (first step) behave approximately Gaussian. In the second step,

nevertheless, we notice that for small α, estimates seem to be biased for small time series

length, but they approximate to the real parameter when time series length increases. That

is, theoretical result (strong consistency) is satisfied, but we cannot guarantee the asymptotic

normality of the estimators.

There are some limitations that still need to be solved and they remain as future re-

105



106 CONCLUSIONS

search. In the stable innovation case, since the time-varying spectral representation does not

exist, identifying the local structure using traditional methods (autocorrelation and partial

autocorrelation) or using blocked smooth periodogram are informal ways to identify the time-

varying structure. One possibility is to explore the local version of the dependence measure

called autocovariation (Kokoszka and Taqqu, 1994). Next, the indirect inference simulation

is performed by assuming known time-varying linear structure throughout the time. Sec-

ond, the simulation study does not reach to more complex structure and the possibility of

non-parametric estimation. In this case, it is reasonable to consider periodic time struc-

ture. Third, the indirect inference is more time-consuming since it involves simulation-based

estimation, but they are appropriate when heavy-tailed innovations are present. Fourth,

asymptotic properties of the indirect estimates are unknown. Simulations suggest that when

α is close to 2, Gaussian innovations can be assumed and thus, blocked Whittle estimation

can be used. Issues related to model selection are still an open question. Also, there is few

work about the prediction of locally stationary process.

In the tempered stable innovation case, all the traditional methods with weakly stationary

condition can be used (identification of time varying structure using autocorrelation, partial

autocorrelation and blocked smooth periodogram) since the second moments exist. However,

the properties of the process are unknown and alternative estimation methods are still

unexplored. Finally, it is important to explore methodologies in order to distinguish between

heavy-tailed and semi-heavy-tailed residuals.



Appendix A

Maximum likelihood estimation of

standardized classical tempered stable

distribution

In this section, we present the strong consistency of the maximum likelihood estimator

(MLE) from independent and identically distributed standardized classical tempered stable

random sample. It is well known that the traditional conditions for the consistency are based

on the probability density function. However, Grabchak (2016b) proposed conditions based

on properties of the Lévy triplet. First, we briefly review background about infinitely divis-

ible distribution and selfdecomposable distribution (for more detail see Cont and Tankov

, 2015; Grabchak, 2016a). Second, we check the conditions for the consistency of MLE from

standardized classical tempered stable distribution. Finally, some simulations are performed.

A.1 Background

An infinitely divisible distribution ν has a characteristic function of the form

ν̂(z) = exp

{
−1

2
a2z2 + ibz +

∫
R

(
eizx − 1− izx1|x|≤1

)
M(dx)

}
, z ∈ R, (A.1)

where a ≥ 0 is called the Gaussian part, b ∈ R is the shift, and M is the Lévy measure

satisfying

M({0}) = 0 and

∫
R
(1 ∧ |x|2)M(dx) <∞. (A.2)

The Lévy triplet (a, b,M) uniquely determines the distribution and it is denoted by ν ∼
ID(a, b,M).

A probability measure µ is selfdecomposable if and only if µ = ID(a, b,M), where

M(dx) =
g(x)

|x|
dx, (A.3)
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for a function that is increasing on (−∞, 0) and decreasing on (0,∞). In this case, the triplet

(a, b, g) uniquely determines the distribution µ and it is denoted µ ∼ SD(a, b, g). In general,

the parametric class is considered, that is, let Θ ∈ Rd the parameter space and {µθ : θ ∈ Θ}
be the family of selfdecomposable distributions with µθ ∼ SD(aθ, bθ, gθ).

If X ∼ CTS(α, λ+, λ−, C+, C−, µ) with characteristic function defined in (3.24), then

θ = (α, λ+, λ−, C+, C−, µ) and X ∼ SD(0, bθ, gθ) with

gθ(x) = C−|x|−αe−|x|λ−1x<0 + C+|x|−αe−|x|λ+1x>0, (A.4)

and

bθ = µ−
∫ ∞

1

[gθ(x)− gθ(−x)] dx. (A.5)

Finally, the stdCTS distribution is SD since it is a special case of CTS distribution.

A.2 Maximum likelihood estimation

Let X1, X2, ...,
iid∼ µθ0 for some θ0 ∈ Θ. The MLE based on the observations X1, X2, ..., Xn

is given by

θ̂MLE
n = argmax

θ∈Θ

n∏
i=1

fθ(Xi), (A.6)

where fθ is the density function of µθ and
∏n

i=1 fθ(Xi) is the likelihood function. In the

following, the conditions for the strong consistency of MLE are stated.

(A1) The parameter space Θ is a closed set.

(A2) If θ, θ′ ∈ Θ, aθ = aθ′ , bθ = bθ′ and gθ(x) = aθ′(x) for Lebesgue almost every x then

θ = θ′.

(A3) If lim
i→∞

θi = θ then µθi
d−→ µθ.

(A4) For every θ ∈ Θ ∫
|x|>1

gθ(x)
log |x|
|x|

dx <∞. (A.7)

(A5) We can write Θ = Θ1 ∪Θ2 ∪Θ3 such that

inf
θ∈Θ1

aθ > 0, (A.8)

lim
x→0

inf
θ∈Θ2

[gθ(x) + gθ(−x)] > 1, (A.9)

and there exists a β ∈ [0, 2) and c > 0 such that for any δ ∈ [0, 1]

inf
θ∈Θ3

∫ δ

0

x [gθ(x) + gθ(−x)] dx ≥ cδβ. (A.10)
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(A6) If {θ′i} is a sequence in Θ with |θi| → ∞ then every subsequence has a further subse-

quence {θi} such that either there exists an x0 > 0 with

lim
i→∞

[aθi + gθi(x0) + gθi(−x0)] =∞ (A.11)

or there exists a β ∈ [0, 2) and a sequence {ci} such that ci →∞ and for any δ ∈ [0, 1]∫ δ

0

x [gθi(x) + gθi(−x)] ≥ ciδ
β. (A.12)

Theorem A.1. If (A1)- (A6) hold then θ̂MLE
n → θ0 with probability 1.

Grabchak (2016b) showed the MLE is strongly consistent for several classes of stable,

tempered stable and others distributions with some modification in the parameter space due

to the fact that it has to be close. In the following, we prove that the stdCTS distribution

satisfies these conditions.

Let X ∼ stdCTS(α, λ+, λ−) with θ = (α, λ+, λ−). It is easy to see from (A.4) and (A.5)

that X ∼ SD(0, bθ, gθ) with

gθ(x) = C
[
|x|−αe−|x|λ−1x<0 + |x|−αe−|x|λ+1x>0

]
, (A.13)

and

bθ = µ−
∫ ∞

1

[gθ(x)− gθ(−x)] dx, (A.14)

where C = Cα,λ+,λ− = 1

Γ(2−α)(λα−2
+ +λα−2

− )
from (3.29).

We consider the restricted parameter space Θ = (ε, 2 − ε) × (ε,M)2 where ε ∈ (0, 0.5)

and M > 1 in order to guarantee the conditions for strongly consistent MLE. Since the Θ is

a compact set, then (A1) and (A6) hold (see Grabchak, 2016b). (A2) can be easily verified

and (A3) holds from the Proposition 3.1 in Küchler and Tappe (2013). To see that (A4)

holds, let θ ∈ Θ,∫
|x|>1

gθ(x)
log |x|
|x|

dx = C

[∫ ∞
1

e−xλ− log x

x1+α
dx+

∫ ∞
1

e−xλ+ log x

x1+α
dx

]
≤ C

[
e−λ−

∫ ∞
1

log x

x1+α
dx+ e−λ+

∫ ∞
1

log x

x1+α
dx

]
≤ C

α2

(
e−λ− + e−λ+

)
≤ C

ε2
(
e−ε + e−ε

)
<∞.

(A.15)

Finally, to show (A5) notice that

gθ(x)− gθ(−x) = C
[
(−x)−α

(
exλ− + exλ+

)
1x<0 + (x)−α

(
e−xλ− + e−xλ+

)
1x>0

]
. (A.16)
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Consider 0 < x < 1,

inf
θ∈Θ

gθ(x)− gθ(−x) = inf
θ∈Θ

1

Γ(2− α)
(
λα−2

+ + λα−2
−
)x−α (e−xλ− + e−xλ+

)
=

1

2Γ(ε)M2−εx
−ε (e−xM + e−xM

)
=

1

Γ(ε)M2−εxεexM
.

(A.17)

Then,

lim
x→0+

inf
θ∈Θ

gθ(x)− gθ(−x) =
1

Γ(ε)M2−ε lim
x→0+

1

xεexM
=∞ > 1. (A.18)

Similarly for x < 0, the same result is obtained.

lim
x→0−

inf
θ∈Θ

gθ(x)− gθ(−x) =∞ > 1. (A.19)

A.3 Simulation

This section presents the Monte Carlo simulation in order to investigate the properties

of MLE from finite sample. We concentrate the case when α ∈ (0, 1) due to the fact that the

CTS random variable can be generated exactly through acceptance-rejection sampling (see

Kawai and Masuda, 2011). Here, we present results of the scenario with θ = (α, λ+, λ−) =

(0.4, 0.5, 1.5) for T = 500, 1000 and 1500 independent observations based on R = 1000

replications. Some other scenario were carried out and similar results were obtained.

Table A.1 reports the Monte Carlo mean, standard error, kurtosis and skewness of MLE.

The estimates are likely to be biased for small sample, but it seems to be asymptotically un-

biased since they are strongly consistent (see Section A.2). Moreover, kurtosis and skewness

are similar to the Gaussian distribution.

T α λ+ λ−

500

Mean 0.3853 0.5128 1.5112
Std. Dev. 0.1540 0.1054 0.1289
kurtosis 2.8294 3.0112 3.7146
skewness -0.0153 0.3819 0.1773

1000

Mean 0.3898 0.5069 1.5083
Std. Dev. 0.1007 0.0706 0.0893
kurtosis 3.0356 3.7443 3.6659
skewness -0.2467 0.5931 0.1177

1500

Mean 0.3932 0.5041 1.5077
Std. Dev. 0.0830 0.0568 0.0732
kurtosis 3.0767 3.0755 3.1715
skewness 0.0438 0.1893 0.1301

Table A.1: Monte Carlo mean, standard error, kurtosis and skewness for maximum likelihood
estimates of independent stdCTS sample with α = 0.4, λ+ = 0.5, λ− = 1.5.

Finally, Figures A.1, A.2, A.3 and A.4 show the density estimates, histogram and QQ-

plot of each estimated parameter. They show satisfactory results and close to Gaussian

distribution.
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Figure A.1: Density estimates of maximum likelihood estimates for different sample size based on
R = 1000 replications from stdCTS distribution with α = 0.4, λ+ = 0.5, λ− = 1.5.
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Figure A.2: Histogram and QQ-plot of maximum likelihood estimates for T = 500 based on
R = 1000 replications from stdCTS distribution with α = 0.4, λ+ = 0.5, λ− = 1.5.
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Figure A.3: Histogram and QQ-plot of maximum likelihood estimates for T = 1000 based on
R = 1000 replications from stdCTS distribution with α = 0.4, λ+ = 0.5, λ− = 1.5.
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Figure A.4: Histogram and QQ-plot of maximum likelihood estimates for T = 1500 based on
R = 1000 replications from stdCTS distribution with α = 0.4, λ+ = 0.5, λ− = 1.5.
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