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Abstract

In this thesis we investigate several extremal problems in graphs and hypergraphs.
In graphs we study generalized Turán Problems in simple graphs and in planar graphs.
In hypergraphs we study Turán numbers of Berge Graphs and the Ramsey numbers of
certain families. The thesis is divided in five chapters.

In the first chapter the background needed on the different chapters is presented:
Graph Theory, Planar Graphs, Extremal Graph Theory, Generalized Turán Numbers
and Ramsey Theory.

In the second chapter we count the number of paths in a graph that does not contain
a longer path, we find asymptotic and exact results in some cases. We also consider
other structures like stars and the set of cycles of length at least k, where we derive
asymptotically sharp estimates. Our results generalize well-known extremal theorems of
Erdős and Gallai. These results are based on the paper “The maximum number of P`
copies in Pk-free graphs” co-authored with Ervin Győri, Nika Salia and Casey Tompkins.

In the third chapter we consider a generalized Turán problem in planar graphs. Hakimi
and Schmeichel considered the problem of maximizing the number of cycles of a given
length in an n-vertex planar graph. They precisely determined the maximum number of
triangles and 4-cycles and presented a conjecture for the maximum number of pentagons.
We confirm their conjecture. Even more, we characterize the n-vertex, planar graphs with
the maximum number of pentagons. These results are based on the paper “The Maximum
Number of Pentagons in a Planar Graph” co-authored with Ervin Győri, Adissu Paulos,
Nika Salia and Casey Tompkins.

In the fourth chapter we consider variants of a classical conjecture of Erdős and Sós,
which asks to determine the Turán number of a tree. We study this problem in the settings
of hypergraphs and multi-hypergraphs. In particular, for all k and r, with r ≥ k(k − 2),

we show that any r-uniform hypergraph H with more than n(k−1)
r+1

hyperedges contains a
Berge copy of any tree with k edges different from the k-edge star. This bound is sharp
when r + 1 divides n and for such values of n we determine the extremal hypergraphs.
These results are based on the paper “Turán numbers of Berge trees” co-authored with
Ervin Győri, Nika Salia and Casey Tompkins.

In the fifth chapter we study Ramsey numbers of hypergraphs. In particular, we show
that R3(BKs, BKt) = s + t − 3 for s, t ≥ 4 and max{s, t} ≥ 5 where BKn is a Berge-
Kn hypergraph. For higher uniformity, we show that R4(BKt, BKt) = t + 1 for t ≥ 6
and Rk(BKt, BKt) = t for k ≥ 5 and t sufficiently large. We also investigate the Ram-
sey number of trace hypergraphs, suspension hypergraphs and expansion hypergraphs.
These results are based on the paper “Ramsey numbers of Berge-hypergraphs and related
structures” co-authored with Nika Salia, Casey Tompkins and Zhiyu Wang.
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Chapter 1

Introduction

1.1 Graph Theory

A graph G = (V (G), E(G)) is a pair of sets, where V (G) is a non-empty finite set, called
the vertex set of G and E is a subset of {{u, v} : u, v ∈ V, u 6= v}, called the vertex set
edge set of G. We denote the size of this sets by v(G) = |V (G)| and e(G) = {E(G)} the
number of vertices and the number of edges of the graph.

If v, u ∈ V are vertices such that {u, v} ∈ E, we say that u and v are adjacent, we say
that the edge {u, v} is incident with the vertices u and y. Given a set S ⊆ V and an edge
e, we say that e is incident with S if at least one of the vertices e is incident with it in S.
Given v ∈ V , we define the neighborhood of v to be the set N(v) := {u ∈ V : {v, u} ∈ E},
and we define the degree of v as the number dG(v) = |N(v)|, when the base graph is clear
we simply denote the degree of v as d(v). For a graph G we denote by δ(G) its minimum
degree, that is the smallest possible value of d(v) among the vertices of V .

Theorem 1.1. For any graph G we have the identity∑
v∈V (G)

d(v) = 2e(G).

Definition 1.2. For a graph G, we denote by d(G) the average degree of G, that is

d(G) = 2e(G)
v(G)

.

Lemma 1.3. Any non-empty graph G contains a subgraph G′ with minimum degree
greater than d(G)/2.

The previous lemma is a well-known result in graph theory, which can be proved using
the following lemma.

Lemma 1.4. Let G be a graph and V ′ ⊆ V , if V ′ is incident with at most d(G)
2
|V ′| edges,

then d(G[V \ V ′]) ≥ d(G).

A graph F is called a subgraph of G if V (F ) ⊆ V (G) and E(F ) ⊆ E(G). Given a
set S ⊆ V (G), we denote by G[S] the induced subgraph of G with vertex set S. A set
is called independent if the graph induced by S has no edges. The independence number
α(G) denotes the maximum size of an independent set in G.
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Let F and G be graphs. If f : V (F ) → V (G) is an injective function, such that, for
any x, y ∈ V (F ) if {x, y} ∈ E(F ) then {f(x), f(y)} ∈ E(G), then we call the subgraph
(f(V (F )), f(E(F )) of G a copy of F . We say that G is F -free if here is no copy of F in
G. We denote by N (F,G) the number of copies of F in G.

Definition 1.5. A path in a graph is a sequence of distinct vertices v1, v2, . . . , vt+1 such
that vi and vi+1 are adjacent for every i = 1, 2, . . . , t. The vertices x1 and xt+1 are referred
to as terminal vertices, and the remaining vertices are referred to as internal vertices.

Definition 1.6. A graph is connected if for every pair of vertices u, v there is a path
starting from u and ending in v.

Definition 1.7. A cycle is a sequence v1, v2, . . . , vk−1, vk = v1 where vi and vi+1 are
adjacent for i = 1, 2, . . . , k − 1 and vi is distinct to vj for any 1 ≤ i < j ≤ k − 1.

Definition 1.8. A connected graph which has no cycles is called a tree.

Theorem 1.9. A connected graph G is a tree if and only if e(G) = v(G)− 1.

We denote by Pk the path on k edges, by Ck the cycle on k vertices, and by Kr the
complete graph on r vertices, that is, Kr is a graph on r vertices such that every pair of
vertices is adjacent.

Definition 1.10. A graph G is a bipartite graph if V (G) can be partitioned into two color
classes X and Y such that every edge of G contains precisely one vertex of each class.

We denote by Ks,t the complete bipartite graph with color classes of X and Y , with
|X| = s, |Y | = t and x is adjacent to y for every pair of vertices x ∈ X, y ∈ Y .

Definition 1.11. A matching in a graph is a set of disjoint edges.

An important result about matching in bipartite graphs is given by a Theorem of
Hall [54].

Theorem 1.12 (Hall [54]). Let G be a bipartite graph with color classes X and Y . If
|N(S)| ≥ |S| for every S ⊆ X, then there exists a matching in G that covers every vertex
of X.

Corollary 1.13. Let G be a bipartite graph with color classes X and Y . If there exists a
number k such that d(x) ≥ k for every x ∈ X and d(y) ≤ k for every y ∈ Y , then there
exists a matching that covers every vertex of X.

One important and classical result in extremal graph theory is Dirac’s Theorem [15].

Theorem 1.14 (Dirac [15]). Let n ≥ 3 and G be an n-vertex graph. If δ(G) ≥ n
2
, then

G contains an n-vertex cycle. i.e. a Hamiltonian cycle.
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1.2 Planar Graphs

A graph is said to be planar, if it can be drawn in the plane so that its edges intersect
only at their ends. Such a drawing of a planar graph G is called a planar embedding of
G.

Let C = x1, x2, . . . xk, x1 be a cycle in G, then C is said to separate vertices y, z ∈ V (G)
in a planar embedding of G if one of y or z is in the interior of the curve formed by
embedding of the cycle and the other one is in the exterior.

One of the most basic results in planar graphs is Euler’s Formula.

Theorem 1.15. If G is a connected planar graph, then

v(G)− e(G) + f = 2,

where f is the number of faces the planes is divided into in a planar embedding of G.

From Euler’s formula we obtain three important corollaries.

Corollary 1.16. Every planar embedding of a planar graph has the same number of faces.

Corollary 1.17. If G is a planar graph with n ≥ 3 vertices, then e(G) ≤ 3n− 6.

An n-vertex planar graph G has 3n− 6 edges if and only if in any planar embedding
every face of G is a triangle, and so an n-vertex planar graph with 3n− 6 edges is called
a triangulation. A planar graph G is called maximal if it is not possible to add an extra
edge to G and preserve the planarity. Moreover, if an n-vertex graph has less than 3n−6
edges, then it is always possible to add another edge while keeping the graph planar.
Hence the maximal planar graphs are precisely the triangulations.

Corollary 1.18. If G is a planar graph, then δ(G) ≤ 5.

It is known that K5 and K3,3 are not planar graphs, and therefore, a graph G can
only be planar if it is K5-free and K3,3-free.

Theorem 1.19 (Kuratowski [61]). A graph G is planar if and only if G does not contain
a subdivision of K5 or K3,3 as a subgraph.

For a given graph G, if e = {v, u} is an edge of G, then the contraction of the edge e
in G is the graph obtained from G by replacing the two vertices {v, u} with a new vertex
w and replacing the edges of the form {v, x} and {y, u} with the edges {w, x} and {y, w}
taking the new edges without multiplicity.

1.3 Extremal Graph Theory

Turán-type problems ask to determine the extremal values of a graph property in a family
of graphs. One of the first results is due to Mantel [69].

Theorem 1.20 (Mantel [69]). The maximum number of edges in an n-vertex triangle-free
graph is bn2

4
c. Furthermore, the only triangle-free graph with bn2

4
c edges is the complete

bipartite graph Kbn
2
c,dn

2
e.
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A generalization of this result by Turán [83], is in fact what started the study of the
extremal numbers, also known as Turán numbers. One of the main problems in extremal
graph theory is to determine for a given graph H (or family of graphs) the Turán number
ex(n,H), which denotes the maximum number of edges an H-free graph on n vertices.

For a graph G, the chromatic number χ(G) is the minimum number of colors needed
to color the vertex set of G so that every pair of adjacent vertices has a different color
assigned. It turns out that the chromatic number is a decisive factor in the asymptotic
behavior of the Turán number.

Theorem 1.21 (Erdős-Stone-Simonovits [24, 25]). For a graph H, we have

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2).

In particular, Theorem 1.21 implies that the asymptotic value of ex(n,H) is deter-
mined, when χ(H) ≥ 3, while this Theorem only says that ex(n,H) = o(n2) when
χ(H) = 2, that is if H is bipartite.

Kővári, Sós and Turán [60] considered the case when the forbidden graph is the
complete bipartite graph Ks,t.

Theorem 1.22 (Kővári-Sós-Turán [60]). For any natural numbers s and t, there exists
a constant c such that

ex(n,Ks,t) ≤ cn2−1/s.

Another problem that has been studied is the Turán number of cycles.

Theorem 1.23 (Erdős [21], Bondy-Simonovits [10]). For every integer k, there exists
constants ck and dk such that

ckn
1+ 1

2k−1 ≤ ex(n,C2k) ≤ dkn
1+ 1

k .

As a consequence of Lemma 1.3 it follows that for a given tree T with k edges,
ex(n, T ) ≤ n(k − 1). This fact together with the previous theorem imply that ex(n,H) =
O(n) if and only if H is a tree. For a path Erdős and Gallai [23] proved the following
result

Theorem 1.24 (Erdős–Gallai [23]). For all n ≥ k,

ex(n, Pk) ≤
(k − 1)n

2
.

Moreover, equality holds if and only if k divides n and G is the disjoint union of cliques
of size k.

In their paper, Erdős and Gallai deduced Theorem 1.24 as a corollary of the following
result about graphs with no long cycles.

Theorem 1.25 (Erdős–Gallai [23]). For all n ≥ k, for C≥k the family of cycles of length
at least k, we have

ex(n,C≥k) ≤
(k − 1)(n− 1)

2
.

Moreover, equality holds if and only if k − 2 divides n − 1 and G is a connected graph
such that every block of G is a clique of size k − 1.

10



Erdős and Sós [22] conjectured that the extremal number of any tree should be the
same as the path, a conjecture that at this moment has only been proven for special
families of trees.

Conjecture 1.26 (Erdős-Sós [22]). Let T be a fix tree on k edges, then

ex(n, T ) ≤ n(k − 1)

2
.

Extremal problems have also been considered for host graphs other than Kn. Exam-
ples include the Zarankiewicz problem where the host graph is taken to be a complete
bipartite graph, or extremal problems on the hypercube Qn initiated by Erdős [19]. More
recently, extremal problems have been considered where the host graph is taken to be a
planar graph. For a given graph F , let us denote the maximum number of edges in an
n-vertex F -free planar graph by exP(n, F ) (note that if F is the family of K3,3 and K5

subdivisions we have by Theorem 1.19 that exP(n, F ) = ex(n,F ∪ {F})).
This topic was initiated by Dowden in [16] who determined exP(n,C4) and exP(n,C5).

A variety of other forbidden graphs F including stars, wheels and fans were considered
by Lan, Shi and Song [63]. The case of theta graphs was considered in Lan, Shi and
Song [64], and the case of short paths was considered by Lan and Shi in [62].

1.4 Generalized Turán Numbers

A generalized version of the Turán problem has been also studied. One problem solved
by Erdős [18] (also by Zykov [86]), was to instead of determining the maximum number
of edges in a Kt-free, to determine the maximum possible number of copies of Ks for a
give s < t.

It is natural to consider what happens if instead of counting edges, we count copies
of another graph. Alon and Shikhelman [3] recently initiated a systematic approach to
this kind of problem; they introduced the notation ex(n, T,H) to denote the maximum
number of copies of a given graph T among H-free graphs with n vertices. Another
problem considered by Erdős was to determine the maximum number of pentagons in a
triangle free graph, ex(n,C5, C3).

Conjecture 1.27 (Erdős [18]). For a positive integer n, we have that

ex(n,C5, C3) ≤ (n/5)5

and the graph which achieves the maximum is obtained by blowing up a 5-cycle.

Győri [45] obtained an upper bound of roughly 1.03(n
5
)5, and later Hatami, Hladký,

Král, Norine and Razborov [55] and independently Grzesik [41] finally gave a positive
answer to this conjecture.

Alon and Shikhelman [3] considered the problem of maximizing the number of copies
of a tree T in a graph which is H-free, for another tree H. Given two trees T and H,
they introduced an integer parameter m(T,H) and proved that ex(n, T,H) = Θ(nm(T,H)),
thereby determining the correct order of magnitude for all pairs of trees. A recent result
due to Letzter [66] extends the above result of Alon and Shikhelman to the case when

11



only H is a tree and T is arbitrary. It is shown that, nonetheless, the order of magnitude
of ex(n, T,H) is a positive integer power of n.

Another direction of research which has been considered is maximizing the number
of copies of a given graph in an n-vertex planar graph. Hakimi and Schmeichel [53] de-
termined the maximum number of triangle and C4 copies possible in a planar graph. In
this setting Alon and Caro [2] determined the maximum number of copies of K1,t, K2,t

and K4 possible. Resolving a conjecture attributed to Perles [2], Wormald [85] proved
that every 3-connected graph H occurs at most cHn times in an n-vertex planar graph
for some constant cH depending on H (this result was proved again in a different way
by Eppstein [17]). A simple argument shows that graphs with at least 3 vertices which
are at most 2-connected will occur at least quadratically many times in a planar graph.
Thus, the preceding result of Wormald [85] and Eppstein [17] provides a characterization
of graphs which can occur at most O(n) times in a planar graph. The problem of maxi-
mizing the total number of cliques in such graphs was investigated in a series of papers
culminating in [65] and [29].

It is interesting to note that the problem of maximizing H copies in a planar graph
is in some sense a special case of a generalized Turán Problem. Indeed, for a given graph
H, and the collection F of subdivisions of K3,3 and K5, it follows from Theorem 1.19
theorem that ex(n,H,F) is equal to the maximum number of H-copies in an n-vertex
planar graph.

1.5 Extremal Hypergraph Theory

A hypergraph H = (V (H), E(H)) is pair, where V (H) is a non-empty finite set, called
the vertex sett of H, and E(H) is a subset of the power set of V (H), called the edge
set of G. We denote the size of these sets by v(G) = |V (G)| and e(G) = |E(G)| the
number of vertices and the number of edges of the graph. We say that a hypergraph
is r-uniform if every hyperedge has size r. By K

(r)
t we denote the t-vertex r-uniform

clique, the hypergraph consisting on t vertices and containing every possible r-set as a
hyperedge.

For a hypergraph H, the incidence bipartite graph of H is the bipartite graph G with
color classes V (H) and E(H) such that there is an edge between v ∈ V (H) and h ∈ E(H)
if and only if v ∈ h.

As in the graph case, there is a notion of the Turán number for a family of hypergraphs.

Definition 1.28. The Turán number of a family of r-uniform hypergraphs F , denoted
exr(n,F), is the maximum number of hyperedges in an n-vertex, r-uniform, simple-
hypergraph which does not contain an isomorphic copy of H, for all H ∈ F , as a sub-
hypergraph.

However for hypergraphs the problem of determining exr(n, F ) for an r-uniform hy-
pergraph is much less understood that the graph case (see [58] for a survey). A particular
family of hypergraphs for which the Turán number has been recently studied is the family
of Berge hypergraphs.

Berge [8] presented the following definition for paths and cycles in hypergraphs.

12



Definition 1.29. A Berge path of length t in a hypergraph is an alternating sequence
of distinct vertices and hyperedges, v0, e1, v1, e2, v2, . . . , et, vt such that, vi−1, vi ∈ ei, for
i = 1, 2, . . . , t. The vertices vi are called defining vertices and the hyperedges ei are called
defining hyperedges.

Definition 1.30. A Berge cycle of length t in a hypergraph is an alternating sequence
of distinct vertices and hyperedges, v0, e1, v1, e2, v2, . . . , vt−1, et, v0 such that, vi−1, vi ∈ ei,
for i = 1, 2, . . . , t, (where indices are taken modulo t). The vertices vi are called defining
vertices and the hyperedges ei are called defining hyperedges.

In [46] Győri started the study of Berge cycles where he determined that the maximum
number of hyperedges in a 3-uniform hypergraph that contains no Berge cycle of length
3 is at most n2

8
. The maximum number of hyperedges in an r-uniform graphs with no

Berge path of length k was determined by Győri, Katona and Lemons [47] (one of the
cases was done later by Davoodi, Győri, Methuku and and Tompkins [14]).

Based on the previous definition Gerbner and Palmer [38] introduced a a general
notion of a Berge copy of G in a hypergraph, for any graph G.

Definition 1.31. Given a fixed graph G, a hypergraph H is a Berge copy of G, if there
exists an injection f1 : V (G) → V (H) and a bijection f2 : E(G) → E(H), such that if
e = {v1, v2} ∈ E(G), then {f1(v1), f1(v2)} ⊆ f2(e).

The set of Berge copies of G is denoted by BG. The sets f1(V (G)) and f2(E(G)) are
called the defining vertices and hyperedges, respectively.

Since its introduction, the Turán problem for Berge-G-free hypergraphs has been
investigated heavily (see, for example [5], [40] and [76]). Complete graphs were considered
by several authors in [34], [35], [42], and [68].

1.6 Ramsey Theory

Ramsey theory is among the oldest and most intensely investigated topics in combina-
torics. It began with the seminal result of Ramsey from 1930.

Theorem 1.32 (Ramsey [78]). Let r, t and k be positive integers. Then there exists an
integer N such that any coloring of the N-vertex r-uniform complete hypergraph with k
colors contains a monochromatic copy of the t-vertex r-uniform complete hypergraph.

The statement of Ramsey’s Theorem extends to any families of hypergraphs.

Definition 1.33. Let H1,H2, . . . ,Hk be nonempty collections of r-uniform hypergraphs.
there exists an integer N such that if the hyperedges of the complete r-uniform N-vertex
hypergraph are colored with k colors, then for some 1 ≤ i ≤ k, there is a monochromatic
copy of a member of Hi. We denote by Rr

k(H1,H2, . . . ,Hk) the minimum such N . If k
is clear by context, then we omit k in this notation. If a collections Hi consist of a single
hypergraph G, then we write G in place of Hi = {G}.

Estimating the smallest value of such an integer N (the so-called Ramsey number) is
a notoriously difficult problem and usually only weak bounds are known, for the so-called
diagonal Ramsey number of graphs we know the following bounds

13
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Theorem 1.34 (Erdős-Szekeres [26], Erdős [20]). For every n > 2, we have

2
n
2 ≤ R2(Kn, Kn) ≤ 22n.

Given the difficulty of this problem, many people began investigating variations of
this problem where graphs other than the complete graphs are considered. An example
of an early result in this direction due to Chvátal [11] asserts that the Ramsey number
of a t-clique versus any m-vertex tree is precisely N = 1 + (m − 1)(t − 1). That is, any
red-blue coloring of the complete graph KN yields a red Kt or a blue copy of a given
m-vertex tree.

Ramsey problems for a variety of hypergraphs and classes of hypergraphs have been
considered (for a recent survey of such problems see [71]).

The Ramsey problem for Berge-paths and cycles has received much attention. Of
particular interest is a result of Gyárfás and Sárközy [44] showing that the 3-color Ramsey
number of a 3-uniform Berge-cycle of length n is asymptotic to 5n

4
(the 2-color case was

settled exactly in [43]).
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Chapter 2

The maximum number of P` copies
in Pk-free graphs

2.1 Introduction

Recall that we denote the path with k edges by Pk and the cycle with k edges by Ck. By
C≥k we mean the set of all cycles of length at least k. By Sk we denote the star on k+ 1
vertices.

We begin by recalling the theorem of Erdős and Gallai on Pk-free graphs (Theo-
rem 1.24) as well as some recent generalizations due to Luo [67], where the number of
cliques is considered.

Theorem (Erdős–Gallai [23]). For all n ≥ k,

ex(n, Pk) ≤
(k − 1)n

2
,

Moreover, equality holds if and only if k divides n and G is the disjoint union of cliques
of size k.

As the extremal examples for Theorem 1.24 are disconnected, it is natural to consider
a version of the problem where the base graph is assumed to be connected. Kopylov
[59] settled this problem, and later Ballister, Győri, Lehel and Schelp [7] classified the
extremal cases. Before stating this result, we will need the following definition.

Definition 2.1. We denote by Gn,k,a the graph whose vertex set is partitioned into 3
classes, A,B and C with |A| = a, |B| = n− k+ a, |C| = k− 2a such that A∪C induces
a clique, B is an independent set and all possible edges are taken between vertices of A
and B. (See Figure 2.1.)

Throughout this section we let t =
⌊
k−1
2

⌋
. In Gn,k,t, the class C has one vertex when

k is odd or two vertices when k is even. By grouping B and C together, we have that
Gn,k,t is obtained from a complete bipartite graph Kt,n−t by adding all edges in the color
class of size t, and in the case when k is even, adding one additional edge inside the color
class of size n− t.
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Kn−k+a

Ka

Kk−2a

Kn−t

Kt

Figure 2.1: The graph Gn,k,a is pictured on the left, and the special case of Gn,k,t is
pictured on the right. The dashed edge appears only when k is even.

Theorem 2.2 (Kopylov [59], Ballister–Győri–Lehel–Schelp [7]). Let G be a connected
n-vertex Pk-free graph, with n ≥ k, then

e(G) ≤ max(e(Gn,k,t), e(Gn,k,1)).

Moreover, the extremal graph is either Gn,k,t or Gn,k,1.

We have that

e(Gn,k,1) =

(
k − 1

2

)
+ n− k + 1 and e(Gn,k,t) = t(n− t) +

(
t

2

)
+ ηk,

where ηk is 1, if k is even, and 0 otherwise. Therefore, the maximum in Theorem 2.2 is
achieved by Gn,k,t when n ≥ 5k/4.

The following theorem was deduced by Luo [67] as a corollary of her main result. This
result also follows from Theorem 1.24 using a simple induction argument. We present
this proof here.

Theorem 2.3 (Luo [67]).

ex(n,Kr, Pk) ≤
n

k

(
k

r

)
.

Proof. We use induction on r, and the base case r = 2 is Theorem 1.24. Let G be an
n-vertex graph containing no Pk. We have

rN (Kr, G) =
∑

v∈V (G)

N (Kr−1, G[N(v)])

≤
∑

v∈V (G)

v(G[N(v)])

k − 1

(
k − 1

r − 1

)
=

r

k(k − 1)

(
k

r

)
2e(G),

since G[N(v)] contains no Pk−1. By Theorem 1.24, we have e(G) ≤ (k−1)n
2

, and the result
follows.

For our results we will need only that ex(n,Kr, Pk) ≤ ck,rn for some constant ck,r
depending only on k and r.

If we impose the additional condition that the graph is connected, then the situation
is more complicated. Luo proved the following sharp bounds.

16
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Theorem 2.4 (Luo [67]). Let n > k ≥ 3 and G be a connected n-vertex graph with no
path of length k, then

N (Kr, G) ≤ max (N (Kr, Gn,k,t),N (Kr, Gn,k,1)) .

Theorem 2.5 (Luo [67]). Let n ≥ k ≥ 4 and G be a n-vertex graph with no cycle of
length k or greater, then

N (Kr, G) ≤ n− 1

k − 2

(
k − 1

r

)
.

Some recent generalizations of the Erdős–Gallai theorem and Luo’s results can be
found in [75]. The results in this chapter focus on the case where sufficiently long paths
or all sufficiently long cycles are forbidden. The general problem of enumerating cycles
of a fixed length when a fixed cycle is forbidden has also been considered recently (see
[39] and [35] which generalized earlier results for special cases, e.g., [9], [49], [3]).

In this chapter, we are interested in the case where the forbidden graph is a path.
We find asymptotic values and sometimes the exact bound for the maximum number of
copies of a smaller path (as well as for several other types of graphs). We also obtain
asymptotic results for the problem of maximizing copies of T in a graph with no cycles
of length at least k, in the case when T is a path.

This Chapter is organized as follows: In Section 2.2, we determine asymptotically
the maximum number of paths and cycles in a Pk-free graph. For the case when k is
even we provide a simple proof using a result of Nikiforov [74] on the spectral radius of
Pk-free graphs. Then, we give more precise estimates, which are also sharp in the case
when k is odd, through double-counting arguments. In Section 2.3, we determine the
order of magnitude of ex(n,H, T ) when T is a tree for the class of graphs H which satisfy
the condition that v(H) − α(H) ≤

⌊
k−1
2

⌋
. In Section 2.4, we determine ex(n,H, Pk)

exactly for several graphs H including 4-cycles, stars and short paths. In Section 2.5, we
consider the problem of enumerating copies of Pk−1 in a Pk-free graph. We determine an
asymptotic result for copies of P5 in a P6-free graph and pose a general conjecture.

2.2 Asymptotic Results

We write f(n, k)∼g(n, k) when lim
k→∞

(
lim
n→∞

f(n, k)

g(n, k)

)
= 1. We estimate the number of

copies of paths and cycles in a Pk-free graph. For a fixed ` ∈ N, we prove the following
asymptotic results:

Theorem 2.6 (Győri, Salia, Tompkins, Zamora. [51]).

ex(n, P2`, Pk) ∼
k`n`+1

2`+1
.

Theorem 2.7 (Győri, Salia, Tompkins, Zamora. [51]).

ex(n, P2`+1, Pk) ∼
(`+ 2)k`+1n`+1

2`+2
.
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Theorem 2.8 (Győri, Salia, Tompkins, Zamora. [51]).

ex(n,C2`, Pk) ∼
k`n`

`2`+1
.

Theorem 2.9 (Győri, Salia, Tompkins, Zamora. [51]).

ex(n,C2`+1, Pk) ∼
k`+1n`

2`+2
.

The construction showing the lower bounds for Theorems 2.6 through 2.9 is the same
as the extremal construction for the connected version of the Erdős–Gallai theorem,
Theorem 2.2. Because we are interested in asymptotics, we will omit the edge from this
construction which only occurs when k is even. Our n-vertex graph G is defined by taking
a clique on a set S of

⌊
k−1
2

⌋
vertices and connecting every vertex in S to every vertex of

an independent set U on n − t vertices. It is easy to see that this graph is Pk-free. In
enumerating the copies of P2`, the only paths which contribute asymptotically alternate
between S and U , starting and ending with U (the factor of 2 comes from counting the
path in both directions).

When enumerating the copies of P2`+1, we have two kinds of paths which contribute
asymptotically: those that start and end in U , using an edge in S at some step, and those
that start in U and end in S, never using an edge contained in S. For the first type, we
condition on which step in the path we use the edge in S (` possibilities). Each such path
gets counted twice, hence we divide by two. For the second type, each path is counted
once and so we do not have to divide by 2.

Recall that the spectral radius of a graph G is the maximum of the eigenvalues of the
adjacency matrix of G. We begin by showing how Theorem 2.6 can be derived from a
result about the spectral radius of Pk-free graphs due to Nikiforov [74]. He determined,
for sufficiently large n, the maximal spectral radius of a Pk-free graph on n vertices. We
are interested in asymptotics so we will make use of the following corollary which follows
directly from the results in [74].

Corollary 2.10 (Nikiforov [74]). If n is sufficiently large and G is a Pk-free graph, then
the spectral radius of G is at most

√
b(k + 1)/2cn.

Spectral proof of Theorem 2.6. Let G be a Pk-free graph on n vertices (for n large enough
to satisfy Corollary 2.10). Let A be the adjacency matrix of G, then we have

2 · N (P2`, G)

n
≤ #{2`-walks in G}

n
=

1tA2`1

1t1
≤
(√
b(k + 1)/2cn

)2`
= (b(k + 1)/2cn)`.

Where 1 is the all 1’s vector, and the second inequality comes from the fact that the
spectral radius of a Hermitian matrix M is the supremum of the quotient x∗Mx

x∗x
, where

x ranges over Cn\{0}. Therefore, for every k ∈ N and n sufficiently large we have
ex(n, P2`, k) ≤ n`+1b(k + 1)/2c`/2.

Unfortunately, it does not seem like this approach can be used to prove Theorem 2.7
as the bound it would yield is off by a factor of order

√
n.

We will now prove the upper bounds from which Theorems 2.6 and 2.7 are immediate
consequences. We note that the upper bound we obtain for the P2`-case is sharper than
the bound given by using the spectral radius.
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Proposition 2.11. Let `, k be positive integers with 2` < k, then

ex(n, P2`, Pk) ≤
k`n`+1

2`+1
+O(n`).

Proposition 2.12. Let `, k be positive integers with 2`+ 1 < k, then

ex(n, P2`+1, Pk) ≤
(`+ 2)k`+1n`+1

2`+2
+O(n`).

The proofs of the propositions above will use a double-counting argument involving
structures defined using matchings. We will begin by estimating the maximum number
of certain kinds of matchings occurring in a Pk-free graph.

Let us define M `
1, M `

2 and M `
3 to be the following graphs: M `

1 is an (`− 1)-matching
together with a disjoint triangle, M `

2 is an (` − 1)-matching together with a disjoint K4

and M `
3 is an (`−2)-matching with two independent triangles, disjoint from the matching

(see Figure 2.2).

Lemma 2.13. Let k, ` ∈ N. The number of copies of M `
1, M `

2 and M `
3 in an n-vertex

Pk-free graph is O(n`).

Proof. Let G be a Pk-free graph on n vertices. By Theorem 2.3, the number of triangles
in G is O(n). By Theorem 1.24 the total number of edges in G is at most (k − 1)n/2. It
follows that the number of copies of M `

1 is bounded from above by(
kn
2

`− 1

)
O(n) = O(n`).

The proofs of the bound for M `
2 and M `

3 are similar.

Proof of Theorem 2.6. Let G be a Pk-free graph on n vertices. We will consider structures
consisting of a matching of ` edges and a vertex not contained in these edges. Namely, a
matching structure is an (`+1)-tuple (e1, e2, . . . , e`, v) where {e1, e2, . . . , e`} is a matching
in G and v ∈ V (G) \ ∪`i=1ei. We say that a path P2` aligns with a matching structure
(e1, e2, . . . , e`, v) if its edges are (consecutively) e1, f1, e2, f2, . . . , e`, f` where v ∈ f`. We
say that the matching structure spans the set of vertices ∪`i=1ei ∪ {v}.

Let A := {S ⊆ V : |S| = 2`+ 1,M `
1 ⊆ G[S]}. By Lemma 2.13, we have |A| = O(n`).

LetM be the set of all the matching structures which span a set of vertices not contained
in A. Then we have the following.

Claim 2.14. At most one P2` aligns with each matching structure in M.

M `
1

· · ·

`− 1

M `
2

· · ·

`− 1

M `
3

· · ·

`− 2

Figure 2.2: Matching structures with negligible contribution.
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Proof. Let (e1, e2, . . . , e`, v) be a matching structure inM and fix a P2` which aligns with
it, say a1, b1, a2, b2 . . . , a`, b`, a`+1, where ei = {ai, bi} and v = a`+1. Note that there is no
edge from ai to ai+1, since otherwise e1, e2, . . . , ei−1, {bi+1, ai+2}, {bi+2, ai+3}, . . . , {b`, a`+1}
together with the triangle {ai, bi, ai+1} forms an M `

1. Since there is a unique P2` spanning
the matching structure and not containing an edge {ai, ai+1}, the claim is proved. (See
Figure 2.3.)

Next, we observe that for every P2`, there are precisely two matching structures for
which that P2` is aligned. Indeed, let the vertices of the P2` be traversed in the order
v1, v2, . . . , v2`+1, then the two matching structures with which the P2` aligns are

({v1, v2}, {v3, v4}, . . . , {v2`−1, v2`}, v2`+1) and ({v2`+1, v2`}, {v2`−1, v2`−2}, . . . , {v3, v2}, v1).

It follows that the if we define M := |M|, then the number of copies of P2` is bounded
from above by M/2 +O(n`).

By Theorem 1.24, the number of edges in G is at most (k − 1)n/2. A matching
structure is formed by choosing ` edges in order followed by an additional vertex. Thus,
we have the following upper bound on the number of matching structures in M:

M ≤
(
nk
2

`

)
`!n ≤ n`+1k`

2`
.

Dividing by 2 yields the required bound on the number of copies of P2`.

Proof of Theorem 2.7. We will now define matching structures in a slightly different way.
A matching structure is an (` + 1)-tuple (e1, e2, . . . , e`+1), where {e1, e2, . . . , e`+1} is a
matching in G. A path P2`+1 aligns with a matching structure (e1, e2, . . . , e`+1) if its
edges are e1, f1, e2, f2, . . . , e`, f`, e`+1, consecutively.

Let B := {S ⊆ V : |S| = 2` + 2,M2 ⊆ G[S]} and C := {S ⊆ V : |S| = 2` + 2,M3 ⊆
G[S]}. By Lemma 2.13, we have |B| = O(n`) and |C| = O(n`). Let M be the set of
matching structures which do not span a vertex set in B or C.

Claim 2.15. There are at most ` + 2 copies of P2`+1 which align with each matching
structure in M.

Proof. Consider a matching structure (e1, e2, . . . , e`+1) ∈ M. We will consider the edges
in the matching structure one by one and show that we can label the vertices of each edge
ej with aj and bj in such a way that there is no edge between aj and aj+1. Thus, every
path which aligns with the matching structure will be a subgraph of the graph pictured
(on the top) in Figure 2.4. Given that the matching structure has this form, we may
easily upper bound the number of copies of P2`+1 which can align with it. Indeed, if the

b1

a1

b2

a2

b3

a3

· · ·
bi

ai ai+1

bi+1

· · ·

a`

b`

a`+1

Figure 2.3: Matching structure from the proof of Claim 2.14.
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P2`+1 starts with the vertex b1, there is at most one such path: b1, a1, b2, a2, . . . , b`+1, a`+1.
If it starts with the vertex a1, then for at most one i, 1 ≤ i ≤ `, the path may use an edge
{bi, bi+1}; all other choices are forced. Thus, in total there are at most 1 + (`+ 1) = `+ 2
paths which align with such a matching structure. We now prove that the desired labeling
of the edges exists.

We may suppose that there is at least one edge from ei to ei+1 for all i = 1, 2, . . . , `,
otherwise no P2`+1 aligns with the matching structure. We also know ei ∪ ei+1 does not
induce a K4, so there is at least one edge missing among these 4 vertices. Now we may
label e1 = {a1, b1} in such a way that there is at least one edge missing from a1 to e2.
Label e2 = {a2, b2} such that there is no edge between a1 and a2. In general, suppose we
have already labeled the edges e1, e2, . . . , ej in such a way that for i ∈ {1, 2, . . . , j − 1},
ai is not adjacent to ai+1. We will show that ej+1 can be labeled by aj+1 and bj+1 such
that there is no edge between aj and aj+1 or that we may be able to relabel the previous
edges to achieve this.

We know that there is an edge missing from ej to ej+1. If there is an edge missing
between aj and ej+1, then label ej+1 = {aj+1, bj+1} so that there is an edge from aj to
aj+1. Otherwise {aj} ∪ ej+1 forms a triangle. In this case, there is an edge missing from
bj to ej+1; label ej+1 = {aj+1, bj+1} so that bj is not adjacent to bj+1.

Now if we do not have an edge from aj−1 to bj, then we switch the labels on ej and
ej+1, and we are done. (By switching the labels we mean that the vertex in ei previously
labeled ai is now labeled bi, and the vertex previously labeled bi is now labeled ai.) Thus,
assume we have an edge from aj−1 to bj. Then we have no edge from bj−1 to bj, for this
would yield an M3. Next, consider ej−2. If there is no edge from aj−2 to bj−1, then switch
the labels on ej−1, ej and ej+1, and we are done. If there is an edge from aj−2 to bj−1,
we proceed similarly with ej−3. Continuing this procedure, we will reach an edge er such
that switching the labels of er, er+1, . . . , ej+1 yields no edge between ai and ai+1 for any
1 ≤ i ≤ j. (This procedure is illustrated in Figure 2.4.)

We now complete the proof of Theorem 2.7. Again we set M := |M|. By Theo-
rem 1.24, there are at most (k − 1)n/2 total edges in G. Thus,

|M| ≤
(

nk
2

`+ 1

)
(`+ 1)!≤ k`+1n`+1

2`+1
.

Since at most ` + 2 paths P2`+1 align with each matching structure from M, and every
P2`+1 aligns with precisely two matching structures. It follows that the total number of

. . .

`+ 1

b1

a1

b2

a2

· · ·
br−1

ar−1 ar

br
· · ·

bj

aj+1aj

bj+1

· · ·

Figure 2.4: The structure of paths aligning with matching structures from M.
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copies of P2`+1 in G is at most

(`+ 2)M

2
+O(n`) ≤

(`+ 2)
( nk

2
`+1

)
(`+ 1)!

2
+O(n`) =

(`+ 2)k`+1n`+1

2`+2
+O(n`).

The lower bound for Theorems 2.8 and 2.9 also comes from Gn,k,t. Similarly as before,
the upper bounds a consequence of the following propositions.

Proposition 2.16. Let 2` < k, then

ex(n,C2`, Pk) ≤
k`n`

`2`+1
+O(n`−1).

Proposition 2.17. Let 2`+ 1 < k, then

ex(n,C2`+1, Pk) ≤
k`+1n`

2`+2
+O(n`−1).

It is enough to prove the following claims from which the propositions above follow
(a proof of this implication is included after the proof of the claim). Their proofs are
similar, so we just give the proof of the first claim.

Claim 2.18. For every k, ` ∈ N, there exists n0 ∈ N such that if n ≥ n0,

ex(n+ 1, C2`, Pk)− ex(n,C2`, Pk) ≤
k`n`−1

2`+1
+O(n`−2).

Claim 2.19. For every k, ` ∈ N, there exists n0 ∈ N such that if n ≥ n0,

ex(n+ 1, C2`+1, Pk)− ex(n,C2`+1, Pk) ≤
`k`+1n`−1

2`+2
+O(n`−2).

To prove the claims we are going to use the following Lemma 2.20, which follows from
similar methods as Theorem 1.14

Lemma 2.20. Let G be a graph with minimum δ(G) > k−1
2

, then either each connected
component of G has size at most k or G contains a path of length k.

Proof of Claim 2.18. Let G be a Pk-free graph on n+ 1 vertices with maximum number
of copies of C2`. If δ(G) > t, then by Lemma 2.20, every connected component must have
size at most k, and then N (C2`, G) ≤ k2`−1n.

So assume δ(G) ≤ t, and let v be a vertex of minimum degree. Then every C2` using
v can be divided into two paths: v together with the vertex preceding it and following it
in the cycle (forming a P2), and the remaining 2` − 3 vertices (forming a P2(`−2)). Note
that every P2 and P2(`−2) can be joined in at most two ways to make a C2`. Therefore,
the number of copies of C2` containing v is at most

2

(
d(v)

2

)
ex(n, P2(`−2), Pk) ≤ 2

(
t

2

)
k`−2n`−1

2`−1
+O(n`−2) ≤ k`n`−1

2`+1
+O(n`−2).

We include a proof that Proposition 2.16 follows from Claim 2.18.
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Proof that Claim 2.18 implies Proposition 2.16. We have

ex(n,C2`, Pk) = ex(n0, C2`+1, Pk) +
n∑

s=n0+1

(ex(s, C2`+1, Pk)− ex(s− 1, C2`+1))

≤ ex(n0, C2`+1, Pk) +
k`

2`+1

n∑
s=1

(
s`−1 +O(n`−2)

)
≤ ex(n0, C2`+1, Pk) +

k`

2`+1

n∑
s=1

(
(s+ 1)`

`
− s`

`

)
+O(n`−1)

≤ k`n`

`2`+1
+O(n`−1),

where in the first inequality we used Claim 2.18 and pulled the constant out of the sum,
and the second inequality follows from (s+1)` = s`+`s`−1+O(s`−2). The final inequality
follows from the telescoping sum.

2.3 The number of copies of H in graphs without a

certain tree

Alon and Shikhelman, while considering the case when H is a bipartite graph and T is
a tree, mention that ex(n,H, T ) = O(nα(H)) is a consequence of a theorem from [1]. We
prove that, in fact, this holds for general graphs H.

Theorem 2.21 (Győri, Salia, Tompkins, Zamora. [51]). Let H be any graph and let T
be any tree, then ex(n,H, T ) = O(nα(H)).

Corollary 2.22. For any graph H such that v(H)− α(H) ≤ bk−1
2
c, we have

ex(n,H, Pk) = Θ(nα(H)).

A construction yielding the lower bound in Corollary 2.22 is Gn,k,t. Indeed, for every
subset of size α(H) of the independent set in Gn,k,t we can find a copy of H by joining
the t vertices involved in the clique in Gn,k,t.

Theorem 2.21 follows as a simple consequence of the following lemma which will be
proven by induction on α(H).

Lemma 2.23. For any graph H and any tree T ,

ex(n+ 1, H, T )− ex(n,H, T ) = O(nα(H)−1).

Here, the constant given by the O notation depends only on H and T .

We start by proving the following well-known fact.

Proposition 2.24. Let H be a graph and let u be a vertex of H. If H ′ is the graph
obtained by removing u together with its neighborhood, then α(H ′) ≤ α(H)− 1.
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Proof. If X is a maximal independent set in H ′, then since no neighbor of u is in X, the
set X ∪ {u} is independent in H and so |X|+ 1 = α(H ′) + 1 ≤ α(H).

We are now ready to prove Lemma 2.23.

Proof of Lemma 2.23. For the base case of the induction, note that if α(H) = 1, then H
is a clique and it is simple to see that ex(n,Ks, T ) = O(n) for any s and T . (We may,
for example, use the simple bound of ex(n, T ) ≤ v(T )n, for any tree T , and apply an
induction argument similar to the proof of Theorem 2.3.)

To estimate ex(n+1, H, T )−ex(n,H, T ), we will start with a graph G on n+1 vertices
which is T -free with maximum number of copies of H. We know that δ(G) < v(T ),
otherwise T ⊆ G. Let v be a vertex of minimum degree inG, and we will count the number
of copies of H in G containing v as a vertex. Let V (H) = {u1, u2, . . . , uv(H)}, and let Hi

be the graph obtained by removing ui together with its neighbors. By Proposition 2.24,
we know that α(Hi) ≤ α(H) − 1. Now for each copy of H using v as a vertex, v must
play the role of some ui, and the neighbors of ui must be embedded in the neighborhood
of v. Then the other vertices of H, that is the vertices of Hi, must be embedded in some
way in the remaining vertices of G. We have to choose dH(ui) vertices in N(v), so the
number of copies of H using v is at most

v(H)∑
i=1

d(v)dH(ui)N (Hi, G) ≤
v(H)∑
i=1

v(T )dH(ui)N (Hi, G) =

v(H)∑
i=1

OHi(n
α(Hi)) = O(nα(H)−1).

Thus, if G′ is the graph obtained from G by removing v, we have that

ex(n+ 1, H, T ) = N (H,G) = N (H,G′) +O(nα(H)−1) ≤ ex(n,H, T ) +O(nα(H)−1).

For some particular graphs H, by studying more carefully the number of copies of H
that use some fixed vertex, we can find a better recursion than the one from Lemma 2.23.
In the following section, we improve the recursion for several specific classes of graphs.
For these graphs we will find an integer valued function f(n) which is a lower bound of the
extremal number ex(n,H, T ), such that f(n) grows faster than ex(n,H, T ) (when they
do not agree). Since both functions are integer valued, they must coincide eventually.

2.4 Exact Results

We now turn our attention to proving some exact results. Recall that we are using the
notation t = bk−1

2
c.

2.4.1 Number of copies of C4

We begin by determining the maximal number of copies of C4 in a Pk-free graph.

Theorem 2.25 (Győri, Salia, Tompkins, Zamora. [51]). For every integer k ≥ 5, there
exists n1 ∈ N such that if n ≥ n1,

ex(n,C4, Pk) = N (C4, Gn,k,t) =

(
n− t

2

)(
t

2

)
+ 3(n− t)

(
t

3

)
+ 3

(
t

4

)
+ 2ηk

(
t

2

)
,
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where ηk = 1, if k is even, and 0 otherwise. Moreover, the only extremal graph is Gn,k,t.

Remark 2.26. We note however that when k = 5, the graph Gn,k,t is obtained from
K2,n−2 by adding an edge in the 2-vertex class, the number of copies of C4 in K2,n−2 is
the same as Gn,5,2. For simplicity a graph G will be considered extremal for ex(n, F,H) if
in addition to maximizing the number of copies of F , the graph G is H-saturated, i.e. it
is not possible to add another edge to G without creating a copy of H, since adding edges
does not reduce the number of copies of F we can always find such a G.

To prove Theorem 2.25, we will prove the following claim from which the theorem
follows by induction on n.

Claim 2.27. There exists n0 ∈ N such that if n ≥ n0, then

ex(n+ 1, C4, Pk)− ex(n,C4, Pk) ≤
(
t

2

)
(n− 2).

Equality can hold only if the unique extremal graph with n+ 1 vertices is Gn+1,k,t.

It is easy to see that N (C4, Gn+1,k,t) = N (C4, Gn,k,t) +
(
t
2

)
(n − 2). By Claim 2.27,

ex(n + 1, C4, Pk) ≤ ex(n,C4, Pk) +
(
t
2

)
(n − 2) with equality only if the unique extremal

graph with n+ 1 vertices is Gn+1,k,t. It follows that

ex(n+ 1, C4, Pk)−N (C4, Gn+1,k,t) ≤ ex(n,C4, Pk)−N (C4, Gn,k,t),

and so the sequence ex(n,C4, Pk) − N (C4, Gn,k,t) is a non-increasing sequence of non-
negative integers that is strictly decreasing after every non-zero term. Thus, this sequence
is eventually the constant 0 sequence, which implies that Gn,k,t is eventually the unique
extremal graph.

We now prove Claim 2.27.

Proof. Let G be a Pk-free graph on n + 1 vertices with the maximum number of copies
of C4, that is, N (C4, G) = ex(n+ 1, C4, Pk).

If δ(G) > t, then by Lemma 2.20, every connected component of G must have size at

most k, and therefore N(C4, G) ≤ 3
(
k
4

)
n+1
k

= (n+1)(k−1)(k−2)(k−3)
8

. Then we can choose n0

so that this number is less than N (C4, Gn,k,t) for n ≥ n0, and we would be done.
Thus, we can assume δ(G) ≤ t. And suppose t ≥ 2. Let v be a vertex of minimum

degree. By removing v, we are removing at most
(
d(v)
2

)
(n− 2) ≤

(
t
2

)
(n− 2) copies of C4.

Equality can hold only if d(v) = t and if the neighbors of v have full degree. It follows
that if equality holds, then G contains a complete bipartite graph with color classes of
size t and n+ 1− t respectively such that the size t class is a clique. If k is odd, we have
that G = Gn+1,k,t. If k is even, since G contains the maximum number of C4’s, it follows
that G has an additional edge (it cannot have 2 more for otherwise we would have a Pk).
Thus, if k is even we also have G = Gn+1,k,t. For t = 2 we have that for equality to hold
K2,n−1 ⊆ G, and then by maximality we may assume G = Gn+1,k,t.

Therefore, either G = Gn+1,k,t or by removing a minimum degree vertex v we obtain a
graph G′ with N (C4, G

′) > N (C4, G)−
(
t
2

)
(n− 2) = ex(n+ 1, C4, Pk)−

(
t
2

)
(n− 2). Since

ex(n,C4, Pk) ≥ N (C4, G
′), we have that ex(n+1, C4, Pk)−ex(n,C4, Pk) <

(
t
2

)
(n−2).

The same argument proves the following.
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Theorem 2.28 (Győri, Salia, Tompkins, Zamora. [51]). For every positive integer k ≥ 5,
there exists n1 ∈ N such that if n ≥ n1

ex(n,C4, C≥k) = N (C4, Gn,k,t) =

(
n− t

2

)(
t

2

)
+ 3(n− t)

(
t

3

)
+ 3

(
t

4

)
+ 2ηk

(
t

2

)
,

where ηk = 1, if k is even, and 0 otherwise. Moreover, the only extremal graph is Gn,k,t.

2.4.2 Number of copies of Sr

We will prove the following theorem about the number of copies of P2. However, it will
follow as a consequence of a more general result about stars.

Theorem 2.29 (Győri, Salia, Tompkins, Zamora. [51]). For every positive integer k ≥ 3,
there exists n1 ∈ N such that if n ≥ n1,

ex(n, P2, Pk) = N (P2, Gn,k,t) = t

(
n− 1

2

)
+ (n− t)

(
t

2

)
+ 2tηk,

where ηk = 1, if k is even, and 0 otherwise. Moreover, the only extremal graph is Gn,k,t.

More generally we have,

Theorem 2.30 (Győri, Salia, Tompkins, Zamora. [51]). For every positive integer k ≥ 3
and r ≥ 2, there exists n1 ∈ N such that if n ≥ n1,

ex(n, Sr, Pk) = N (Sr, Gn,k,t) = t

(
n− 1

r

)
+ (n− t)

(
t

r

)
+ 2ηk

(
t

r − 1

)
,

where ηk = 1, if k is even, and 0 otherwise. Moreover, the only extremal graph is Gn,k,t,
unless k is even and t ≤ r − 2 in which case the only extremal graphs are Gn,k,t and
Gn,k−1,t.

Again, the result follows from a claim about the difference of the values of two con-

secutive extremal numbers. Let an = N (Sr, Gn+1,k,t)−N (Sr, Gn,k,t) =

(
t

r

)
+ t

(
n− 1

r − 1

)
.

Claim 2.31. There exists n0 ∈ N such that for n ≥ n0,

ex(n+ 1, Sr, Pk)− ex(n, Sr, Pk) ≤ an,

and equality can hold only if either Gn+1,k,t is the only extremal graph on n + 1 vertices
or k is even, t ≤ r − 2 and the only extremal graphs are Gn+1,k,t and Gn+1,k−1,t.

Proof. For any graph G, by counting over all possible centers of a star, we have that

N (Sr, G) =
∑

v∈V (G)

(
d(v)

r

)
. Let G be a Pk-free graph with n + 1 vertices and maximum

number of copies of Sr; that is, N (Sr, G) = ex(n + 1, Sr, Pk). We will consider cases
depending on the minimum degree of G.
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If δ(G) > t, then every connected component of G must have at most k vertices. So
the number of copies of Sr is bounded by n

(
k−1
r

)
, then we choose n0 such that this number

is less than N (Sr, Gn,k,t) for n ≥ n0.
If δ(G) ≤ t, then by removing v a vertex of minimum degree, we remove at most(

d(v)

r

)
+
∑

u∈N(v)

(
d(u)− 1

r − 1

)
≤
(
t

r

)
+ t

(
n− 1

r − 1

)
copies of Sr. Equality can hold only if d(v) = t and the t neighbors of v have degree n, so
G contains a complete bipartite graph with color classes of size t and n+ 1− t such that
class of size t is a clique. Then the characterization of the extremal cases again follows
from the maximality of G.

Remark 2.32. By checking more carefully the difference between the number of r-stars
using v and the number an, we can find a bound for n1 of order k3/2.

Similarly as before, the same method proves the following two results.

Theorem 2.33 (Győri, Salia, Tompkins, Zamora. [51]). For every positive integer k ≥ 5,
there exists n1 ∈ N such that if n ≥ n1,

ex(n, P2, C≥k) = N (P2, Gn,k,t) = t

(
n− 1

2

)
+ (n− t)

(
t

2

)
+ 2tηk,

where ηk = 1, if k is even, and 0 otherwise. Moreover the only extremal graph is Gn,k,t.

Or more generally,

Theorem 2.34 (Győri, Salia, Tompkins, Zamora. [51]). For every positive integer k ≥ 5,
there exists n1 ∈ N such that if n ≥ n1,

ex(n, Sr, C≥k) = N (Sr, Gn,k,t) = N (P2, Gn,k,t) = t

(
n− 1

r

)
+ (n− t)

(
t

r

)
+ 2ηk

(
t

r − 1

)
,

where ηk = 1, if k is even, and 0 otherwise. Moreover the only extremal graph is Gn,k,t,
unless k is even and t ≤ r − 2 in which case the only extremal graphs are Gn,k,t and
Gn,k−1,t.

Remark 2.35. For k = 3, Theorem 2.33 also holds. Since G must be a tree and by
convexity the number of stars is maximized in a star of n vertices, we have Gn,3,1 = K1,n−1,
and this graph has

(
n−1
r

)
stars. For k = 4, a star with a perfect matching or almost perfect

matching in the neighborhood of the center vertex maximizes the number of copies of P2,
with

(
n−1
2

)
+ (n − 1), when n is odd or

(
n−1
2

)
+ (n − 2), when n is even. Any graph

containing the n vertex star maximizes the number of copies of Sr for r ≥ 3.

2.4.3 Number of copies of P3

Theorem 2.36 (Győri, Salia, Tompkins, Zamora. [51]). For every positive integer k ≥ 5,
there exists n1 ∈ N such that if n ≥ n1

ex(n, P3, Pk) = N (P3, Gn,k,t) =
3t(t− 1)

2
n2 +O(n).

Moreover the only extremal graph is Gn,k,t.
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Let an be define as

N (P3, Gn+1,k,t)−N (P3, Gn,k,t) = 2t

((
t− 1

2

)
+ (n− t)(t− 1) + ηk

)
+ t(t− 1)(n− 2).

As in the previous results it is enough to prove the following Claim.

Claim 2.37. There exists n0 ∈ N such that for n ≥ n0,

ex(n+ 1, P3, Pk)− ex(n, P3, Pk) ≤ an,

and equality can hold only if Gn+1,k,t is the only extremal graph on n vertices.

Proof. Let G be an (n+ 1)-vertex graph with maximum number of copies of P3. We may
assume that δ(G) ≥ 2. (If a vertex has degree 1, then it is in at most 2(t(n− t)+

(
t
2

)
+ηk)

copies of P3.)
If δ(G) > t, then each connected component of G must have size at most k, by Lemma

2.20, and so N (P3, G) ≤ 3
(
k
3

)
n+1
k

. In this case, we can choose n0 such that for n ≥ n0,
this number is less than N (P3, Gn,k,t).

Thus, we may assume that δ(G) ≤ t. Let v be a vertex in G with minimum degree,
and consider the copies of P3 containing v as their second vertex.

We may suppose G is connected and has enough vertices to apply Theorem 2.2. Then
the number of copies of P3 whose second vertex is v is bounded from above by

d(v)(d(v)− 1)(n− 2)− 2(d(v)− 2)

((
d(v)

2

)
− e(N(v))

)
.

Indeed, the first term is the trivial upper bound 2
(
d(v)
2

)
(n − 2) obtained if every pair of

neighbors of v could be extended to path of length 3 in any possible way. The subtraction
comes from the fact that each non-edge {a, b} in the neighborhood of v along with a
third neighbor c ∈ N(v) uniquely forbids 2 copies of P3 namely cvab and cvba. We have
bounded from above the number of copies of P3 containing v as a second vertex.

Now we will obtain an estimate on the number of copies of P3 starting at v. We
consider the number of ways to take distinct u ∈ N(v), w ∈ N(u) and x ∈ N(w):

∑
u∈N(v)

∑
w∈N(u)
w 6=v

(
d(w)− 1− 1w∈N(v)

)
=
∑

u∈N(v)

( ∑
w∈N(u)
w 6=v

d(w)− d(u) + 1

)
− 2e(N(v))

=
∑

u∈N(v)

( ∑
w∈V (G)

d(w)−
∑

w 6∈N(u)
w 6=u

d(w)− d(v)− 2d(u)

)
− 2e(N(v)) + d(v)

=
∑

u∈N(v)

(
2e(G)−

∑
w 6∈N(u)
w 6=u

d(w)− 2d(u)

)
− 2e(N(v))− d(v)(d(v)− 1)

≤
∑

u∈N(v)

(
2e(G)− 2(n− d(u))− 2d(u)

)
− 2e(N(v))− d(v)(d(v)− 1)

= 2d(v)(e(G)− n)− 2e(N(v))− d(v)(d(v)− 1),
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where for the second equality we used that∑
w∈N(u)
w 6=v

d(w) =
∑

w∈V (G)

d(w)−
∑

w 6∈N(u)
w 6=u

d(w)− d(u)− d(v),

and the inequality uses that δ(G) ≥ 2.
The above sum is maximized when d(v) = t, and to achieve this maximum it is

necessary that for every neighbor u of v, either each non-neighbors of u have degree 2 or
that {w 6∈ N(u) : w 6= u} = ∅.

When t ≥ 3, we have the bound (conditioning on whether v is at the beginning or
middle of the path)

2t(e(G)− n)− 2e(N(v))− t(t− 1) + t(t− 1)(n− 2)− 2(t− 2)

((
t

2

)
− e(N(v))

)
,

≤ 2t(e(G)− n)− 2t(t− 1) + t(t− 1)(n− 2).

From Theorem 2.2 it follows that this number is at most an. To obtain equality, in both
cases it is necessary that every neighbor of v has full degree and so by maximality we
have that G = Gn+1,k,t.

If t = 2 (k = 5 or k = 6) we obtain a bound of

2(n− 3) + 4(e(G)− n)− 2e(N(v)),

where is e(N(v)) is 0 or 1, it follows that the maximum is only achieve when e(G) =
e(Gn,k,2) = 2(n− 2) + 1 + ηk, which implies that G = Gn+1,k,2 so e(N(v)) = 1, hence the
previous maximum is 6(n− 3)− 2 + 4ηk = an.

Remark 2.38. For k = 4, it is simple to check that the only extremal graph is a balanced
double star on n vertices, which has bn−1

2
cdn−1

2
e copies of P3.

Now we consider paths of length 4.

2.4.4 Number of copies of P4

Theorem 2.39 (Győri, Salia, Tompkins, Zamora. [51]). For every positive integer k ≥ 5,
there exists n1 ∈ N such that if n ≥ n1, then

ex(n, P4, Pk) = N (P4, Gn,k,t) =
t(t− 1)

2
n3 + Θ(n2).

Moreover the only extremal graph is Gn,k,t.

Similarly as before, let an := N (P4, Gn+1,k,t)−N (P4, Gn,k,t). We have that

an = 2tN (P2, Gn−1,k−2,t−1) + 2t(t− 1)e(Gn−2,k−4,t−2) +

(
t

2

)
(n− 2)(n− 3).

As in the previous results it is enough to prove the following Claim.
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Claim 2.40. There exists n0 ∈ N such that for n ≥ n0,

ex(n+ 1, P4, Pk)− ex(n, P4, Pk) ≤ an,

and equality can hold only if Gn+1,k,t is the only extremal graph on n vertices.

Proof. Let G be an (n+ 1)-vertex graph with maximum number of copies of P4. Assume
that δ(G) ≥ 2. (If a vertex v has degree 1, then v is in at most 2N (P2, Gn,k,t) < an copies
of P4.)

If δ(G) > t then, by Lemma 2.20, each component of G must have size at most k and
so N (P4, G) ≤ 12

(
k
4

)
n+1
k

so we can choose n0 such that if n ≥ n0 this number is less than
N (P4, Gn,k,t).

Suppose now that δ(G) ≤ t. Let v be a vertex of minimum degree. As before suppose
G is connected. To count the number of paths of length 4 starting at v, fix u ∈ N(v) and
let G′ be the subgraph of G obtained by removing v and u. Any path vuu1u2u3 can be
decomposed as the edge vu together with the ordered path u1u2u3 in G′ so the number
of paths of the form vuu1u2u3 is at most 2N (P2, G

′), since there are two orderings of any
P2. It is easy to check that G′ cannot contain a cycle of length at least k − 1, otherwise
together with the edge uv we would have a copy of Pk.

Thus, there are two cases:
a) Suppose first that G′ is does not contain a Ck−2. Then G′ is C≥k−2-free and so

N (P2, G
′) ≤ ex(n − 1, P2, C≥k) = N (Gn−1,k−2,t−1, P2). We will take n0 bigger than the

constant from Theorem 2.33, when k = 5, or k ≥ 7. When k = 6 we use the following
lemma.

Lemma 2.41. If H is a graph on m vertices containing no cycle of length at least 4,
then either H contains a vertex of degree m− 1 or N (P2, H) <

(
m−1
2

)
+ 2.

Proof. Suppose H has no vertex of degree m − 1. If H has degree 1 vertices, then the
number of copies of P2 is maximized when all these vertices are adjacent to the vertex of
maximum degree, so suppose H has no vertex of degree 1. By Theorem 1.25∑

v∈V (H)

d(v) ≤ 3(m− 1) and 2 ≤ d(v) ≤ m− 2.

Hence, by convexity, the number of copies of P2,
∑
v∈H

(
dH(v)

2

)
, is maximized when there

is one vertex of degree m − 2, one of degree 3 and m − 2 of degree 2. This yields(
m−2
2

)
+ m + 1 =

(
m−1
2

)
+ 3 paths of lenght 2, however a graph with such a degree

sequence must have a cycle of length four. Thus, we consider the second best degree
sequences, which has one vertex of degree m−2 and m−1 vertex of degree 2 (if possible)
which has

(
m−1
2

)
+ 1 copies of P2.

Now according to this lemma for k = 6, eitherN (P2, G
′) <

(
n−2
2

)
+2 = N (P2, Gn−1,4,1)

or G′ has a vertex w of degree n−2, and some number s of independent edges in NG′(w).
The vertex u cannot be adjacent to two different edges in NG′(w), otherwise G would
contain a P6, so u is adjacent to at most n+ 1− s vertices of G′, this number is achieved
if u is adjacent to w and if u is adjacent to both vertices of one of these edges, then the
number of copies of P4 starting with vu would be (n−2s)(n−3)+2+2s ≤ (n−2)(n−1)+4.
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Figure 2.5: Cycle in proof of Theorem 2.39.

b) Now suppose that G′ contains a cycle of length k − 2, C. In this case we have the
following.

Claim 2.42. If w is a vertex which is not in the cycle and w ∈ N(x) where x is a vertex
of the cycle, then w has at most one neighbor outside of C.

Proof. Suppose w1 and w2 are two neighbors of w. Since δ(G) > 1, w1 has a neighbor y.
If y is in C, then C together with w1ww2 is a length k path. If y is outside of C, then C
together with ww1y is a Pk.

As a corollary we have,

Claim 2.43. If w is a vertex not in the cycle and w ∈ N(x) where x is a vertex of the
cycle, then d(w) < k.

The edge uv is connected to C by some path. If there is an intermediate vertex from C
to uv, then clearly this path will have length at least k and so this is not possible. Hence
C is connected to either u or v. If C is connected to v, then every neighbor of u must
be in C for otherwise we have a k path. If C is connected to u, then by Claim 2.42, all
neighbors of u, except for v, are in C. So for every path vuu1u2u3 we have that u1 ∈ C,
if u2 ∈ C, then we have less than k choices for both u1 and u2 and at most n choices for
u3. If u2 is not in C, then by Claim 2.43, since u2 is a neighbor of u1 ∈ V (C), we have
d(u2) < k and so there are at most k choices for u3 and less than n choices for u2. Hence
we have less than 2k2n such paths in total and we can take n0 such that if n ≥ n0, then
this number is less than 2N (Gn−1,k−2,t−1, P2).

It follows that the number of paths starting with v is at most 2d(v)N (P2, Gn−1,k−2,t−1).
Now if d(v) ≤ t− 1, then the trivial bound on the number of copies of P4 with middle

vertex v is d(v)(d(v) − 1)
(
n−2
2

)
and the bound on the number of P4 cpoies with v as a

second vertex is 2d(v)(d(v)− 1)e(G). Thus, we would have that the number of copies of
P4 using v is less than an. So we will now suppose d(v) = t. To simplify the notation in
the following calculations let S :=

∑
u∈N(v) d(u).

To count paths with v in the middle, we will count in order paths of the form xuvwy,
where u,w can be any neighbors of v and then we have to choose a neighbor x of u and
a neighbor y of w with y 6= x. Hence the number of ordered paths with v as the middle
vertex is∑

u∈N(v)

( ∑
w∈N(v)
w 6=u

(d(u)− 1− 1u∈N(w))(d(w)− 1− 1u∈N(w))− |N(u) ∩N(w)|+1

)
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≤
∑

u∈N(v)

( ∑
w∈N(v)
w 6=u

d(u)d(w)−2d(w)−2d(u)−1u∈N(w)(d(w)+d(u))+5·1u∈N(w)+n+1

)

= S2 −

( ∑
u∈N(v)

d(u)2

)
− 4(t − 1)S − 2

( ∑
u∈N(v)

d(u) |N(u) ∩N(v)|

)
+ 10e(N(v)) +

t(t− 1)(n+ 1)

≤ S2−

( ∑
u∈N(v)

d(u)2

)
−4(t−1)S−2

( ∑
u∈N(v)

d(u)(d(u)+ t−n−1)

)
+ t(t−1)(n+6)

= S2 − 3

( ∑
u∈N(v)

d(u)2

)
+ (2n− 6(t− 1))S + t(t− 1)(n+ 6)

≤ S2 − 3S2

t
+ (2n− 6(t− 1))S + t(t− 1)(n+ 6)

=
t− 3

t
S2 + (2n− 6(t− 1))S + t(t− 1)(n+ 6),

where in the first and second inequality we use the fact that for every pair of vertices
x, y of the graph |N(x)∩N(y)|≥ d(x)+d(y)−n+1−2 ·1x∈N(y) together with e(N(v)) ≤(
t
2

)
. The last inequality was obtained by applying the Cauchy-Schwarz inequality to∑
u∈N(v) d(u)2. Since any path can have two distinct orders, we divide this expression by

2.
To count the number of paths with v as the second vertex, we will decompose the

path uvwxy into uvw together with e = xy. First we choose in order two neighbors of v,
then an edge not using u, v or w. There are at most 2 ways to connect the edge to w, so
the number of these paths is at most

2
∑

u∈N(v)

( ∑
w∈N(u)
w 6=u

e(G)− d(w)− d(u)− t+ 2 + 1u∈N(w)

)

= 2t(t− 1)(e(G)− t+ 2) + 4e(N(v))− 4(t− 1)S

≤ 2t(t− 1)(e(Gn,k,t) + 2) + 4

(
t

2

)
− 4(t− 1)S.

By summing the previous bounds, we have that the number of paths using v is at
most

2tN (P2, Gn,k−2,t−1)+
t− 3

2t
S2+(n−7(t−1))S+t(t−1)(n+6)+2t(t−1)(e(Gn,k,t)+2)+4

(
t

2

)
.

The value of this expression when S = tn is precisely an. By considering this expres-
sion as a quadratic in S, we can check that if t ≥ 3 the maximum is attained only when
S = nt. This means that every neighbor of v must have degree n, so this is only possible
if G = Gn+1,k,t. If t = 2, the expression attains its maximum when S = 2n− 14, hence if
S < 2n− 28. This value would be less than an, but now with the condition S ≥ 2n− 28.
It is simple to check that for k = 5, G must be either K2,n−2 or Gn,5,2, and if k = 6, then
G must be Gn,6,2.
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2.5 The number of copies of Pk−1 in Pk-free graphs

If k is odd, it seems likely that the graph Gn,k,t attains the value ex(n, Pk−1, Pk). However,
for k even the situation changes. We have that N (Pk−1, Gn,k,t) = Θ(nt), but there is
another graph Hn,k such that N (Pk−1, Hn,k) = Θ(nt+1). In order to define this graph,

first for r ≥ 2 and a, b positive integers, let S
(r)
a,b be the (a+b+r)-vertex graph consisting of

a clique on r vertices and two independent sets A and B on a and b vertices, respectively,
then for a fixed vertex v be a vertex of the clique, join v to every vertex in B, then join
every vertex of the clique except v to every vertex in A. Let S(r)

n be the family of all such
graphs on n vertices. For even k, let Hn,k be the graph in S(t+1)

n which maximizes the
number of Pk−1 copies. In this case we conjecture that the graph Hn,k is extremal.

Conjecture 2.44. If k is even and k ≥ 4, the extremal number ex(n, Pk−1, Pk) is attained
by the the graph Hn,k.

Remark 2.45. For r ≥ 2 the graphs S
(r)
a,b are P2r-free and have

N (P2r−1, S
(r)
a,b) = (r − 1)! ba(a− 1) · · · (a− r + 2).

In S(r)
n this number is maximized when a is roughly r−1

r
n, and this maximum approaches

(r− 1)! ( (r−1)
r−1

rr
)nr as n tends to infinity. In particular by taking r = 3 we have a P6-free

graph with 8n3/27 +O(n2) copies of P5.

Remark 2.46. Note that the only edges of the clique in S
(r)
a,b that a P2r−1 uses are the ones

that are incident with the vertex v. So, we have several graphs for which we conjecture the
number of copies of P2r−1 is maximal, namely those subgraphs of S

(r)
a,b formed by removing

edges from the clique not incident to v.

Conjecture 2.44 can be easily checked for k = 4, and the following theorem says that
this conjecture is also true for k = 6.

Theorem 2.47 (Győri, Salia, Tompkins, Zamora. [51]). There exists n1 ∈ N such that if
n ≥ n1, then

ex(n, P5, P6) = N (P5, Hn,6) =
8n3

27
+O(n2).

Proof. Let G be a P6 free graph and suppose n ≥ 7. It is enough to bound the copies of
P5 in each connected component, so assume G is connected.

Let C be the largest cycle in G and let G′ be the graph obtained by removing C from
G; clearly C cannot be a 6-cycle, otherwise G would contain a P6. We will consider cases
based on the length of C.

a) Suppose C is a 5-cycle with vertices v1, v2, v3, v4, v5 appearing consecutively. Then
every vertex in G′ is connected to a vertex of C. Suppose that v1 has a neighbor in G′,
if v1 is the only vertex of C with an edge to G′, then N (P5, G) < 24n. So, suppose this
is not the case, v2 and v5 cannot have neighbors in G′. Thus, without loss of generality,
we may suppose v3 has a neighbor in G′, then v4 cannot have neighbors in G′, also note
that v2 cannot be connected with v4 or with v5 and so G ⊆ Gn,6,2 (where the v1 and v3
take the role of the high degree vertices, and the edge v4v5 is the only edge that is not
incident with one of v1 or v3), hence N (P5, G) = O(n2).
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Figure 2.6: The family S(r)
a,b from which the conjectured extremal graph Hn,k is obtained.

And a graph that appears in Case b) of the proof of the Theorem 2.47.

b) Now suppose C is a 4-cycle defined by v1, v2, v3, v4, consecutively. Then G′ cannot
contain a P3, otherwise by connectivity we would have a path of length at least 6. Consider
the set X of vertices of G′ that have at least one neighbor in both C and G′. Note that
if y ∈ G′ is a neighbor of x ∈ X, then y cannot have any other neighbor in G′. Also
note that the only possible neighbor of y in C is the neighbor of x in C (y cannot have
a neighbor in C if x has more than one neighbor in C).

If |X| > 1, then every vertex in X must be adjacent to the same vertex in C, say v1.
Then v2 and v4 cannot have a neighbor outside of C. If v2 and v4 are adjacent, then it also
holds that v3 cannot have neighbors in G′. It is then easy to check that N (P5, G) < 6n.
So, suppose v2 and v4 are not connected (see Figure 2.6), then every P5 in G is of the
form xyv1vv3u, where x ∈ X, y is a neighbor of x, and both of v, u are common neighbors
of v1 and v3. If a = |N(v1) ∩N(u) ∩N(v)| and b is the number vertices in G′ with a

neighbor in X, then we have that N (P5, G) ≤ ba(a−1) which is half N (P5, S
(3)
a,b ) but S

(3)
a,b

can have at most one more vertex than G.
If X = {x}, then something similar holds, except that both v1 and v3 are allow to be

connected to x and there is the extra possibility of G being a subgraph of S
(3)
a,b .

Now suppose X = ∅. If no two vertices of C share a common vertex in G′, then
N (P5, G) is quadratic. So, suppose two non-consecutive vertices, say v1, and v3, share
a common neighbor, then it is not possible for the other two vertices in C to have a
neighbor in G′. Thus, our graph is again a subgraph of S

(3)
a,b .

c) Suppose C is a triangle, then every pair of vertices are the end vertices of at most
one P5. If two different paths of length 5 have the same end vertices, then either G would
contain a cycle of length at least four or a P6. Thus, N (P5, G) <

(
n
2

)
.
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Chapter 3

The Maximum number of Pentagons
in Planar Graphs

3.1 Introduction

Let f(n,H) := exp(n,H, ∅) denote the maximum number of copies of the graph H in an
n-vertex planar graph.

Hakimi and Schmeichel [53] proved that f(n,C5) ≤ 5n2 − 26n. Furthermore, they
conjectured that a bound of 2n2 − 10n+ 12 should hold, which is attained by the graph
Dn pictured in Figure 3.1. We confirm that their conjecture holds (for n ≥ 8), and
provide a complete characterization of the extremal graphs for all n. Our main result is
the following.

Theorem 3.1 (Győri, Paulos, Salia, Tompkins, Zamora. [50]). For n = 6 and n ≥ 8,
f(n,C5) = 2n2−10n+12. We have f(5, C5) = 6 and f(7, C5) = 41. Moreover the planar
graphs that maximize the number of copies of C5 are the family of graphs Dn obtained
from a cycle on n− 2 vertices by adding two vertices that are adjacent to each vertex of
the cycle (see Figure 3.1). When n = 8 or n = 11 the graphs An (see Figure 3.1) also
achieve the maximum.

Recall that a copy of H in a graph G is a subgraph of G (not necessarily induced),
isomorphic to H. For graphs G and H, we denote by N (H,G) the number of copies of H

...

(a) Dn (b) A8 (c) A11

...

(d) En

Figure 3.1: The graphs Dn, A8, A11 and En.
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in G. The neighborhood of a vertex v is denoted by N(v), and the closed neighborhood
(that is, {v} ∪ N(v)) is denoted by N [v]. If C = x1x2 . . . xkx1 be a cycle in G, then C
is said to separate vertices y, z ∈ V (G) in a planar embedding of G if one of y or z is
in the interior of the curve formed by embedding of the cycle and the other one is in
the exterior. For a given graph G, if e = {v, u} is an edge of G, then the contraction of
the edge e is the graph obtained from G by replacing the two vertices {v, u} with a new
vertex w and replacing the edges of the form {v, x} and {y, u} with the edges {w, x} and
{y, w}, taking the new edges without multiplicity.

Thought this chapter, a path of length k traversing the vertices x1, x2, . . . , xk+1 in that
order is denoted x1x2 . . . xk+1. Similarly, a cycle of length k going through the vertices
x1, x2, . . . , xk, x1 is denoted by x1x2 . . . xkx1.

3.2 Proof of Theorem 3.1

We start with the proof of three lemmas which will be used later in the proof of Theo-
rem 3.1.

Lemma 3.2. Let G be a planar graph and {u, v} be an edge, then G[N(u) ∩ N(v)] is a
path forest. Moreover the graph induced by {u, v} ∪ (N(u) ∩N(v)) is a triangulation if
and only if G[N(u) ∩N(v)] is a path.

Proof. First, we show that G′ = G[N(u) ∩ N(v)] is acyclic. Suppose by contradiction,
there is a cycle C in the common neighborhood N(u) ∩N(v), then we have a K5-minor.
Indeed, if we contract this cycle to a triangle, then this triangle together with v and u
forms a K5, contradicting planarity. Hence G′ is acyclic.

Now we show that dG′(w) ≤ 2 for all w ∈ V (G′). Suppose dG′(w) ≥ 3 for some
w ∈ V (G′), then taking three distinct vertices w1, w2, w3 ∈ N(u) ∩N(v) ∩N(w) yields a
K3,3, a contradiction to planarity. Therefore, G′ is a path forest.

The graph induced by the vertex set {v, u} ∪ (N(u) ∩N(v)) is a triangulation if and
only if it has 3 |N(u) ∩N(v)| edges. There are 2 |N(u) ∩N(v)|+ 1 edges incident with u
or v. So, the graph induced by {v, u}∪ (N(u) ∩N(v)) is a triangulation if and only if we
have the graph induced by N(u)∩N(v) has precisely |N(u) ∩N(v)|−1 edges. Therefore,
it is a triangulation if and only if G[N(u) ∩N(v)] is a path.

Lemma 3.3. Let G be a planar graph on k ≥ 3 vertices and let {u, v} be an edge of G,
then the number of length three paths from u to v is at most 2(k − 3).

Proof. We may assume that N(u) ∩ N(v) 6= V (G) \ {u, v}, since otherwise Lemma 3.2
would imply the result. Indeed, since G[N(u) ∩ N(v)] is a path forest, it has at most
k − 3 edges and so there are at most 2(k − 3) paths of length 3 between u and v.

We are going to prove the lemma by induction on k, the result is trivial for k = 3.
Consider the set of ordered pairs A = {(x, y) : uxyv is a path}. Let x be a vertex that is
not in N(u) ∩N(v), and without loss of generality suppose x 6∈ N(v). If x is in at most
two pairs from A, then we can remove x and we would be done by induction, so suppose
x is in at least three pairs from A. It follows that there exist three vertices distinct from
u, say y1, y2 and y3, in N(x) ∩ N(v). Suppose further that y2 is such that the cycle
xy1vy3x separates y2 and u (see Figure 3.2). Then y2 is not adjacent to u. Now contract
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Figure 3.2: Separating cycle from proof of Lemma 3.3.

the edge {x, y2} to a vertex x′, and note that with the exception of uxy2v, every path of
length 3 from u to v using either x or y2 yields a unique path of length 3 from u to v
containing x′ after the contraction. So, by induction, in the contracted graph we have at
most 2(k − 4) paths of length 3 from u to v, therefore in the original graph we have at
most 2(k − 4) + 1 < 2(k − 3) such paths.

Lemma 3.4. Let k ≥ 4, G be a k-vertex planar graph and let T be the set of three vertices
of any triangular face of G, then the number of paths of length three with both end vertices
in T is at most 4(k− 1). If there is no vertex adjacent to all vertices in T , then there are
at most 4k − 9 such paths.

Proof. First, we will prove the lemma holds in the case where every vertex of G is adjacent
to at least two vertices of T . Let x1, x2, x3 be the vertices of T , and let A = N(x1) ∩
N(x2) \ {x3}, B = N(x2)∩N(x3) \ {x1} and C = N(x3)∩N(x1) \ {x2}. Note that there
is at most one vertex in the intersection N(x1) ∩N(x2) ∩N(x3).

Suppose that there exists a vertex u incident to every vertex of T . The vertex u can
have at most one neighbor in A and similarly at most one neighbor in B and C. The
number of paths of length 3 from x1 to x2 using x3 is precisely |B|+|C|, since each such
path is of the form x1x3bx2 with b ∈ B or x1cx3x2 with c ∈ C. There are at most 2
paths of length 3 from x1 to x2 using u and a vertex not in A, since u has at most one
neighbor in B and at most one neighbor in C (the only vertices in N(x1)∪N(x2)∪N(x3)
which are not in A ∪ B ∪ C are the vertices of T ). All other paths of length 3 from
x1 to x2 have internal vertices only from A, so by Lemma 3.3, we have at most 2|A|−2
such paths. Thus, we have a bound of 2|A|+|B|+|C| on the number of length 3 paths
from x1 to x2 and similarly a bound of |A|+2|B|+|C| for the number of 4-vertex external
paths from x2 to x3 and |A|+|B|+2|C| from x3 to x1. Thus, in total we have at most
4(|A|+|B|+|C|) = 4(k − 1) paths of length 3 between vertices of T .

If there is no vertex adjacent with the three vertices of T , then we have at most one
edge between A and B, and the same for B and C as well as C and A. In a similar
way, we get a bound of 4(|A|+|B|+|C|) + 3 = 4k− 9 on the number of paths of length 3
between vertices of T .

Now, we are ready to prove the general case. Suppose there is a vertex x which is
adjacent to at most one vertex of T . If x is in at most four paths of length 3 between
vertices of T , then we can remove x and the result would follow by induction (induction
on k of the statement of the lemma; the base case k = 4 is trivial). If x is in at least five
such paths, then x must have a neighbor in T , say x1, hence these paths have the form
x1xyxi for some y and i = 2 or i = 3. Without loss of generality, there are three paths of
the form x1xy1x2, x1xy2x2 and x1xy3x2. Thus, we have than one of y1, y2 or y3, say y2,
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Figure 3.3: Two possible length 3 paths from x1 to x2.

cannot be adjacent to x1 or x3. Therefore, if we contract the edge {x, y2} to a vertex z,
the number of paths of length 3 between vertices of T increases by one. The only path
that is lost is x1xy2x2, while the two new paths x1zx2x3 and x3x1zx2 appear. Thus, we
are done by induction.

Remark 3.5. If one of the sets A, B or C is empty, then we get a bound of 4(k− 1)− 2
on the number of length 3 paths with both end vertices in T . This holds since if one of
these sets is empty, say A = ∅, then by adding a vertex w in the face x1x2xux1, adjacent
to the three vertices of that face, we would create 6 such paths. Applying Lemma 3.4 to
the resulting (k+ 1)-vertex graph, we would obtain a bound of 4k on the number of paths
of length 3 between vertices of T , and so we have a bound of 4(k − 1)− 2 on the number
of such length 3 paths in the original graph. With a similar argument it follows that if
only one of A,B,C is nonempty, then we obtain a bound of 4(k − 2).

Remark 3.6. Since G is triangulated, the neighborhood of every vertex has a Hamiltonian
cycle.

Proof of Theorem 3.1. It is simple to check that f(5, C5) = 6, since there is precisely
one maximal planar graph on 5 vertices. Let g(n) = 2n2 − 10n + 12 for n 6= 7, and
g(7) = 2 · 72 − 10 · 7 + 13 = 41. The lower bound, f(n,C5) ≥ g(n), for n ≥ 6 can by
checked by taking the graph Dn, which has g(n) copies of C5. For the upper bound, let G
be a maximal planar graph that maximizes the number of copies of C5. We may suppose
G is a triangulated planar graph on n vertices and that G is embedded in the plane. The
proof proceeds by induction on the statement that f(n,C5) ≤ g(n). For the base case
n = 5, we are already done, since f(5, C5) = 6 ≤ 12 = g(5).

For any (n− 1)-vertex graph G′ we have

f(n,C5) ≤ f(n− 1, C5) +N (C5, G)−N (C5, G
′).

Note that for n 6= 8, 7, g(n) − g(n − 1) = 4(n − 3), while g(7) − g(6) = 17 and g(8) −
g(7) = 19. Therefore, by defining an (n − 1)-vertex graph G′, such that the difference
N (C5, G)−N (C5, G

′) is bounded by 4(n−3), the proof of the upper bound would follow
by induction (except when n = 8, where we need a bound of 4(n− 3)− 1).
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We will divide the proof into several cases according to whether there is a vertex of
degree 4 or 3 or the minimum degree is 5. For simplicity, we will assume that the first
vertex v which we fix is in the interior of the cycle defined by its neighborhood.

Case 1. Suppose G has a vertex of degree 4, say v. In this case, let {v1, v2, v3, v4}
be the neighborhood of v such that v1v2v3v4v1 is a cycle. Note that it is not possible for
both of the edges {v1, v3} and {v2, v4} to be present in G, since otherwise we would have
a K5.

Without loss of generality, suppose the edge {v2, v4} is not present, and consider the
graph G′ obtained by removing v and adding the edge {v2, v4}. We are going to bound
N (C5, G)−N (C5, G

′). Equivalently, we bound the number of copies of C5 in G containing
v minus the number of copies of C5 in G′ that use the edge {v2, v4}.

We say that a 5-cycle in G containing v is of type k, if it contains precisely k vertices
which are not in N [v], and we say that a 5-cycle in G′ is of type k, if it contains the edge
{v2, v4} and precisely k vertices which are not in N(v). Let Nk be the number of type
k cycles in G minus the number of cycles of type k in G′ (N3 ≤ 0, while Nk = 0 for
k 6∈ {0, 1, 2, 3}). Note that

N (C5, G)−N (C5, G
′) = N0 +N1 +N2 +N3 ≤ N0 +N1 +N2.

We say that a path is internal if all of its vertices are in N [v]. We say a path is external if
all of its non-terminal vertices are not in N [v]. (Note that a path can be neither external
nor internal.)

We will count the number of type 1 cycles using a vertex x according to whether they
use consecutive or nonconsecutive vertices in the 4-cycle.

Note that N0 is just the number of 5-cycles in the graph induced by N [x], thus N0 is
either 4 or 6 depending on whether {v1, v3} is present.

For each x ∈ (N(vi) ∩ N(vi+1)) \ N [v] (where indices are taken modulo 4) and
i = 1, 2, 3, 4, the cycles of type 1 in G using the path vixvi+1 are vvixvi+1vi+2v and
vvi−1vixvi+1v. If {v1, v3} is an edge, then we have one of vvixvi+1vi−1v or vvi+2vixvi+1v
(according to whether i is odd or even), but in this case we also have one of the following
type 1 cycles in G′: vi+2vixvi+1vi−1vi+2 or vi−1vi+2vixvi+1vi−1 (see Figure 3.4).

For each x ∈ (N(vi) ∩N(vi+2)) \N [v], we have only the following four cycles of type
1 in G: vvixvi+2vi−1v, vvixvi+2vi+1v, vvi−1vixvi+2v, vvi+1vixvi+2v (note that in this case
{vi−1, vi+1} is not an edge). If i = 1 (or i = 3), we have in G′ the type 1 cycles v2v1xv3v4v2
and v4v1xv3v2v4 (see Figure 3.4). For i = 2 (or i = 4), we have no type 1 cycles in G′

using v2xv4. Therefore, we have

N1 =
∑

1≤i<j≤4

h(i, j) |N(vi) ∩N(vj) \N [v]| , (3.1)

where h(i, j) is the number of internal 4-vertex paths from vi to vj containing v, that is,
h(2, 4) = 4 and h(i, j) = 2 for every other pair (i, j), 1 ≤ i < j ≤ 4.

Note that for every type 2 cycle in G of the form vvixyvi+1v, we have one following
type 2 cycles in G′: v2vixyvi+1v2 for i = 3, 4 or v4vixyvi+1v4 for i = 1, 2 (see Figure 3.4).
Thus, the number of type 2 cycles in G is bounded by the number of 4-vertex external
paths from v1 to v3 and from v2 to v4.

Case 1. a) Suppose the edge {v1, v3} is present. In this case there is no path joining
v2 and v4 without using v, v1 or v3. It follows that the number of type 2 cycles in G is at
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most the number of 4-vertex external paths from v1 to v3. Note that there is at most one
vertex in V (G) \N [v] which is adjacent to v1, v2 and v3 as well as at most one adjacent
to v3, v4 and v1. Every other vertex is adjacent to at most two vertices of N(v).

For n = 6, we must have that G is E6, which has 20 five cycles, so suppose n ≥ 7.
We will assume that there exists a vertex u, u 6= v, adjacent to v1, v2, v3 and a vertex w,
w 6= v, u, adjacent to v3, v4, v1, since the result follows in a similar way in the other cases.
We have that N0 = 6 and N1 ≤ 12 + 2(n − 7) by (3.1). Indeed, this is true since both
u and w each contribute to six type 1 cycles and every other vertex (outside of N [v])
contributes at most two to N1. Equality holds if and only if every vertex other than u is
in V \N [v], and w is adjacent to precisely two vertices of N(v).

By applying Lemma 3.3 to the regions determined by the triangles v1v2v3v1 and
v3v4v1v3 (containing u and w, respectively), we have at most 2(n − 7) 4-vertex external
paths from v1 to v3, and there are at least two type 2 cycles in G′, namely uv2v4wv3u
and uv2v4wv1u, hence N2 ≤ 2(n− 7)− 2. Thus, we have

N (C5, G)−N (C5, G
′) = N0 +N1 +N2 ≤ 4(n− 3).

Note that if every vertex in V \N [v] besides u and w is adjacent to precisely two vertices
of N(v), then there are precisely n−7 edges not incident with N(v). Since every 4-vertex
external path from v1 to v3 is of the form v1xyv3, where the edge {x, y} is not incident
to N(v), we have a bound of 2(n− 7) on the number of such paths, and equality is only
possible if every such vertex in V \N(v) is adjacent to both v1 and v3. Therefore, either
G is En, which has 2n2 − 10n+ 8 copies of C5, or N (C5, G)−N (C5, G

′) < 4(n− 3). For
n 6= 8 we are done, while for n = 8 it is simple to check that G′ cannot be D7, so G′ can
have at most 40 copies of C5 and we are also done by induction.

Case 1. b) Suppose the edge {v1, v3} is not present and that there does not exist
another vertex distinct from v which is adjacent to v1, v2, v3 and v4. Note that in n ≥ 7
and we have that N1 = 4.

In this case there cannot exist two distinct vertices x1, x2 ∈ V (G) with x1, x2 6= v such
that x1 ∈ N(v1) ∩ N(v3) and x2 ∈ N(v2) ∩ N(v4). Thus, without loss of generality, we
may assume N(v2) ∩ N(v4) = {v}. As in the previous case, there is at most one vertex
u, u 6= v, adjacent to v1, v2, v3, and there is at most one vertex w,w 6= v, adjacent to
v3, v4, v1. We will assume that both vertices exist, since the other cases are similar.

Let X be the set of vertices in V \N(v) which are adjacent to precisely two vertices
of N(v), and let Y be the set of vertices which are adjacent to just one vertex of N(v).

v3

v2

v1

v4

v3v

v2

v1

v4

x

v3
v

v2

v1

v4
x

v3v

v2

v1

v4

y

x

Figure 3.4: The figure shows several cycles in G containing v which can be transformed
into cycles of G′ with the additional edge {v2, v4}; the new cycles are obtained by replacing
the two dashed lines by the two dotted lines.
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Both u and w contribute to six type 1 cycles of N1 and every vertex of X contributes to
two. By equation (3.1) we have that N1 ≤ 12 + 2 |X|.

Suppose that w and u are adjacent, then we have the 4-vertex external path v2uwv4
from v2 to v4, and two 4-vertex external paths from v1 to v3 using the vertices u and w:
v1uwv3 and v1wuv3. For each vertex z ∈ V \N [v], besides u and w, any 4-vertex external
path from v1 to v3 must include u or w, but if z is in two such paths, then z must be
adjacent to both u and w. We would then have the type 3 cycle in G′ given by xuv2v4wx,
while z cannot be in any 4-vertex external path from v2 to v4, hence z contributes to
at most one to N2 + N3. Note that for every x ∈ X, since x must be adjacent to two
consecutive vertices of N(v), we have a type 2 cycle in G′. For instance, if x is adjacent
to v1 and v2, we have the 5-cycle xv2v4wv1x. Since we have the paths v1uwv3, v2uwv4
and v3uwv1 and the type 2 cycles uv2v4wv3u and uv2v4wv1u in G′, we have that

N2 +N3 ≤ 1 + (n− 7)− |X| .

Therefore N (C5, G)−N (C5, G
′) ≤ 17 + (n− 7) + |X| ≤ 17 + 2(n− 7), which is less

than 4(n − 3) if n ≥ 8. If n = 7, in fact G is equal to D7, and this graph has 41 copies
of C5. For n = 8, we have that N (C5, G) −N (C5, G

′) ≤ 19, however it is easy to check
that the graph G′ is not D7, so G′ must have at most 40 five cycles, and it follows that
G could have at most 59 five cycles.

If u and w are not adjacent (note that this is only possible if n ≥ 8), then there is
no 4-vertex external path from v2 to v4. Then by Lemma 3.3, we have at most 2(n− 6)
4-vertex external paths from v1 to v3. Since we have at least two additional type 2 cycles
in G′, namely uv2v4wv3u and uv2v4wv1u, we have that N2 ≤ 2(n− 6)− 2. Therefore

N (C5, G)−N (C5, G
′) ≤ 14 + 2(n− 6) + 2 |X| ≤ 4(n− 3),

which for n ≥ 9 implies by induction that N (C5, G) ≤ 2n2−10n+12. Moreover, equality
is only possible if |X| = n− 7, that is, if every vertex in V \N [v] except for u and w is
adjacent to precisely two vertices of N(v). In this case, there are n−6 edges not incident
with N(v), so the number of 4-vertex external paths from v1 to v3 is at most 2(n − 6),
with equality if and only if each vertex in V \ N(v) is adjacent to both v1 and v3, and
so equality can only be achieved if G is Dn. When n = 8, since G is a maximal planar
graph, we have that there must be a vertex adjacent to v1, v3, u and w, and so G must
be D8.

Case 1. c) Suppose the edge {v1, v3} is not present and there exists a vertex u, u 6= v,
which is adjacent to v1, v2, v3 and v4. Observe that for n = 6, G is equal to D6 which
has 24 five cycles, so suppose n ≥ 7. Note that there cannot be any vertex other than u
in V \ N [v] which is adjacent to both v1 and v3 or both v2 and v4. Let X be the set of
vertices that are adjacent to precisely two vertices of N(v) and let Y be the set of vertices
which are adjacent to just one vertex of N(v), by equation (3.1) we have N1 = 14+2 |X|.

Observe that every vertex of Y is in at most one 4-vertex external path from v1 to
v3 or one 4-vertex external path from v2 to v4, and each of these paths must go through
the vertex u. A vertex x ∈ X can only be in two such paths but this only occurs if x is
adjacent to u. Since u can be adjacent to at most one vertex of X in the region bounded
by uvivi+1u, there are at most 2 min{4, |X|} ≤ 8 such 4-vertex external paths using u and
a vertex of X. Also note that every x ∈ X is in a type 2 cycle of G′ (for example, if x is
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Figure 3.5: The first pictures show a type 3 cycle in G′ in Case 1.b when u, v have a
common neighbor and a type 2 cycle in G when the edge {u,w} is present. The second
picture shows one of the two type 2 cycles in G′ that uses both u and w. The last two
pictures show a type 2 cycle in Case 1.c. There is one such cycle for every common
neighbor of u and vi not in N(v). The last picture shows a type 2 cycle from Case 1.c
that occurs in G′ for each x ∈ X, without using the edge {u, x}.

adjacent to v3 and v4, then xv3uv2v4x is a five cycle in G′). Therefore N2 ≤ |Y |− |X|+8,
and it follows that

N (C5, G)−N (C5, G
′) ≤ 18 + |X|+ |Y |+ 8 ≤ 18 + (n− 6) + 8.

This last bound is strictly less than 4(n− 3) if n ≥ 11.
Before dealing with the smaller cases (n = 7, 8, 9, 10) we note the following: if there is

precisely one vertex x inside the region vivi+1u, then this vertex x is adjacent to the three
vertices vi, vi+1, u and no other vertex can be adjacent to these three vertices. We can
apply induction in this case by removing x, and the details will be handled in the next
case (Case 2.a). If there are precisely two vertices x, y in the region uvivi+1u, then one
of these two vertices, say x, will have degree 4 and have the neighborhood {vi, vi+1, y, u}.
By taking the vertex x, we would be in Case 1.a.

For the smaller values of n we have the following. If n = 7, clearly there will be
precisely one vertex in one of the four regions uvivi+1u. If n = 8, then either we have two
vertices in the same region (Case 1.a) or two regions with one vertex (Case 2.a, which is
considered later). When n = 9 or n = 10, if the other four vertices of G are in the same
region vivi+1u, then N2 ≤ |Y | − |X|+ 2. It follows that

N (C5, G)−N (C5, G
′) ≤ 20 + |X|+ |Y | < 4(n− 3),

so, either we are done by induction or there are at least two regions containing vertices
inside. In the latter case, by the pigeonhole principle, we must find a region with either
1 or 2 vertices, and so we end up in Case 1.a or Case 2.a.

Case 2. Suppose G has a vertex v of degree 3, and let {v1, v2, v3} be its neighborhood.
Then v1v2v3v1 is a triangle, and we will assume v is in the interior of the triangle. Let
G′ be the graph induced by G[V \ v]. The number of five cycles in G containing v is
precisely the number of 4-vertex paths with end vertices in N(v), the vertices of N(v) are
the vertices of a triangular face in G′ so we will be able to use Lemma 3.4 in the different
cases.
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Figure 3.6: Exceptional graphs with 7 and 8 vertices and 36 and 60 five cycles respectively.
The graph A8 is an extremal example.

We will distinguish two cases based on whether or not there exists another vertex
adjacent to the three vertices of N(v).

Case 2. a) Suppose there is no vertex u, u 6= v, which is adjacent v1, v2 and v3. By
Lemma 3.4 there are at most 4(n − 3) − 1 five cycles containing v. Thus, by induction,
if n ≥ 6, n 6= 8, we have N (C5, G) < 2n2 − 10n+ 12. For n = 8, this gives a bound of at
most 60 five cycles, which is only possible if G is obtain by D7 by adding a vertex in a
triangular face, it is simple to check that these graphs have 57 five cycles.

Case 2. b) Suppose there is a vertex u, u 6= v, which is adjacent to the three vertices
of N(v). We can also assume that there is no vertex of degree 4, since otherwise we would
be done by the previous cases. If two of the regions uvivju, i, j ∈ {1, 2, 3}, say uv1v2u
and uv2v3u, are empty. It follows that the vertex v2 would be a 4-degree vertex. So, we
have that at most one of these regions is empty. We note that in particular, for n = 6,
there is no such graph, while for n = 7 and n = 8, there is just one such graph which has
36 and 60 five cycles, respectively (see Figure 3.6).

Suppose n ≥ 9. It is simple to check that G′ cannot be Dn−1, A8 or A11. Indeed,
Dn−1 has n− 2 ≥ 7 vertices of degree 4 and since not all of them are adjacent to v, then
G would already have a vertex of degree 4. Both A8 and A11 have one vertex of degree 3
in each of their faces, but one of these vertices would be adjacent to v and there would
be a vertex of degree 4 in G. We have then that N (C5, G

′) ≤ (n− 1)2 − 10(n− 1) + 11
and so if v is in at most 4(n− 1) five cycles, we would be done by induction.

If there is at least one vertex which is not adjacent to any vertex of N(v), then such a
vertex does not appear in any 4-vertex path joining vertices of N(v). Thus, by Lemma 3.4,
v would be in at most 4(n− 3) five cycles and we would be done by induction.

Thus, we may assume that every vertex is adjacent to at least one vertex of N(v).
Let

X = {x ∈ V (G) \N(v) : |N(x) ∩N(v)| = 2}
and

Y = {y ∈ V (G) : |N(y) ∩N(v)| = 1}.
Note that every vertex of Y can be adjacent to at most 2 vertices of X ∪ {u}, since

otherwise we would have a a copy of K3,3 in G. We can conclude that each vertex of
Y is in at most three 4-vertex paths with both end vertices in N(v), and this if can be
achieved only if y is adjacent to both u and a vertex of X, otherwise y is in at most 2
such cycles. If we remove the vertices of Y and apply Lemma 3.4, we obtain a bound
of 4(n − 3) + 4 − |Y | on the number of these 4-vertex paths. So, we can suppose that
|Y | ≤ 3, otherwise we would be done by induction. Additionally, if y ∈ Y is such that
N(y) ∩ N(v) = {vi}, we can suppose that every neighbor of y is also a neighbor of vi.
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Indeed, if there was a vertex w which is a neighbor of y but not of vi, then by contracting
the edge {y, w}, the number of 4-vertex paths with both end vertices in N(v) would
increase by one (as in the proof of Lemma 3.4). Then, by applying Lemma 3.4 in the
contracted graph, we would get a upper bound of 4(n− 3)− 1 on the number of 4-vertex
paths with both end vertices in N(v). In particular, this implies the following claim.

Claim 3.7. For each i ∈ {1, 2, 3}, the set of vertices of X in the region bounded by the
triangle uvivi+1u together with u induces a path.

Proof. Let X ′ be the set of vertices of X inside the triangle uvivi+1u, and let m = |X ′|. If
m = 0 there is nothing to prove, so suppose m ≥ 1 and let x1, x2, . . . , xm be the vertices of
X ′, ordered such that for each s = 2, 3, . . . ,m, the vertices x1, x2, . . . , xs−1 are inside the
region xsvivi+1xs. For simplicity let xm+1 = u, we are going to show that xs is adjacent
to xs+1 and so, x1, x2, . . . , xm is a path. Since N(vs) is a cycle, it follows that, besides the
edge vivi+1, there is another path from vi to vi+1 containing only vertices of N(vs), this
path only uses vertices in the close region xsvixs+1vi+1xs. Then this path must contain
the vertex xs+1, for otherwise there would be a path viy1y2 . . . yrvi+1 such that y1, . . . , yr
are all in Y . However, there must be a first index k such that yk is adjacent to vi and
yk+1 is incident with vi+1, which is impossible.

We will distinguish two further subcases based on whether at least one of the regions
of uvivi+1u, i = 1, 2, 3 is empty.

Case 2. b)* Suppose one of these regions is empty, say uv1v2u. By Remark 3.5, v
is in at most 4(n − 3) + 2 − |Y | five cycles. So if |Y | ≥ 2, then v would be in at most
4(n− 3) five cycles, and we would be done by induction. Thus, we can suppose |Y | ≤ 1,
and moreover if |Y | = 1, then the vertex of Y must be adjacent to u, since otherwise it
would be in at most two 4-vertex paths with both end vertices in N(v).

By Claim 3.7, it follows that X together with u induces a path P on |X|+ 1 vertices.
Hence, the path P has at least |X| − 2 internal vertices excluding u. Note that these
internal vertices have exactly four neighbors in V \ Y .

For n = 9, if Y = ∅, then P has at least two internal vertices, and so a vertex of
degree 4. If |Y | = 1, then P has one internal vertex x distinct from u. If the vertex of
Y is not adjacent to x, then we have a vertex of degree 4, and so we are done. If the
vertex of Y is adjacent to x, then there are two possible graphs, and we can check that
the number of 5-cycles in the resulting graphs is 79 and 80 (see Figure 3.7).

If n ≥ 10, then |X| ≥ 4. Hence there are at least two internal vertices in P distinct
from u, and if Y 6= ∅, the single vertex of Y can be adjacent to at most one of these
vertices and so have degree 4. Therefore, we are done by Case 1.

Case 2. b)** Suppose now that for each i, j there is at least one vertex in the region
uvivju, so the graph A8 is contained in G.

If n = 9, then wherever the last vertex is added we will have a vertex of degree 4 and
so we would be done by Case 1. If n = 10 or n = 11, then there is precisely one such
graph with no vertex of degree 4 (see Figure 3.7), and these graphs have, respectively,
110 and 144 five cycles. We note that for n = 11 this graph is A11 the other extremal
construction, since 2 · 112 − 10 · 11 + 12 = 144.

If n ≥ 12, then |X| ≥ 4. In the interior of one of the regions, say uv1v2u, we are able
to find at least two vertices of X. Let x1 be a vertex in this region, such that x1v1v2x1
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is a face and let x2 be its neighbor from X. If x1 is adjacent to precisely one vertex of
Y , then x1 would have degree 4. If x1 is adjacent with two vertices of Y , then these
two vertices are not adjacent to u and so both are in at most 2 five cycles containing v.
Therefore, v would be in at most 4(n− 3) five cycles.

So, suppose x1 has degree 3, with neighborhood {v1, v2, x2}. If there is no vertex that
is adjacent to both v1 and x2 but not adjacent to v2, then we would be back in Case
2.b)*. So, suppose such a vertex y1 exists. Note that y1 must be in Y , since x2 is inside
the region uv1v2u, and every vertex of X in this region is adjacent to both v1 and v2.
Analogously, we can suppose there is a vertex y2 ∈ Y adjacent to x2 and v2. Now if these
vertices are not adjacent to u, then v would be in at most 4(n − 3) five cycles and we
would be done by induction. If these two vertices are adjacent to u, then there would
be precisely two vertices of X in the region uv1v2u. By the same reasoning, if there is
another region uvivju with at least two vertices of X, then we would be able to find at
least two more vertices of Y or we would be in Case 2.b)*. However, the former possibility
is cannot occur since |Y | ≤ 3. If there is precisely one vertex of X in the regions uv2v3u
and uv3v1u, then |X| = 4, and so n ≤ 12. Hence n = 12, |Y | = 3 and the vertex of X in
one of the regions uv2v3u or uv3v1u has degree 4, therefore we are done by case 1.

Case 3. Suppose there is no vertex of degree 3 or 4, then the minimum degree of G is
5. Let v be a vertex of degree 5, and let v1, v2, . . . , v5 be the neighbors of v arranged such
that v1v2v3v4v5v1 is a cycle. There must exists some i such that both edges {vi, vi−2} and
{vi, vi+2} are missing (where indices are taken modulo 5). Without loss of generality, let
v1 be such a vertex. Also, it is not possible for both edges {v2, v4} and {v3, v5} to be
present in G, so we will assume {v3, v5} is not an edge. Consider the graph G′ obtained
from deleting v and adding the edges {v1, v3} and {v1, v5}.

As in Case 1, we say that a 5-cycle in G containing v is type k, for k = 0, 1, 2, if it
contains v and precisely k vertices not in N [v], and we say that a five cycle in G′ is type
k, for k = 0, 1, 2, if it contains at least one of the edges {v1, v3} or {v1, v4} and precisely
k vertices not in N(v). Let Nk be the number of type k cycles in G minus the number
of type k cycles in G′. We say that a path is internal if all of it vertices are in N [v]. We
say a path is external if all of its vertices which are not endpoints are not in N [v].

As in Case 1, the number of type 1 cycles is∑
1≤i<j≤5

h(i, j) |(N(vi) ∩N(vj) \N [v]| , (3.2)

where h(i, j) is the number of internal 4-vertex paths from vi to vj containing v minus
the number of internal 4-vertex paths from vi to vj using at least one of the edges {v1, v3}

Figure 3.7: Exceptional graphs with 9,9,10 and 11 vertices and 79,80,110 and 144 five
cycles respectively.
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or {v1, v4} (since for each such path and x ∈ N(vi) ∩ N(vj) \ N [V ], we have a type 1
cycle). Without the possible edges {v2, v5} and {v2, v4} for i, i + 1, we have the internal
2 internal paths containing v, vivvi+2vi+1 and vivi−1vvi+1. While for i and i+ 2 we have
the paths vvi−1vixvi+2v, vvi+1vixvi+2v, vvixvi+2vi+1v and vvixvi+2vi+3v.

In G′ we have the following internal 4-vertex paths using at least one of the edges
{v1, v3} or {v1, v4}: v1v4v3v2, v1v3v4v5, v3v1v5v4, v3v2v1v4, v2v1v4v3, v5v1v3v4, v2v1v3v4,
v2v3v1v4, v5v1v4v3, v5v4v1v3, v2v1v4v5, v2v3v1v5, v1v3v4v5.

We can also check that for every internal 4-vertex path containing v, and at least one
of the edges {v2, v5} or {v2, v4} (in the case they are present in G), except for the path
v4v2vv5, there is a corresponding internal 4-vertex path in G′ (see Figure 3.8).

We have the following chart:

{i, j} {1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}
h(i, j) 1 4 4 1 1 2 2 0 2 1 or 2

Where h(4, 5) = 1 if {v2, v4} is not an edge of G, and h(4, 5) = 2 otherwise.

Note that for any 4-vertex path vixyvj with x, y 6∈ N [v], there is precisely one five cycle
containing the path and v, namely vixyvjvvi. While in G′ we have that for {i, j} 6= {2, 5}
there is one 5-cycle using at least one of the edges {v1, v3} or {v1, v4}. The cycles are
the following: If 1 6∈ {i, j} the 5-cycle vixyvjv1vi uses at least one of the edges {v1, v3}
or {v1, v4} (see Figure 3.8). If i = 1 and j ∈ {2, 4} the 5-cycle v1xyvjv3v1 uses the edge
{v3, v1} . Finally, if i = 1 and j ∈ {3, 5} the 5-cycle v1xyvjv4v1 uses the edge {v1, v4}.

Observe that there are 5, 10 or 17 type 0 cycles in G if zero, one or two of the edges
{v2, v5} or {v2, v4} are present, respectively. On the other hand, in G′ the number of type
0 cycles is zero if none of these edges is present, while there is one type 0 cycle using
only {v4, v2}, three using only {v2, v5} and one using both. Hence N0 ∈ {5, 7, 9, 12},
accordingly.

We will make use of the following fact. If G is a planar graph with minimum degree
5 and abca is a triangular region with one vertex in its interior, then this region must
contain at least 3 vertices.

Case 3. a) Suppose there is a vertex u, u 6= v, which is adjacent to every vertex of
N(v). Note that in this case, neither of the edges {v2, v5} or {v2, v4} can be present in
G, so N0 = 5. We have that u contributes to 18 type 1 cycles, and every other vertex is
adjacent to at most two vertices of N(v), which must be consecutive. In particular any
other vertex contributes to at most two type 1 cycles, so N1 ≤ 18 + 2(n − 7). Finally,
we have that each of these vertices can be in at most one 4-vertex path from v2 to v5,
since each such path must include u, so N2 ≤ (n − 7). Hence N (C5, G) − N (C5, G

′) ≤
23 + 3(n − 7). We have that for any two consecutive regions, uvi−1viu, uvivi+1u, one
must contain a vertex in its interior, since otherwise vi would have degree four. So at
least three of the regions uvivi+1u, must contain a vertex in their interior. However since
the minimum degree is 5, it follows that each such region must have at least 3 vertices,
therefore n ≥ 17 and for these values of n we have that 23 + 3(n− 7) < 4(n− 3).

Case 3. b) Suppose there exists a vertex u ∈ V that is adjacent to precisely four
vertices of N(v). Without loss of generality, suppose these 4 vertices are v4, v5, v1 and v2.
We have that u contributes to at most 12 type 1 cycles and Since v2 and v5 cannot be
adjacent, we have N0 ≤ 9.
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As in the previous case every vertex in V \ N [v] different from u can be in at most
one 4-vertex path from v2 to v5, so N2 ≤ (n− 7). Note that it is not possible for all three
of the regions uv4v5u, uv5v1u and uv1v2u to be empty since each of v1 and v5 must still
have another neighbor, and so one of these faces must have at least 3 vertices.

If there exists a vertex w ∈ V that is adjacent to v2, v3 and v4, then we also have that
one of the regions wv4v3w or wv3v2w must contain at least 3 vertices hence n ≥ 14. The
vertex w contributes to 3 type 1 cycle, and every other vertex contributes to at most 2
type 1 cycles. Thus, in this case we have N1 < 12 + 3 + 2(n− 8), hence

N (C5, G)−N (C5, G
′) < 22 + 3(n− 7) ≤ 4(n− 3).

If no vertex is adjacent to v2, v3 and v4, then the vertices x ∈ N(v3) \N [v] contribute
to at most 1 type cycle, since v3 is not adjacent to v1 or v3 and d(v) ≥ 5, there are at
least to such vertices, we have that N1 ≤ 12 + 2 + 2(n− 9), so

N (C5, G)−N (C5, G
′) ≤ 19 + 3(n− 7) < 4(n− 3),

since n ≥ 12.
Case 3. c) Suppose that every vertex in V \N [v] is adjacent to at most 3 vertices of

N(v). Note also that if there is an external path of length 2 from two non consecutive
vertices of N(v), say vi, x, vi+2, then there cannot exists an external path of length 2 from
vi+1 to either vi−1 or vi+3. So we can assume, without loss of generality, that v1 is such
that there is no external path of length two from v1 to v3 or v4.

If {v2, v4} is an edge of G, then we have that no vertex inside the region v2v3v4v2 can
be in an external 4-vertex path from v2 to v5, and since this region must contain at least
3 vertices, we have by Lemma 3.3 that N2 ≤ 2(n− 10).

There can exist at most one vertex distinct from v which is adjacent to v2, v4 and v5.
Such vertex would contribute to 6 type 1 cycles. Also, there is at most one vertex distinct
to v adjacent to v3, v4, v2. Such vertex would contribute to 3 type 1 cycles. Every other
vertex contributes to at most 2 type 1 cycles. Therefore N1 ≤ 9+2(n−8), since N0 ≤ 12
we have

N (C5, G)−N (C5, G
′) ≤ 25 + 4(n− 10) < 4(n− 3).

If {v2, v4} is not an edge of G, then N0 ≤ 7. In this case, there can exist at most
one vertex that is adjacent to one of v2 or v5 and one of v3 or v4, such vertex would

v1

v2

v3 v4

v5
v

v1

v2

v3 v4

v5
v

v2

v1

v3
v4

v5
v

Figure 3.8: In the first picture we have a type 1 cycle G using the edge {v2, v5} and its
corresponding cycle in G′. In the second picture we have a type 1 cycle with a vertex
in N(v4) ∩ N(v5) using the edge {v2, v4}; this cycle has no corresponding cycle in G′.
The last picture shows a pair of type 2 cycles, only those using v2 and v5 do not have a
corresponding type 2 cycle in G′.
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contribute to 5 type 1 cycles. And there can exists at most one vertex that is adjacent to
both v3, v4 and one of v2 or v5, such vertex would contribute to 3 type 1 cycles. Therefore
N1 ≤ 8 + 2(n− 8). Finally, by Lemma 3.3, we have N2 ≤ 2(n− 7), thus

N (C5, G)−N (C5, G
′) ≤ 13 + 4(n− 7) < 4(n− 3).
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Chapter 4

Turán numbers of Berge trees

4.1 Background

We begin by recalling Erdős and Gallai Theorem on Pk-free graphs (Theorem 1.24).

Theorem (Erdős, Gallai [23]). Let n, k be positive integers and let G be an n-vertex
graph containing no path of k edges, then

e(G) ≤ (k − 1)n

2
.

Equality is obtained if and only if k divides n and G is the graph consisting of n/k disjoint
complete graphs of size k.

Erdős and Sós [22] conjectured that the same bound would hold for any graph not
containing a copy of some tree with k edges. A proof of this conjecture for sufficiently
large k was announced in the 90’s by Ajtai, Komlós, Simonovits and Szemerédi. We will
consider a variant of this problem in the setting of hypergraphs and multi-hypergraphs.

We recall first the definitions of Berge graphs and the Turán number of a family of
hypergraphs.

Definition. Given a graph G, a hypergraph H is a Berge copy of G, if there exists an
injection f1 : V (G) → V (H) and a bijection f2 : E(G) → E(H), such that if e =
{v1, v2} ∈ E(G), then {f1(v1), f1(v2)} ⊆ f2(e).

Definition. The Turán number of a family of r-uniform hypergraphs F , is the maximum
number of hyperedges in an n-vertex, r-uniform, simple-hypergraph which does not contain
an isomorphic copy of H, for all H ∈ F , as a sub-hypergraph.

An r-muti-hypergraph H is a pair (V (H), E(H)),where V (H) is a finite set and E(H)
is a multi-set of subsets of size r of V . The same definitions for Turán number may be
extended for multi-hypergraphs, we denote the Turán number for multi-hypergraphs by
exmultir (n,F).

The classical theorem of Erdős and Gallai (Theorem 1.24) was extended to Berge
paths in r-uniform hypergraphs by Győri, Katona and Lemons [47].
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Theorem 4.1 (Győri, Katona, Lemons [47]). Let n, k, r be positive integers and let H be
an r-uniform hypergraph with no Berge path of length k. If k > r + 1 > 3, we have

e(H) ≤ n

k

(
k

r

)
.

If r ≥ k > 2, we have

e(H) ≤ n(k − 1)

r + 1
.

The remaining case when k = r+1 was settled later by Davoodi, Győri, Methuku and
Tompkins [14]. In this case the Turán number matches the upper bound of Theorem 4.1
in the k > r + 1 case.

We now turn our attention to the case of trees in hypergraphs. The Turán number of
certain kinds of trees in r-uniform hypergraphs has long been a major topic of research.
For example, there is a notoriously difficult conjecture of Kalai [30] which is more general
than the Erdős-Sós conjecture. The trees which Kalai considers are generalizations of the
notion of tight paths in hypergraphs. In another direction, Füredi [32] investigated linear
trees, constructed by adding r − 2 new vertices to every edge in a (graph) tree. In this
setting, he proved asymptotic results for all uniformities at least 4. Whereas, the articles
above considered classes of trees containing tight and linear paths, respectively, we will
consider the setting of Berge trees.

In the range when k > r, a number of results on forbidding Berge trees were obtained
by Gerbner, Methuku and Palmer in [37]. In particular they proved that if we assume
the Erdős-Sós conjecture holds for a tree T with k edges and all of its sub-trees and also
that k > r + 1, we have exr(n,BT ) ≤ n

k

(
k
r

)
(a construction matching this bound when

k divides n is given by n/k disjoint copies of the complete r-uniform hypergraph on k
vertices). In the present chapter, we will consider the range r > k, where we prove some
exact results.

4.2 Main Results

Considering multi-hypergraphs, we prove the following.

Theorem 4.2 (Győri, Salia, Tompkins, Zamora. [52]). Let n, k, r be positive integers and
let T be a k-edge tree, then for all r ≥ (k − 1)(k − 2),

exmultir (n,BT ) ≤ n(k − 1)

r
.

If r > (k− 1)(k− 2) and T is not a star, equality holds if and only if r divides n and
the extremal multi-hypergraph is n

r
disjoint hyperedges, each with multiplicity k − 1. If T

is a star equality holds only for all (k − 1)-regular multi-hypergraphs.

We conjecture that Theorem 4.2 holds for the following wider set of parameters.

Conjecture 4.3. Let n, k, r be positive integers and let T be a k-edge tree, then for all
r ≥ k + 1,

exmultir (n,BT ) ≤ n(k − 1)

r
.
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For all trees T , where T is not a star, equality holds if and only if r divides n and the
extremal multi-hypergraph is n

r
disjoint hyperedges each with multiplicity k − 1.

The special case of Conjecture 4.3, when the forbidden tree is a path, was settled by
Győri, Lemons, Salia and Zamora (see Corollary 1 in [48]).

We now define a class of hypergraphs which we will need when we classify the extremal
examples in our main result about simple hypergraphs, Theorem 4.6.

Definition 4.4. An r-uniform hypergraph H is two-sided if V (H) can be partitioned
into a set X and pairwise disjoint sets Ai, i = 1, 2, . . . , t (also disjoint from X) of size
r − 1, such that every hyperedge is of the form {x} ∪ Ai for some x ∈ X. We say that
a two-sided r-uniform hypergraph is (a, b)-regular if every vertex of X has degree a and

every vertex of
t⋃
i=1

Ai has degree b.

Remark 4.5. A two-sided r-uniform hypergraph can also be viewed as a graph obtained
by taking a bipartite graph G with bipartite classes X and Y , and “blowing up” each vertex
of Y to a set of size r − 1, and replacing each edge {x, y} by the r-hyperedge containing
x together with the blown up set for y.

Theorem 4.6 (Győri, Salia, Tompkins, Zamora. [52]). Let n, k, r be positive integers and
let T be a k-edge tree which is not a star, then for all r ≥ k(k − 2),

exr(n,BT ) ≤ n(k − 1)

r + 1
.

Equality holds if and only if r+1 divides n, and the extremal hypergraph is obtained from
n
r+1

disjoint sets of size r + 1, each containing k − 1 hyperedges. Unless k is odd, and
T is the balanced double star, where the balanced double star is the tree obtain from and
edge by adding k−1

2
incident edges to each of the ends of the edge, in which case equality

holds if and only if r + 1 divides n and H is obtained from the disjoint union of sets of
size r + 1 containing k − 1 hyperedges each and possibly a (k − 1, k−1

2
)-regular two-sided

r-uniform hypergraph (see Figure 4.1).

r + 1 vertices

k − 1 hyperedges

r + 1 vertices

k − 1 hyperedges

r + 1 vertices

k − 1 hyperedges

|Ai| = r − 1, d(Ai) = k−1
2

d(x) = k − 1

Figure 4.1: An extremal graph for Theorem 4.6 is pictured. Any such graph can be
obtained from disjoint copies of a sets of r+ 1 vertices with k− 1 hyperedges and if T is
the balanced double star, possibly a (k−1, k−1

2
)-regular two-sided r-uniform hypergraph.
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4.3 Proofs of the main results

We are going to use the following fact about trees, before proving the next bound on the
degrees of the vertices in clusters.

Claim 4.7. If T is k-edge tree which is not a star, then there exists a vertex of T which
is not a leaf and has degree at most k+1

2
.

Proof. Let T ′ be the tree obtained by T by removing every leaf of T , since T is not a
star, T ′ has at least two vertices, take any v, w which are leaves in T ′, and note that for
each, every neighbor but one is a leaf, and also, since at most one of the k edges of T is
incident with both u and v, we have that dT (u) + dT (v) ≤ k + 1. And so, one of these
vertices have the desired properties.

Now we introduce two more definitions which we will need in the proofs.

Definition 4.8. Let H be a (multi-)hypergraph. A (k − 1)-cluster is a set of k − 1
hyperedges of H that intersect in at least k − 1 vertices. The intersection of the k − 1
hyperedges is called the core of the (k − 1)-cluster. The union of the k − 1 hyperedges is
called the span of the (k − 1)-cluster.

Definition 4.9. Let H = (V,E) be a multi-hypergraph. A multi-hypergraph H′ = (V ′, E ′)
is called a reduced sub-hypergraph of H if V ′ ⊆ V and there exists an injection f :
E ′ → E such that h ⊆ f(h) for all h ∈ E ′. For an edge h ∈ E ′ we call f(h) ∈ E its
correspondent edge in H.

In the following claims, we bound the degrees of the vertices in a (k − 1)-cluster for
a hypergraph which does not contain a copy of a Berge tree.

Claim 4.10. Let n, k, r be positive integers, with r ≥ k + 1, and let T be a k-edge tree.
If H is an r-uniform multi-hypergraph containing no Berge copy of T and S is a (k− 1)-
cluster in H, then the vertices in the core of S have degree exactly k − 1. In particular,
the core vertices of S are only incident with the hyperedges of S.

Proof. Let C be the set of vertices in the core of S. Suppose, by contradiction, there is
a vertex v in C with degree at least k, and let T ′ be a tree obtained from T by removing
any two leaves x, y. Suppose that the neighbors of these leaves are x′ and y′ respectively
(it is possible that x′ = y′). Since C has at least k − 1 vertices and there are k − 1
hyperedges containing all the vertices in C, we can greedily embed T ′ in C in such a
way that v takes the role of x′. Suppose the vertex u takes the role of y′ in this greedy
embedding. We can complete the embedding of T by using the last hyperedge of S and
an unused vertex in it (one exists since r ≥ k + 1) to embed y. Then since the degree
of v is at least k, we have a hyperedge available to embed x as a unused vertex of this
hyperedge. Thus, we have found a Berge copy of T in H, a contradiction.

Claim 4.11. Let n, k, r be positive integers, with r ≥ k + 1, and let T be a k-edge tree
which is not a star. If H is an r-uniform multi-hypergraph containing no Berge copy of
T and S is a (k − 1)-cluster of H, then any vertex in the span of S that is incident with
a hyperedge not from S, has degree at most

⌊
k−1
2

⌋
.
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Proof. Since T is not a star, by Claim 4.7, there is a vertex x ∈ V (T ) which is not a leaf
and has degree s, s ≤

⌊
k+1
2

⌋
, such that all but one of its neighbors is a leaf, let y be the

neighbor of x which is not a leaf. Suppose, by contradiction, there is a vertex v in the
span of S which is incident with a hyperedge that is not in S and v has degree at least⌊
k+1
2

⌋
. Let C be the set of vertices in the core of S. From Claim 4.10 we know that v

cannot be in C. Pick s hyperedges h1, h2, . . . , hs incident to v in such a way that h1 is
not in S and h2 is in S. Choose a vertex w ∈ h1 not in C (in fact, every vertex in h1 is
outside C by Claim 4.10) and u ∈ h2 in C. Choose further distinct vertices v3, v4, . . . , vs
from the hyperedges h3, h4, . . . , hs. The vertex v will be assigned to the vertex x in the
tree, and the vertex u will be assigned to the vertex y (v3, v4, . . . , vs will be assigned to
the leaves adjacent to x). Thus, using the hyperedges h1, h2, . . . , hs we can embed the
vertex x and all its neighbors in T using at most s − 1 hyperedges from S and at most
s− 1 vertices from C (v and w are not in C).

There are at least (k − 1)− (s− 1) = k − s remaining vertices in C. Each of these is
contained in at least k− s unused hyperedges of S. Thus, the remaining k− s vertices of
the tree can be mapped to distinct vertices from C, and the remaining edges of the tree
may be assigned to distinct unused hyperedges of S.

Remark 4.12. Note that by Claim 4.10 and Claim 4.11, if H is a multi-hypergraph with
uniformity r ≥ k+ 1 that does not contain a Berge copy of a tree on k edges which is not
a star, then (k − 1)-clusters of H are edge-disjoint.

Lemma 4.13. Let k be a positive integer and let T be a k-edge tree which is not a star.
Let H be a multi-hypergraph not necessarily uniform, not containing a Berge copy of T ,
and assume that each hyperedge in H has size at least k+ 1. If there exists a reduced sub-
hypergraph H′ = (V ′, E ′) of H such that dH′(v) ≥ k − 1 for each v ∈ V ′ and |h| ≥ k − 1
for each h ∈ E ′, then H′ contains a (k− 1)-cluster. Note that if S is a (k− 1)-cluster in
H′, then the correspondent edges of S in H are a (k − 1)-cluster.

Proof. Let h2 ∈ E ′. We will show that every vertex in h2 is contained in the same set
of hyperedges in E ′. Let v1, v2 ∈ h2, and suppose by contradiction that there exists a
hyperedge h3 incident to v2 and not to v1. Enumerate the vertices of T by x0, x1, . . . , xk
in such a way that the graph induced by the vertices x0, x1, . . . , xi is connected for all i,
x0 is a leaf of T and x0, x1, x2, x3 is a path of length 3 (such a path exists since T is not
a star). For each i = 1, 2, . . . , k, the vertex xi is adjacent to exactly one vertex of smaller
index, call the edge using xi and the vertex of smaller index ei.

We can embed T into H in the following way. First assign v1 to x1, h2 to {x1, x2}, v2
to x2, h3 to {x2, x3} and any vertex in v3 ∈ h3 \ {v1, v2} to x3. For i = 4, . . . , k, suppose
ei = {xi, xji}. Pick any hyperedge hi ∈ E ′ incident to vji and distinct from h2, h3, . . . , hi−1
(such hyperedges exist since dH′(vji) ≥ k − 1) and assign it to ei. If i ≤ k − 1, pick any
vi ∈ hi \ {v1, v2, . . . , vi−1}, and if i = k, then let h̃k be the correspondent hyperedge of hk
in H. As h̃k has size bigger than k, let vk be any vertex in h̃k \ {v1, v2, . . . , vk−1}. This
vertex vk is assigned to xk. Finally, since v1 is incident with at least k − 1 hyperedges
distinct to h3, there is a hyperedge h1 incident to v1 and distinct from the already chosen
hyperedges. Let h̃1 be the correspondent hyperedge of h1. Take any vertex in h̃1 which
has not been assigned yet and assign it to x0. Thus, by replacing the edge hi with their
correspondent hyperedges, we have found a Berge copy of T in H, a contradiction.
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It follows that for any v1, v2 ∈ h2, we have that v1 and v2 must be incident with
the same set of hyperedges in H′ (by assumption at least k − 1), and so H′ contains a
(k − 1)-cluster.

Lemma 4.13 says that if H does not contain a Berge copy of a tree and we are able
to find a large enough reduced sub-hypergraph, then H must have at least one (k − 1)-
cluster. The main idea of the proofs of the main results is to show that if H has too
many hyperedges and no Berge copy of a tree, then after removing all (k − 1)-clusters,
we would still be able to find a large enough reduced sub-hypergraph. This would imply
that there is still another (k − 1)-cluster in H, a contradiction.

Proof of Theorem 4.2. Let T be a k-edge tree, which is not a star. Suppose that H is
an n-vertex r-uniform hypergraph with at least n(k−1)

r
hyperedges such that H does not

contain a Berge copy T , and let G be the incidence bipartite graph of H, i.e., the bipartite
graph with color classes V (H) and E(H) where v ∈ V (H) is adjacent to h ∈ E(H) if and
only if v ∈ h.

Since e(H) ≥ n(k − 1)

r
, we have

e(G)

v(G)
=

re(H)

n+ e(H)
=

r
n

e(H)
+ 1
≥ r

r
k−1 + 1

=
r(k − 1)

r + k − 1
,

and note that

r(k − 1)

r + k − 1
≥ k − 2

⇔r(k − 1) ≥ (k − 2)(r + k − 1) = r(k − 1) + (k − 2)(k − 1)− r
⇔r ≥ (k − 2)(k − 1).

Hence d(G) = 2e(G)
v(G)

≥ 2
(
r(k−1)
r+k−1

)
≥ k − 2, since r ≥ (k − 2)(k − 1). Suppose H has t

distinct (k − 1)-clusters S1, S2, . . . , St (recall that by Remark 4.12 (k − 1)-clusters are
edge-disjoint). For each Si, let Xi be the set of vertices which are incident only with
hyperedges of Si, let X =

⋃t
i=1Xi and let Y be the set of vertices that are not in X but

are incident with at least one of the (k − 1)-clusters. Let G1 be the induced subgraph of
G obtained by removing X, Y and all (k − 1)-cluster hyperedges from the vertex set of
G. We will show that d(G1) ≥ d(G) (provided G1 is not the empty graph).

The number of edges removed in G is
∑

v∈X dH(v) +
∑

v∈Y dH(v). Since the degree of

each v ∈ X is at most k − 1, we have that

(∑
v∈X

dH(v)

)
≤ |X| (k − 1). Also X is only

incident with the (k−1)-cluster hyperedges, thus we also have the bound

(∑
v∈X

dH(v)

)
≤

tr(k − 1), and since the degree of each v ∈ Y is at most k−1
2

(Claim 4.11), we have that(∑
v∈Y

dH(v)

)
≤ (k − 1) |Y |

2
. Therefore

(∑
v∈X

dH(v) +
∑
v∈Y

dH(v)

)
(r + k − 1)
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=

(∑
v∈X

dH(v)

)
r +

(∑
v∈X

dH(v)

)
(k − 1) +

(∑
v∈Y

dH(v)

)
(r + k − 1)

≤ |X| r(k − 1) + tr(k − 1)2 +
(k − 1) |Y |

2
(r + k − 1) ≤ r(k − 1)(|X|+ t(k − 1) + |Y |),

where in the last inequality we used r+k−1
2

< r. Thus, equality can hold only if Y = ∅.
Rearranging we have(∑

v∈X

dH(v) +
∑
v∈Y

dH(v)

)
≤ r(k − 1)

r + k − 1
(|X|+ t(k − 1) + |Y |) . (4.1)

The left-hand side of (4.1) is the number of removed edges, and the right-hand side is
d(G)/2 times the number of removed vertices. Therefore, by Lemma 1.4, if G1 is non-
empty, we have that

d(G1) ≥ d(G) ≥ 2(k − 2).

Hence, by Lemma 1.3 there is a subgraph G2 of G1 with minimum degree at least k − 1.
Suppose that G2 has bipartite classes A ⊆ V (H) and B ⊆ E(H), and define H′ by taking
the vertex set V ′ = A and E ′ = {h∩ V ′ : h ∈ B}. The condition on the minimum degree
of G2 implies that every vertex of H′ has degree at least k − 1 and every hyperedge of
H′ has size at least k − 1. Then by Lemma 4.13, H′ contains a (k − 1)-cluster, but
this (k − 1)-cluster corresponds to a (k − 1)-cluster in H contradicting the fact that we
removed every (k − 1)-cluster from H. So H must contain a Berge copy of T , unless G1

is empty.
Note that, for G1 to be empty it is necessary that d(G) = 2 r(k−1)

r+k−1 and that equality
holds in the inequality (4.1). This can be possible only if Y = ∅ and

|X| = 1

k − 1

∑
v∈X

dH(v) = tr.

Since every (k − 1)-cluster contains at least r vertices, we have |Xi| ≥ r, and so each
Xi must have size exactly r, hence H is the disjoint union of t hyperedges each with
multiplicity k − 1. Therefore, the number of vertices would be a multiple of r and
e(H) = n(k−1)

r
. Hence if e(H) ≥ n(k−1)

r
, then H must contain a Berge copy of T , or r|n

and H is the disjoint union of n
r

hyperedges each with multiplicity k − 1.

Remark 4.14. For r = (k − 2)(k − 1), the proof above also shows that if e(H) > n(k−1)
r

,
then H must contain a Berge copy of T . However, the extremal construction does not
follow from that proof.

Proof of Theorem 4.6. Let T be a k-edge tree which is not a star. We may assume k > 3,
since otherwise T is a path, and we already know the result for paths. Let H be an
n-vertex hypergraph with at least n(k−1)

r+1
hyperedges and r ≥ k(k − 2). We will proceed

by induction on the number of vertices n; the base cases n ≤ r + 1 are trivial.
If there is a set U of size r + 1 which is incident with at most k − 1 hyperedges, put

V ′ = V \U and let n′ = |V ′|= n− r−1. By induction, H′ the hypergraph induced by V ′,
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has at most n′(k−1)
r+1

hyperedges and equality holds if r + 1|n′ and H′ is the disjoint union

of cliques, unless T is the balanced double star, then it may contain a (k−1, k−1
2

)-regular
two-sided hypergraph as described in the statement of the theorem. Note that if one of
the hyperedges incident with U is incident with a vertex v, v ∈ V ′, then v has degree
at least

⌊
k+1
2

⌋
, and v is in a (k − 1)-cluster of H′, thus we have a Berge copy of T from

Claim 4.11. Hence, the k − 1 hyperedges incident with U are contained in the vertex set
U and H has the desired structure.

Similarly to the proof of Theorem 4.2, we have that

e(G)

v(G)
=

re(H)

n+ r(H)
=

r
n

e(H)
+ 1
≥ r

r+1
k−1 + 1

=
r(k − 1)

r + k
,

and note that

r(k − 1)

r + k
≥ k − 2⇔ r(k − 1) ≥ (k − 2)(r + k) = r(k − 1) + (k − 2)k − r ⇔ r ≥ k(k − 2).

Hence d(G) = 2e(G)
v(G)

≥ 2
(
r(k−1)
r+k−1

)
≥ k − 2, since r ≥ (k − 2)(k − 1). Suppose that H

has t distinct (k − 1)-clusters S1, S2, . . . , St. Define the sets X1, . . . , Xt, X and Y as in
the proof of Theorem 4.2. We are going to remove all vertices and hyperedges of these
(k−1)-clusters as in the previous proof, and we will denote the incidence bipartite graph
of H by G. By G1 we will denote the incidence bipartite graph of the hypergraph H′,
obtained from H after removing the (k − 1)-clusters.

If |Xi| ≥ r + 1 for some i, then by taking U ⊆ Xi of size r + 1, we would have that
U is incident with at most k− 1 hyperedges, and we would be done by induction. Hence
we assume that |Xi| ≤ r.

For each i, with |Xi| = r, we have∑
v∈Xi

dH(v) ≤ (r − 1)(k − 1) + 1 = |Xi| (k − 1)− (k − 2),

since any hyperedge is incident with at most r − 1 vertices from Xi, with the possible
exception of at most one hyperedge (Xi, if Xi ∈ E(H)).

For each i, with |Xi| ≤ r − 1, we have∑
v∈Xi

dH(v) ≤ |Xi| (k − 1) ≤ (r − 1)(k − 1).

Let a be the number of Xi, 1 ≤ i ≤ t, with the size r. Then we have the following
inequalities ∑

v∈X

dH(v) =
∑
|Xi|=r
v∈Xi

dH(v) +
∑
|Xi|<r
v∈Xi

dH(v) ≤ t(r − 1)(k − 1) + a, (4.2)

and∑
v∈X

dH(v) ≤
∑
|Xi|=r
v∈Xi

(|Xi|)(k−1)−(k−2))+
∑
|Xi|<r
v∈Xi

|Xi| (k−1) = |X| (k−1)−a(k−2). (4.3)
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We also have

tr(k − 1) ≤
∑
v∈X

dH(v) +
∑
v∈Y

dH(v) ≤ t(r − 1)(k − 1) + a+
k − 1

2
|Y | , (4.4)

where in the first inequality follows from the fact the set the edges of t(k− 1) hyperedges
of the t cluster are incident only with the set X ∪ Y , and the second inequality follows
directly from Claim 4.11 together with the fact that dH(v) ≤ k − 1 by definition.

Rearranging (4.4) yields

t(k − 1) ≤ a+
|Y | (k − 1)

2
. (4.5)

The following three bounds come from multiplying inequality (4.3) and (4.2) by r and k,
respectively, and the bound from Claim 4.11 by k + r.(∑

v∈X

dH(v)

)
r ≤ |X| r(k − 1)− ar(k − 2). (4.6)

(∑
v∈X

dH(v)

)
k ≤ t(r − 1)k(k − 1) + ak. (4.7)

(∑
v∈Y

dH(v)

)
(k + r) ≤ |Y | (k − 1)

2
(k + r). (4.8)

Now we bound the number of deleted hyperedges times r+ k. From (4.6), (4.7), (4.8)
and then (4.5), it follows that(∑

v∈X

dH(v) +
∑
v∈Y

dH(v)

)
(k + r)

≤ |X| r(k − 1)− ar(k − 2) + t(r − 1)k(k − 1) + ak +
|Y | (k − 1)

2
(k + r)

= |X| r(k − 1)− ar(k − 2) + tr(k − 1)2 + t(k − 1)(r − k) + ak +
|Y | (k − 1)

2
(k + r)

≤ |X| r(k − 1)− ar(k − 2) + tr(k − 1)2 + a(r − k) + ak +
|Y | (k − 1)

2
(k + r + (r − k))

= |X| r(k − 1)− ar(k − 3) + tr(k − 1)2 + |Y | (k − 1)r

= r(k − 1)(|X|+ |Y |+ t(k − 1))− ar(k − 3)

≤ r(k − 1)(|X|+ |Y |+ t(k − 1)).

Rearranging we have(∑
v∈X

dH(v) +
∑
v∈Y

dH(v)

)
≤ r(k − 1)

r + k
(|X|+ t(k − 1) + |Y |) . (4.9)

The left-hand side of (4.9) is the number of removed edges, and the right-hand side of
(4.9) is d(G)/2 times the number of removed vertices.
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Hence, by Lemma 1.4 if G1 is nonempty, we have that

d(G1) ≥ d(G) ≥ 2(k − 2).

Thus, by Lemma 1.3 we can find a subgraph G2 of G1 with minimum degree at least
k − 1. Suppose that G2 has bipartite classes A ⊆ V and B ⊆ E(H), define H′ by taking
the vertex set V ′ = A and hyperedge set E ′ = {h ∩ V ′ : h ∈ B}. The condition on the
minimum degree of G2 implies that every vertex of H has minimum degree at least k−1,
and every hyperedge of H′ has size at least k − 1. Then by Lemma 4.13, H′ contains a
(k − 1)-cluster, which contradicts that we have removed all (k − 1)-clusters in H.

For G1 to be empty it is necessary that d(G) = 2 r(k−1)
r+k

, and for (4.9) to hold with

equality, we must have that e(H) = n(k−1)
r+1

. To obtain equality in (4.9), it is necessary that
a = 0 (since k > 3) and that every hyperedge contains one of the Xi. It then follows that
|X| = t(r − 1), and by (4.5), |Y | = 2t. By (4.8), for every v ∈ Y , we have dH(v) = k−1

2
,

so n = t(r+ 1). Then H is a disjoint union of sets of r+ 1 vertices with k−1 hyperedges,
and a hypergraph constructed from the classes A = {X1, X2 . . . , Xt} and B = Y , where
{y,Xi} is an edge if Xi ∪ {y} is a hyperedge of H. Note that 2t = 2 |A| = |B|, the
degree of every vertex in B is k−1

2
and every vertex of A has degree k− 1; that is, H is a

(k − 1, k−1
2

)-regular two-sided hypergraph.
However, this is only possible if k is odd, and it is simple to check that this construction

contains a Berge copy of every k-edge tree which is not a balanced k-edge double star or
the k-edge star.
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Chapter 5

Ramsey numbers of
Berge-hypergraphs and related
structures

5.1 Introduction

We will recall the definition of the set of Berge-copies of a graph G. In fact, we will give
a more general definition in which rather than starting with a graph G we may start with
any uniform hypergraph.

Definition 5.1. Let H = (V, E) be a k-vertex s-uniform hypergraph. Then given an
integer r ≥ s, BH (the set of Berge-copies of H) is defined to be the set of r-uniform
hypergraphs H′ = (W,F) such that there exist U ⊆ W and bijections φ : V → U ,
ψ : E → F such that for all e = {u1, u2, . . . , us} ∈ E, {φ(u1), φ(u2), . . . , φ(us)} ⊆ ψ(e).
In this case, we call U the core of H′.

Remark 5.2. For simplicity, we will often (when it cannot lead to confusion) say that a
hypergraph is a BH to mean it is an element of BH. For example, we may, in a colored
hypergraph, say that a certain hypergraph is a red BKt, meaning that it is an element
of the set BKt which is red. Similar terminology will be used with respect to the other
structures which we define later.

One of the main topics of this chapter is determining the Ramsey number of the set
of Berge-copies of a hypergraph (mainly in the graph case). We show that the 2-color
Ramsey number of BKt versus BKs is linear. In particular, we prove the following
theorem:

Theorem 5.3 (Salia, Tompkins, Wang, Zamora. [79]).

R3(BKs, BKt) =


t+ s− 1 if {s, t} = {2}, {3}, {2, 3} or {2, 4},
t+ s− 2 if s = 2, t ≥ 5, or s = 3, t ≥ 4 or s = t = 4,

t+ s− 3 if s ≥ 4 and t ≥ 5.

For higher uniformity, we will show the following theorem.
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Theorem 5.4 (Salia, Tompkins, Wang, Zamora. [79]).

R4(BKt, BKt) =

{
t+ 2 if 2 ≤ t ≤ 5,

t+ 1 Otherwise.

Moreover, for general uniformity k we prove

Theorem 5.5 (Salia, Tompkins, Wang, Zamora. [79]). For k ≥ 5 and t ≥ t0(k) (for
k = 5, t0 = 23 suffices),

Rk(BKt, BKt) = t.

Remark 5.6. We remark that a similar direction (but with mostly non-overlapping re-
sults) has been pursued by two other groups independently [6, 36]. In particular, [6] is
primarily concerned with non-uniform hypergraphs whereas we focus solely on the uniform
case.

In addition to Berge-hypergraphs, we consider a variety of related structures. First,
we discuss a more restrictive class of hypergraphs defined from a given hypergraph H.

Definition 5.7. Let H = (V, E) be a k-vertex s-uniform hypergraph and let S ⊂ V . The
trace of H on S, denoted Tr(H, S), is the hypergraph with vertex set S and hyperedge set
{h∩S : h ∈ E}. Then, given r ≥ s, TH is defined to be the set of r-uniform hypergraphs
{H′ : Tr(H′, V (H)) = H}. For each such element H′ ∈ TH, we refer to V (H) as the core
of H′.

This notion originates from the idea of shattering sets and the Sauer-Shelah lemma [80,
81, 84]. This lemma provides an upper bound on the size of an n-vertex (non-uniform)
hypergraph avoiding Tr(H, S) = 2S for all k-vertex sets S. Frankl and Pach [31] inves-
tigated the same problem with the restriction that the hypergraph is r-uniform. In the
case when H is a (graph) cycle, TH was studied under the name weak β-cycle [27]. In
the case of complete graphs, bounds were obtained by Mubayi and Zhao in [73]. For a
survey on extremal problems for traces see [33].

We now turn our attention to an even more restrictive notion called the expansion of
a hypergraph.

Definition 5.8. Let H = (V, E) be an s-uniform hypergraph. The r-expansion HH, for
r ≥ s, is defined to be the r-uniform hypergraph formed by adding r − s distinct new
vertices to every hyperedge in H. Precisely, for each hyperedge e ∈ E, define the set
Ue = {ue,1, ue,2, . . . , ue,r−s}, and let HH = (V ∪ (∪e∈EUe),F) where F = {e∪Ue : e ∈ E}.
We call V the core of H and V (H) \ V , the set of expansion vertices.

If H is a cycle we recover the well-known notion of a linear cycle. Ramsey and Turán
problems for linear cycles have been investigated intensely (see, for example [56]). The
Turán problem when H is a complete graph was investigated in [70] and [77]. See [72]
for a detailed survey of Turán problems on expansions. In this article, we investigate
the 2-color Ramsey number of the 3-expansion of complete graphs Kt. By definition, a
3-expansion of complete Kt has

(
t
2

)
+ t vertices. Thus R3(HKt, HKt) ≥

(
t
2

)
+ t. We prove

in the following theorem yielding a cubic upper bound on R3(HKt, HKs).
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Theorem 5.9 (Salia, Tompkins, Wang, Zamora. [79]). For t, s ≥ 2, we have

R3(HKt, HKs) ≤ 2st(s+ t).

Remark 5.10. For t ≥ s, as a lower bound we can take a blue clique on t +
(
t
2

)
− 1

vertices. However, there is still a gap in the order of magnitudes of quadratic versus
cubic.

In [12], Conlon, Fox and Rödl proved the same bound for diagonal Ramsey numbers.
They showed that R3(HKt, HKt) ≤ 4t3. This bound was latter improved by Fox and Li
in [28] where it was shown that R3(HKt, HKt) = O(t2 ln t).

Next, we consider another way a hypergraph can be defined from another arbitrary
hypergraph called a suspension [57] (or earlier enlargement [82]). Conlon, Fox and Su-
dakov considered the Ramsey numbers of the 3-suspension of a graph versus a 3-uniform
clique in a short section of [13].

Definition 5.11. Let H = (V, E) be an s-uniform hypergraph. The r-suspension SH,
for r ≥ s, is defined to be the hypergraph formed by adding a single fixed set of r − s
distinct new vertices to every edge in H. Precisely, let U = {u1, u2, . . . , ur−s}, and define
SH = (V ∪ U,F) where F = {e ∪ U : e ∈ E}. We call V the core of SH and U the set
of suspension vertices.

For suspensions of hypergraphs, we are only able to obtain Ramsey-type bounds using
standard Ramsey number techniques. In particular, we show the following.

Theorem 5.12 (Salia, Tompkins, Wang, Zamora. [79]). For r ≥ 3, we have

(1 + o(1))

√
2

e
t
√

2
t
< Rr(SKt, SKt) ≤ R2(Kt, Kt) + (r − 2).

Finally, we discuss a a class of hypergraphs defined from a graph which is larger than
the class defined by a Berge-hypergraph.

Definition 5.13. The 2-shadow of a hypergraph H = (V, E), denoted ∂2(H), is the graph
G = (V,E) where E = {{x, y} : {x, y} ⊆ e ∈ E}. Given a graph G = (V,E), define ∂G
to be the set of hypergraphs {H : E(G) ⊆ ∂2(H)}.

In [70], Mubayi determined the Turán number of ∂Kt in all uniformities. In this
Chapter, we prove the following.

Theorem 5.14 (Salia, Tompkins, Wang, Zamora. [79]). We have

(1) R3(∂K2, ∂K2) = 3.

(2) R3(∂K2, ∂Ks) = s for s ≥ 3.

(3) R3(∂Kt, ∂Ks) = t+ s− 3 for s, t ≥ 3.

(4) Rr(∂Kt, ∂Ks) = max{s, t} for r ≥ 4 and s, t ≥ r.

Remark 5.15. Observe that for any graph G, we have {HG,SG} ⊂ TG ⊂ BG ⊂ ∂G.

Organization This Chapter is organization as follows: In Section 5.2, we give the proof
of Theorems 5.3, 5.4 and 5.5. In Section 5.3, we give the proof of Theorem 5.14. In
Section 5.4, we show some results on the Ramsey number of trace-cliques. In Section 5.5,
we give the proof of Theorems 5.9 and 5.12.
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5.2 Ramsey number of Berge-hypergraphs

To avoid tedious case analysis, some of the small cases are verified by computer. The
code is available at https://github.com/wzy3210/berge_Ramsey. We list below the
results verified by the computer.

Proposition 5.16. We have

(1) R3(BK3, BK4) = 5.

(2) R3(BK4, BK5) = 6.

(3) R4(BKt, BKt) ≤ t+ 2 for 2 ≤ t ≤ 5.

(4) R4(BK6, BK6) ≤ 7.

5.2.1 Proof of Theorem 5.3

Recall that the number R3(BKs, BKt) is the smallest number N such that any 2-edge-
colored complete 3-uniform hypergraph (with colors blue and red) on n ≥ N vertices
either contains a blue Berge Ks or a red Berge Kt. In this subsection, we will show that

R3(BKs, BKt) =


t+ s− 1 if {s, t} = {2}, {3}, {2, 3} or {2, 4},
t+ s− 2 if s = 2, t ≥ s+ 3, or s = 3, t ≥ s+ 1 or s = t = 4,

t+ s− 3 if s ≥ 4 and t ≥ 5.

Let us first deal with the cases when one of s or t is small. In particular, we prove
them in the following proposition.

Proposition 5.17. We have

(1) R3(BK2, BK2) = 3.

(2) R3(BK2, BK3) = 4.

(3) R3(BK3, BK3) = 5.

(4) R3(BK2, BK4) = 5.

(5) R3(BK4, BK4) = 6.

(6) R3(BK2, BKt) = t when t ≥ 5.

(7) R3(BK3, BKt) = t+ 1 when t ≥ 4.

Proof. (1) is trivial since any non-trivial edge-colored 3-uniform hypergraph contains at
least 3 vertices and any edge is a BK2. For (2), R3(BK2, BK3) > 3 since a single red

edge is a complete K
(3)
3 and is not a red BK3. For the upper bound, suppose we have

an edge-colored K
(3)
4 . If it has a blue edge, we get a blue BK2. Otherwise all of the 4

edges are red, in which case we have a red BK3. Similar reasoning gives (4) and (6).

For (3), R3(BK3, BK3) > 4 since an edge-colored K
(3)
4 with two red and two blue edges
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does not have a monochromatic BK3. Similar reasoning gives the lower bound of (5).
The upper bounds of (3) and (5) follow from Lemma 5.19. For (7), we first show that

R3(BK3, BKt) > t. Let H be an edge-color K
(3)
t with two special vertices v1, v2 such

that any hyperedge containing both v1, v2 is blue and all other hyperedges are colored
red. Observe that any blue Berge clique or red Berge clique cannot contain both v1 and
v2. Therefore, there is no blue BK3 or red BKt in H. For the upper bound, it is checked
by computer that R3(BK3, BK4) = 5 and the bound R3(BK3, BKt) ≤ t + 1 (t ≥ 5)
follows from Lemma 5.19, which will be proven later.

Next, we show the lower bound in the following proposition.

Proposition 5.18. Suppose s, t ≥ 3. We then have

R3(BKt, BKs) ≥ t+ s− 3.

Proof. We will construct a 2-edge-colored complete 3-uniform hypergraph H on t+ s− 4
vertices without a blue BKt and red BKs. Let V (H) = A ∪ B where A and B are
two disjoint sets with |A| = t − 2 and |B| = s − 2. For all a, a′ ∈ A, b ∈ B, color
the hyperedge {a, a′, b} blue. For all a ∈ A, b, b′ ∈ B, color the hyperedge {a, b, b′} red.
Moreover, color all triples in A blue and all triples in B red. Observe that any blue Berge
clique contains at most one vertex from B and any red Berge clique contains at most
one vertex from A. It follows that H does not contain a blue BKt or a red BKs. Hence
R3(BKt, BKs) ≥ t+ s− 3.

Before we present the proof of Theorem 5.3, we will prove the following lemma.

Lemma 5.19. Suppose t, s ≥ 3. Then

R3(BKt, BKs) ≤ max{R3(BKt−1, BKs), R
3(BKt, BKs−1)}+ 1.

Proof. Without loss of generality, assume t ≥ s. Let H be a 2-edge-colored complete
3-uniform hypergraph with N := max{R3(BKt−1, BKs), R

3(BKt, BKs−1)} + 1 vertices,
and let V be the set of vertices. We want to show that H contains either a blue BKt or
a red BKs as a sub-hypergraph.

Take v ∈ V and let H′ be the hypergraph induced by the vertices V ′ := V \{v}. Since
|V ′| ≥ R3(BKt−1, BKs), it follows by definition that H′ contains a blue BKt−1 or a red
BKs. If there is a red BKs we are done. Otherwise suppose we have a blue BKt−1, with
the vertex set Y as its core. Now let us consider G, the blue trace of v in H, i.e., G is
the graph with vertex set V ′ such that there exists an edge {x, y} in G if and only if the
hyperedge {x, y, v} in H is colored blue.

Claim 5.20. Either we can extend Y using v to obtain a blue BKt or there exists a vertex
u ∈ Y with dG(u) ≤ 1. Moreover if dG(u) = 1 and {u,w} is the only edge containing u,
then dG(w) < N − 2.

Proof. Consider the incidence graph of G, i.e., the bipartite graph I = Y ∪ E(G) such
that for every u ∈ Y , e ∈ E(G), u is incident to e if and only if u ∈ e. Observe that Y
is the core of a blue BKt−1 with none of its hyperedges containing v. Therefore, by our
definition of G (the blue trace of v in H), if there is a matching of Y in I, then we can
use the edges of the matching to obtain a blue BKt with Y ∪ {v} as its core.
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Now assume I does not contain a matching of Y . We first claim that there exists a
vertex u ∈ Y with dG(u) ≤ 1. Note that the degree of each e ∈ E(G) is at most 2. Thus,
if dI(u) ≥ 2 for all u ∈ Y , then it follows that for every S ⊆ Y , |NI(S)|≥ |S|, which gives
us a matching on Y by Hall’s condition. Thus by contradiction, we have a vertex in Y
of degree at most 1 in G.

Suppose now dG(u) = 1 for some u in Y and e = {u,w} is the unique edge containing
u. We claim that dG(w) < N − 2. Suppose by contradiction that dG(w) ≥ N − 2. This
implies that {v, w, z} is a blue edge for every z ∈ V (H)\{v, w}. Moreover, by our lower
bound in Proposition 5.17 (when s, t are small) and Proposition 5.18, there exists another
vertex y ∈ V ′\Y . It follows that we can extend Y into the core of a blue BKt with the
following embedding: for each z ∈ Y \{w}, embed {v, z} to the hyperedge {v, z, w}. Then
embed {v, w} to {v, w, y}. Thus if we do not have a blue BKt with Y ∪ v as its core,
then we have dG(w) < N − 2.

This claim says that either there exists u ∈ Y such that {v, u, x} is red for every
x ∈ V ′\{u}, or there exists u,w ∈ V ′ such that {v, u, x} is red for every x 6= w and there
exists wx such that {v, w, wx} is red. Note that the second case covers the first case by
taking any w 6= u in V ′ and picking wx = u. So it suffices to assume the second case.

Now since N − 1 ≥ R3(BKt, BKs−1), it follows that H′ either contains a blue BKt or
a red BKs−1. We are done in the former case. So, suppose that H′ contains a red BKs−1.
We will show that we can extend this BKs−1 by adding the vertex v into its core. Let X
be the core of the Berge-Ks−1. Now for every x ∈ X with x /∈ {u,w}, we know that the
edge {v, u, x} is colored red. Hence we can embed {v, x} into the red hyperedge {v, u, x}.
It follows that we have an embedding of the edges from v to all but at most two vertices
of X, namely u,w. In the case that w ∈ X, we can embed {v, w} into the hyperedge
{v, w, wx}, which is red. Now if u /∈ X, we are done. Otherwise, assume u ∈ X. Note
that by the lower bounds in Proposition 5.17 (when s, t are small) and Proposition 5.18,
|V ′|= N − 1 ≥ max{R3(BKt−1, BKs), R

3(BKt, BKs−1)} ≥ s + 1. Hence it follows that
there exists another vertex y ∈ V (H′)\(X ∪ {w}). Note that by our choice of u, {v, u, y}
is red. Thus, we can embed {v, u} into {v, u, y}. The above embedding extends X into
the core of a red BKs and we are done.

Lemma 5.21. R3(BK4, BKt) = t+ 1 for t ≥ 5.

Proof. We will proceed by induction on t. The base case that R3(BK4, BK5) = 6 is
verified by computer. Suppose now that Lemma 5.21 is true for all 5 ≤ t′ < t. Let
H be a 2-edge-colored complete 3-uniform hypergraph on t + 1 vertices. Note that by
Proposition 5.17, we have R3(BK3, BKt) = t+1. Hence H either contains a blue BK3 or
a red BKt. If the latter happens, we are done. So, suppose H contains a blue BK3, with
the vertex set Y as its core. Note that t + 1 ≥ 7 and a Berge-triangle contains at most
6 vertices. Hence there exists a vertex v that is not used by any hyperedge in the blue
BK3. Similar to Lemma 5.19, let G be the blue trace of v in H. Again, by Claim 5.20,
either we can extend Y using v to obtain a blue BK4 or there exists a vertex u ∈ Y
with dG(u) ≤ 1. Moreover, if dG(u) = 1 and {u,w} is the only edge containing u, then
dG(w) < t − 1. In the former case, we are done. Otherwise, WLOG, assume that there
exists a u ∈ Y and w ∈ V (H)\{v, u} such that {v, u, x} is red for every x 6= w and there
exists some vertex wx such that {v, w, wx} is red. By induction, H[V (H)\{v}] contains
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either a blue BK4 or a red BKt. In the former case, we are done. In the latter case, we
can extend the red BKt to a red BKt+1 in the same way as in Lemma 5.19.

Now this result together with Lemma 5.19 allows us to show the following proposition.

Proposition 5.22. R3(BKt, BKs) ≤ t+ s− 3, for t, s ≥ 4 and max{s, t} ≥ 5.

Proof. We already know this is true if one of t or s is 4, and so for t, s ≥ 5 the result
follows from induction on t+ s, using Lemma 5.19.

Theorem 5.3 follows from Proposition 5.17, 5.18 and 5.22.

5.2.2 Proof of Theorem 5.4

In this section, for ease of reference, sometimes we use the notation h→ e to denote that
the hyperedge h ∈ E(H) is mapped to the vertex pair e ∈ E(G) when constructing the
embedding of E(G) in E(H).

Let us first deal with Theorem 5.4 for small values of t.

Proposition 5.23. For 2 ≤ t ≤ 5, R4(BKt, BKt) = t+ 2.

Proof. For the lower bound, we use the fact that if R4(BKt, BKt) = n, for some t, then(
n
4

)
≥ 2
(
t
2

)
− 1. For 2 ≤ t ≤ 5, this shows that R4(BKt, BKt) ≥ t+ 2. The upper bound

that R4(BKt, BKt) ≤ t+ 2 for 2 ≤ t ≤ 5 is verified by computer.

Now we want to show that R4(BKt, BKt) = t+ 1 for all t ≥ 6. Again, we start with
the lower bound by showing the following proposition.

Proposition 5.24. R4(BKt, BKt) ≥ t+ 1 for all t ≥ 6.

Proof. We want to construct a 2-edge-coloring of a complete 4-uniform hypergraph on t
vertices without a monochromatic BKt. Let H be a K

(4)
t with two special vertices v1, v2.

Any hyperedge containing both v1, v2 is colored blue. All other hyperedges are colored
red. We claim that there is no monochromatic BKt in H. Indeed, there is no red BKt

since only one of v1, v2 can be in any red BKt. For blue BKt, note that by our coloring
there are only

(
t−2
2

)
blue edges, which are fewer than the

(
t
2

)
edges needed for BKt.

Now let us move on to the upper bound.

Lemma 5.25. For t ≥ 6, we have that

R4(BKt, BKt) ≤ t+ 1.

Proof. We prove the lemma by inducting on t. The base case that R4(BK6, BK6) ≤ 7 is
verified by computer. Now assume that t ≥ 7 and the lemma is true for all t′ < t.

Let H be a 2-edge-colored complete 4-uniform hypergraph on a vertex set V of size
t + 1. For ease of reference, given a set of vertices S, let db(S) and dr(S) denote the
number of blue and red hyperedges containing S as subset, respectively.

Claim 5.26. Suppose H does not contain a monochromatic BKt. Let v be a fixed vertex
in H. If there is a monochromatic BKt−1 (without loss of generality, assume it is blue)
without using any hyperedge containing v, then there exists another vertex u such that
db({v, u}) ≤ 2, i.e., all hyperedges containing both v, u are red except for at most two.
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Proof. Let Hb be the blue Berge-Kt−1 hypergraph not using any hyperedge containing v.
Let {u1, u2, . . . , ut−1} be the core of Hb. Construct a bipartite graph G = A ∪ B where
A = {u1, . . . , ut−1} and B =

(
V \{v}

3

)
. For ui ∈ A, S ∈ B, ui is adjacent to S in G if and

only if ui ∈ S and {v} ∪ S is a blue edge in H. Note that for every S ∈ B, dG(S) ≤ 3.
Therefore, if dG(ui) ≥ 3 for every ui ∈ A, then there exists a matching of A in G by Hall’s
theorem, which implies that we can extend Hb to a blue BKt by adding v into the core of
Hb. This contradicts our assumption that H does not have a monochromatic BKt, and
the proof of Claim 5.55 is complete.

Now for every v ∈ V , there exists a monochromatic BKt−1 in H[V \{v}] by induction.
Hence by Claim 5.26, for every vertex v, there exists another vertex u in V , such that
dc({v, u}) ≥

(
t−1
2

)
− 2, for some c ∈ {blue, red}. We then call the pair {v, u} a c couple

where c ∈ {blue, red}. Moreover, call {a, b} a ‘bad pair’ of {v, u} if the hyperedge
{a, b, v, u} is not in color c.

By Claim 5.26, every vertex is contained in a couple. It follows that we have at
least (t + 1)/2 ≥ 4 couples so at least two of them are of the same color. Without loss
of generality, let {v1, u1} and {v2, u2} be two red couples. Our goal is to obtain a red
embedding of a BKt using mostly edges containing {v1, u1} and {v2, u2}. We assume
that {v1, u1} ∩ {v2, u2} = ∅ and remark that the other case is similar and simpler. Let
{a1, b1}, {a2, b2} be the two possible bad pairs of {v1, v2}, and let {c1, d1}, {c2, d2} be two
possible bad pairs of {v2, u2}. If {v1, u1} has exactly two bad pairs, we can assume that
for at least one of them (with loss of generality the pair {a2, b2}) there is a red edge h
containing it. Otherwise {a1, b1} and {a2, b2} are blue couples with no bad pairs and it
is easy to find a blue BKt by only using the blue edges containing {a1, b1} and {a2, b2}.

If {v1, u1} has exactly one bad pair, let {a1, b1} be that pair and pick {a2, b2} arbi-
trarily. Note that {a2, b2} is contained in some red edge h. If {v1, u1} has no bad pair,
then pick {a1, b1} and {a2, b2} arbitrarily. Moreover, we assume that {v1, u1, v2, u2} is a
red edge and observe that otherwise constructing the embedding is easier.

Suppose {a1, b1} and {a2, b2} have a common vertex u. If u /∈ {v2, u2}, relabel a1, b1
such that a1 = u, and if u ∈ {v2, u2} relabel u2, v2, a1, b1 such that b1 = u2 = u. Otherwise
just relabel a1, b1 such that a1 6∈ {v2, u2}. Let x1, x2, . . . , xt−4 be an enumeration of
V ′ := V \ {v1, v2, u1, u2, a1}. If b1 6∈ {v2, u2}, assume x1 = b1. Otherwise assume without
loss of generality that b1 = u2. We are going to construct the embedding in three phases:

Phase 1: Embed all vertex pairs in V ′.

Consider the following embedding: For i, j ∈ {1, . . . , t − 4}, embed {xi, xj} in
{u1, v1, xi, xj} if i+ j is odd, or in {u2, v2, xi, xj} otherwise.

We have a red BKt−4 except possibly for at most three missing edges. Without loss
of generality, let {xi1 , xj1}, {xi2 , xj2}, {xi3 , xj3} be the three possible bad pairs where
i1 + j1 is odd and both i2 + j2 and i3 + j3 are even. If {xi1 , xj1} is indeed a bad pair
of {v1, u1}, then it follows that {xi1 , xj1} = {a2, b2}. Then we can embed {xi2 , xj2}
in {v1, u1, xi2 , xj2}, embed {xi3 , xj3} in {v1, u1, xi3 , xj3} and embed {xi1 , xj1} in h.
Otherwise, {xi1 , xj1} does not exist and the above embedding still works except
when one of {xi2 , xj2}, {xi3 , xj3} is the pair {a2, b2}. We can then use h to embed
{a2, b2}.

66

□ 



Phase 2: Embed all edges from {v1, u1, v2, u2} to vertices in V ′.

Consider the following embedding:

{v1, u1, a1, xi} → {xi, u1} for i 6= 1.

{v1, u1, v2, xi} → {xi, v1} for i 6= 1.

{v2, u2, a1, xi} → {xi, u2}.
{v1, v2, u2, xi} → {xi, v2}.

Note that x1 can only be contained in one bad pair otherwise we would have
picked x1 to be a1. Hence among the three edges {v1, u1, x1, v2}, {v1, u1, x1, u2},
{v1, u1, a1, x1}, at least two of them are red. Embed {x1, v1}, {x1, u1} into those
two red edges. If all three are red, do not use {v1, u1, u2, x1} in this part of the
embedding.

Now let us analyze the potential bad cases. There are at most 3 of these edges in
Phase 2 that are not red.

If {u1, v1, a1, xi, }, i 6= 1 is blue, then use the edge {v1, u1, u2, xi} to embed {u1, xi}.
If {v1, u1, v2, xi}, i 6= 1 is blue, then use the edge {v1, u1, u2, xi} to embed {v1, xi}.
If there are two different indexes i, j such that h1 ∈ {{v2, u2, a1, xi}, {v1, v2, u2, xi}}
and h2 ∈ {{v2, u2, a1, xj}, {v1, v2, u2, xj}} are both blue, then we can replace h1 with
{u1, v2, u2, xi} and replace h2 with {u1, v2, u2, xj}. The same embedding works if
there is only one bad pair of {v2, u2} in this phase.

If for some i both edges {v1, v2, u2, xi}, {v2, u2, a1, xi} are blue, then it follows that
the edge {v2, u2, xi, y} is red for every vertex y, with y /∈ {v1, a1, v2, u2, xi}. Consider
the set of edges Ei = {{v2, u2, xi, y} : y /∈ {v1, v2, u2, a1, xi}}. Note that |Ei|= t− 4.
In Phase 1, at most d(t− 6)/2e edges in Ei are used except when t is even and i is
odd, in which case b(t− 6)/2c edges in Ei are used. If t is even and i is odd, we
have at least t − 4 − b(t− 6)/2c ≥ 3 edges in Ei still available. In other cases, we
have at least t − 4 − d(t− 6)/2e ≥ 2 edges in Ei still available. Either there exist
two edges in Ei that can be used to embed {v2, xi} and {u2, xi}, or in Phase 1 there
exists some j such that {v1, u1, xi, xj} is blue and {v2, u2, xi, xj} is used to embed
{xi, xj}. In this case, there exists some k ∈ {1, . . . t− 4}\{i} such that i+ k is even
and {v1, u1, xi, xk} is red. Embed {xi, xk} into {v1, u1, xi, xk}. It follows that we
again have two available red edges containing xi, v2, u2 to embed {v2, xi}, {u2, xi}.

Phase 3: Embed the edges in

(
{u1, v1, u2, v2}

2

)
.

If the edge {u1, v1, v2, a1} is red, then use it to embed {v1, v2}. Otherwise we
know that {v2, a1} and {u2, a1} are the two bad pairs of {v1, u1}. It follows that
the edge {v1, u1, u2, x1} is still available and the edge {v1, u1, v2, x1} was used to
embed x1 with one of v1 or u1 (without loss of generality, assume v1). In this case,
embed {v1, x1} in {v1, u1, u2, x1} instead and use the edge {v1, u1, v2, x1} to embed
{v1, v2}. Now we will embed {v1, u2} and {u1, u2}. Let Eu2 = {{v1, u1, u2, y} : y /∈
{v1, u1, v2, u2}}. Note that |Eu2|= t− 3 and at most 2 edges in Eu2 are blue. Hence
at least (t − 3) − 2 ≥ 2 of the edges in Eu2 are red. For each red edge in Eu2 , if
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it was used, it was because there exists some bad pair of {v1, u1} which did not
use u2. That in turn implies that there are still at least 2 edges in Eu2 that are
red and available. Hence we can embed {v1, u2} and {u1, u2} into these two edges.
Similarly we can find an edge of the form {v2, u1, u2, y} to embed {u1, v2}.
Finally, by counting the edges used, it is easy to check that there are still red edges
of the form {v1, u1, x, y} and {v2, u2, x, y} available to embed both {v1, u1} and
{v2, u2}, since each pair is in at least

(
t−1
2

)
− 2 red edges.

To determine the Ramsey number in the case of cliques of different sizes, we first have
the following bounds which are trivial from Theorem 5.4.

Proposition 5.27. Suppose t ≥ s ≥ 2 and t ≥ 6, then

t ≤ R4(BKt, BKs) ≤ t+ 1.

Proof. The construction is trivial, we just take a clique on t − 1 vertices. The upper
bound follows since s ≤ t implies R4(BKt, BKs) ≤ R4(BKt, BKt).

For s = t− 1 we obtain the same bound as the case s = t.

Proposition 5.28. R4(BKt, BKt−1) = t+ 1 for t ≥ 6.

Proof. The same construction works as the R4(BKt, BKt) case, and the upper bound
follows from R4(BKt, BKt−1) ≤ R4(BKt, BKt).

Theorem 5.29 (Salia, Tompkins, Wang, Zamora. [79]). Assume 2 ≤ s ≤ t − 2, and
t ≥ 34, then R4(BKt, BKs) = t.

Proof. In a red-blue coloring of a hypergraph H, given a pair of vertices {v, u}, we
define its blue degree to be dB({v, u}) = |{h ∈ E(H) : {v, u} ⊆ h and h is blue}|. The
red degree dR({v, u}) is defined analogously. Let

δ
(2)
B = min

{v,u}∈(V (H)
2 )

dB({v, u}),

and define δ
(2)
R similarly.

Call {v, u} a c couple, c ∈ {blue, red}, if all but at most 5 of the hyperedges {v, u, x, y}
are c colored, and also call a pair {x, y} a bad pair of the c couple {v, u} if the hyperedge
{v, u, x, y} is not colored c.

Note that if δ
(2)
B = 0 then we can find a pair {v, u} such that {v, u, x, y} is red for all

x, y, and therefore there is a red BKt−2. So we can assume δ
(2)
B ≥ 1.

Claim 5.30. Suppose there are two blue couples, then either we can find a blue BKt or
we can find two red couples such that each have at most 4 bad pairs.

Proof. Assume we have two disjoint blue couples {u1, v1} and {u2, v2}, the case where
these pairs are not disjoint is similar and simpler, and enumerate the other t−4 vertices as
x1, x2, . . . , xt−4. Now let us do a preliminary embedding, for i, j ∈ [t−4] use {u1, v1, xi, xj}
to embed {xi, xj} when i + j is odd and {u2, v2, xi, xj} otherwise. If i + j is odd and in
this part of the embedding we used a red edge {u1, v1, xi, xj} to embed {xi, xj}, but the
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edge {u2, v2, xi, xj} is blue, then use the edge {u2, v2, xi, xj} instead. If i+ j is even and
in this part of the embedding we used a red edge {u2, v2, xi, xj} to embed {xi, xj}, but
the edge {u1, v1, xi, xj} is blue, then use the edge {u1, v1, xi, xj} instead. Let us call such
a change to the embedding a swap. If both edges {u1, v1, xi, xj} and {u2, v2, xi, xj} are
red or blue, then we do not change anything.

Note that at this point we have embedded a BKt−4 such that every edge is blue except
at most five edges, in particular the possible pairs which are simultaneously bad pairs of
{u1, v1} and {u2, v2}.

Let e1, e2, . . . , ek be these common bad pairs, k ≤ 5. We begin with a simple remark
which we will use again later.

Remark 5.31. If k ≤ 1 we could complete the embedding in such a way that each pair
is contained in at least 1 blue edge.

If k ≥ 2 and all but at most one ei is in at least 5 blue edges, then we can greedily
embed the edges, starting from the one that is in less than 5 blue edges, since each is in
at least one unused blue edge. So we can either find two of the ei which are in at most 4
blue edges and the claim is proven or we complete the embedding of a blue BKt−4, and
if that is the case we will see we can complete this embedding to a blue BKt.

Since for any fixed i, there are at most d t−4
2
e indices j such that i+ j is odd and also

xi can be in at most 10 bad pairs of {u1, v1} or {u2, v2}, it follows that for every i ∈ [t−4]
there are at least t−5−d t−4

2
e−10 ≥ 4 values of j ∈ [t−4] not used in the previous steps of

the embedding such that the edge {u1, v1, xi, xj} is blue. Then again by Hall’s Theorem in
the incidence graph with components X = {{xi, v2} : i ∈ [t− 4]} ∪ {{xi, u2} : i ∈ [t− 4]}
and Y the set of blue edges in {{xi, xj, u2, v2} : 1 ≤ i < j ≤ t − 4}, we can find an
embedding of the edges {xi, v2} and {xi, u2} for i ∈ [t− 4], and similarly we can find an
embedding of the edges {xi, v1} and {xi, u1} for i ∈ [t− 4].

We have not yet used the hyperedges of the form {v1, u1, v2, y}; there are at least
t− 8 ≥ 26 of these which are blue, and we can use them to embed {v1, u1}, {v1, v2} and
{u1, v2}. Similarly we can embed {v2, u2}, {u1, u2} and {u1, u2}. Therefore either we can
complete the matching or we find two pairs e1, e2 which are red couples, with at most 4
bad pairs. This completes the proof of Claim 5.30.

Claim 5.32. Suppose there are two red couples such that at least one has at most 4 bad
pairs, then either we can find a red BKt−2 or we can find two blue couples such that each
have at most 1 bad pair.

Proof. Again we will assume the red couples are disjoint. Let {u1, v1} and {u2, v2} be cou-
ples such that {u1, v1} has at most 4 bad pairs, and let {a1, b1}, {a2, b2}, {a3, b3}, {a4, b4}
be the bad pairs of {u1, v1}. Suppose these pairs are arranged by their red degree in
increasing order. Let V ′ = V \{v1, v2, u1, u2, a1, a2} = {x1, x2, . . . , xt−6}. Let us consider
the following embedding which is similar to the one used in the previous claim: For
i, j ∈ [t − 6] use {u1, v1, xi, xj} to embed {xi, xj} when i + j is odd and {u2, v2, xi, xj}
otherwise. Similarly as in Claim 5.30, if we encounter a bad pair of one couple but not
the other, then we can change the embedding to use more red edges, and at the end we
have an embedding of a BKt−6 with almost every edge red, the only possible exceptions
are the common bad pairs of {u1, v1} and {u2, v2} in V ′. Hence here we have at most two
({a3, b3} and {a4, b4}). If the red degree of these edges is at least 2, then we can greedily
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embed these two in these pairs to complete a red clique on V ′. Otherwise one of these,
and by the ordering also {a1, b1} and {a2, b2}, will be in at most 1 red pair.

Similarly as in the proof of Claim 5.30, we use Hall’s theorem to embed {xi, v2},
{xi, u2}, {xi, v1} and {xi, u1} for i ∈ [t−6] (here the number t−5−d t−4

2
e−10 is replaced

by t− 7− d t−6
2
e − 8, which is at least 5).

Since {v1, u1, v2, y} is red for at least t − 7 ≥ 29, and these hyperedges have not
been used yet, it follows that we have enough hyperedges to embed {v1, u1}, {v1, v2} and
{u1, v2} and similarly we can embed {v2, u2}, {v1, u2} and {u1, u2}.

Note that if there is at most one blue couple, say {v, u}, we may put V ′ = V \{u} and
for every pair x, y ∈ V ′ the red degree of {x, y} is at least 6. Then by Hall’s Theorem, we
can find a red BKt−1. So we can assume there are at least two blue couples. Thus, by
Claim 5.30 either we find a blue BKt or we have two red couples such that at least one has
at most 4 bad pairs, the conditions of Claim 5.32. From here we either find a red BKt−2
or satisfy conditions stronger than those of Claim 5.30. In this case, there is at most one
shared bad pair and so we would be able to find a blue BKt by Remark 5.31.

5.2.3 Proof of Theorem 5.5

In this short section, we will show that Rk(BKt, BKt) = t when t is sufficiently large.

Claim 5.33. If for all v, u ∈ V , there are at least
(
k
2

)
red distinct hyperedges containing

both v and u, then H contains a red BKt.

Proof. Consider the bipartite graph G with vertex set V (G) = A ∪B, where A =
(
V (H)

2

)
and B is the set of all hyperedges of H. For a ∈ A, h ∈ B, a is adjacent to h in G if and
only if a ⊂ h and h is colored red in H. Note that for every h ∈ B, dG(h) ≤

(
k
2

)
. Hence,

if for all {v, u} ∈ A, dG({v, u}) ≥
(
k
2

)
, then by Hall’s theorem we have a matching of A

in G, which implies the existence of a red BKt in H.

Claim 5.34. If
(
t−4
k−4

)
≥ 2
(
k
2

)
− 1, then Rk(BKt, BKt) ≤ t.

Proof. If the condition in Claim 5.33 does not hold, then there exist two vertices v, u ∈
V (H) such that all but at most

(
k
2

)
− 1 hyperedges containing both v and u are blue. We

claim that there exists a copy of a blue BKt in H using only blue hyperedges containing
both v and u. Consider again the bipartite graph G with vertex set V (G) = A∪B, where
A =

(
V (H)

2

)
and B is the set of blue hyperedges of H containing both v and u. Note that

for every a ∈ A there are at least
(
t−4
k−4

)
−
(
k
2

)
+ 1 ≥

(
k
2

)
blue hyperedges containing a, and

again by Hall’s theorem we have a blue BKt.

Using Claim 5.34, we show that Rk(BKt, BKt) = t when k ≥ 5 and t sufficiently
large. We did not make an attempt to find the best possible constant.

Corollary 5.35. We have

(1) R5(BKt, BKt) = t when t ≥ 23.

(2) R6(BKt, BKt) = t when t ≥ 13.

(3) R7(BKt, BKt) = t when t ≥ 12.
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(4) Rk(BKt, BKt) = t when k ∈ {8, 9, 10} and t ≥ k + 4.

(5) Rk(BKt, BKt) = t when k ≥ 11 and t ≥ k + 3.

Remark 5.36. Note that for k ≥ 11, this result is sharp since for t = k+ 2 we have that(
t
r

)
≤ 2
(
t
2

)
− 2. Hence Rk(BKt, BKt) ≥ r + 3.

5.2.4 Superlinear lower bounds for sufficiently many colors

In this subsection we show that for all uniformities and for sufficiently many colors, the
Ramsey number for a Berge t-clique is superlinear. We start with the case r = 3.

Claim 5.37. For any ε < 1 we have R3
3(BKt, BKt, BKt) ≥ (t − 1)tε for t sufficiently

large.

Proof. Let ε < 1. Take a vertex set consisting of the disjoint union of t−1 sets of vertices,
V1, V2, . . . , Vt−1, each of size tε. If a hyperedge contains vertices from three different Vi,
then color it green. By the well-known lower bound on the diagonal Ramsey number
(Theorem 1.34) R(Kt1−ε , Kt1−ε) = Ω(2t

1−ε/2), we can find a coloring of Kt−1 containing
no clique of size t1−ε when t is sufficiently large. Given such a red-blue coloring on the
complete graph with vertex set {1, 2, . . . , t − 1} we color the hyperedges consisting of
two vertices from Vi and one from Vj by the color of {i, j} in the graph. We color every
hyperedge completely contained in some Vi red. Observe that the core of any red or blue
BKt may contain vertices in less than t1−ε different classes and so has a total of less than
t vertices.

Theorem 5.38 (Salia, Tompkins, Wang, Zamora. [79]). For any uniformity r ≥ 4, and
sufficiently large c and t, we have

Rr
c(BKt, BKt, . . . , BKt) > t1+( r−3

r−2)
r−3
−( r−3

r−2)
r−2

.

Theorem 5.38 will follow from the following claim which we will prove by induction
on r by choosing the optimal ε.

Claim 5.39. For any uniformity r ≥ 3, and for any ε where ε < 1, for sufficiently large
c and t, we have

Rr
c(BKt, BKt, . . . , BKt) > t1+(1−ε)r−3−(1−ε)r−2

.

Proof. The base case follows from Claim 5.37. Now assume that r ≥ 4. Let ε < 1. Let
cs be the number of colors required for Claim 5.39 to hold for an s-uniform hypergraph
for 2 ≤ s ≤ r − 1. Let M be the lower bound we obtain by induction for the function
Rr−1
cr−1

(BKt1−ε , BKt1−ε , . . . , BKt1−ε). We will show

Rr
cr(BKt, BKt, . . . , BKt) > M · tε.

for some constant cr depending on r.
Take the complete r-uniform hypergraph H on N = M · tε vertices. Partition the

vertex set into sets V1, V2, . . . , VM each consisting of tε vertices. We consider s-uniform
complete hypergraphs Hs defined on the vertex set {1, 2, . . . ,M} for 2 ≤ s ≤ r−1. Since
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the lower bounds in Claim 5.39 are decreasing (in r), we have for cs colors a coloring of
Hs with no Berge clique of size t1−ε provided t is sufficiently large. Assume, indeed, that
t is at least the maximum required for any s.

Now, given the colorings of Hi with ci colors, for 2 ≤ i ≤ r−1, we define a coloring on
H with cr =

∑r−1
s=2 cs + 2 colors and no monochromatic BKt. For 2 ≤ s ≤ r − 1 we color

all hyperedges containing elements of the vertex sets Vi1 , Vi2 , . . . , Vis with the same color
as {i1, i2, . . . , is} in the coloring of Hs. Observe that the core of a monochromatic BKt

in H can contain vertices from fewer than t1−ε classes. Since Hs has no monochromatic
BKt1−ε , and each class has tε vertices, it follows that H has no monochromatic BKt

using hyperedges containing vertices from between 2 and r − 1 classes. Finally, we may
color the hyperedges contained in each Vi with any color used so far and the hyperedges
containing vertices from r classes with a new color.

It remains to verify that M · tε yields the required bound. Indeed,

M · tε = t(1−ε)(1+(1−ε)r−4−(1−ε)r−3) · tε = t1+(1−ε)r−3−(1−ε)r−2

.

We now discuss briefly the case of forbidding Berge-cliques of higher uniformity. First
we collect some basic lemmas about the Ramsey number for Berge cliques in different
uniformities.

Lemma 5.40. For any r, c, a, b, where a < b and for t sufficiently large, we have

Rr
c(BK

(b)
t , BK

(b)
t , . . . , BK

(b)
t ) ≥ Rr

c(BK
(a)
t , BK

(a)
t , . . . , BK

(a)
t ).

Proof. It is sufficient to prove that for sufficiently large t, there is an injection from
(
[t]
a

)
to(

[t]
b

)
mapping sets to one of their supersets. Let S ⊂

(
[t]
a

)
and φ(S) be the elements of

(
[t]
b

)
which contain some element from S. We have |S|

(
t−a
b−a

)
≤ |φ(S)|

(
b
a

)
by double-counting

the relations between the two levels. Then |φ(S)| ≥ |S| is obvious for sufficiently large t,
and we have the desired injection by Hall’s theorem.

Corollary 5.41. For any uniformity r, a < r, and sufficiently large c and t, we have

Rr
c(BK

(a)
t , BK

(a)
t , . . . , BK

(a)
t ) ≥ t1+( r−3

r−2)
r−3
−( r−3

r−2)
r−2

.

Proof. The result is immediate from Lemma 5.40 and Theorem 5.38.

5.3 Ramsey numbers of 2-shadow graphs and proof

of Theorem 5.14

In this short section, we discuss some results on the Ramsey number of Rr(∂Kt, ∂Ks). On
the one hand, we have Rr(∂Kt, ∂Ks) ≤ Rr(BKt, BKs). Most of the constructions from
Section 5.2 are also constructions for Rr(∂Kt, ∂Ks); however, there are some exceptions.

Proposition 5.42. Let s, t ≥ 3, we have R3(∂K2, ∂K2) = 3, R3(∂K2, ∂Ks) = s and
R3(∂Kt, ∂Ks) = t+ s− 3.
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Proof. It is easy to see that R3(∂K2, ∂K2) = 3 and R3(∂K2, ∂Ks) = s for s ≥ 3. We will
now show R3(∂Kt, ∂Ks) ≤ t+ s− 3 for s, t ≥ 3 by inducting on s+ t. The cases when s
or t is 3 are trivial. Assume the theorem holds for smaller s+ t and take a 2-edge-colored
complete 3-uniform hypergraph H on the vertex set V of size s + t − 3 where s, t ≥ 4.
If for all x, y ∈ V we have that there exists z such that {x, y, z} is blue, then we have
complete blue clique in the 2-shadow. Otherwise suppose there is a pair of vertices x, y
such that for all z ∈ V \ {x, y} we have {x, y, z} is red, then consider the subhypergraph
of H induced by V \ {x}. By induction, there exists either a blue ∂Kt, in which case we
are done, or a red ∂Ks−1 with Y as its core. Then we can extend it to a red ∂Ks with
Y ∪ {x} as its core by adding the red hyperedges {x, y, z} where z ∈ Y .

The lower bound construction is to take a set of t − 2 vertices A and a set of s − 2
vertices B and color a hyperedge red if and only if it intersects A in at most 1 vertex.

Proposition 5.43. For r ≥ 4 and s, t ≥ 2, we have Rr(∂Kt, ∂Ks) = max{s, t, r}.

Proof. Consider a 2-edge-colored complete r-uniform hypergraph on N = max{s, t, r}
vertices. Suppose first, that for every pair x, y ∈ V there exists z1, z2, . . . , zr−2 such that
{x, y, z1, z2, . . . , zr−2} is blue, then there is a blue KN in the shadow. On the other hand,
if there are x, y ∈ V , such that for all z1, z2, . . . , zr−2, {x, y, z1, z2, . . . , zr−2} is red, then it
is easy to see that there is a red KN in the 2-shadow. Thus, Rr(∂Kt, ∂Ks) ≤ max{s, t, r}.
On the other hand taking a clique of the appropriate color on max{s, t, r} − 1 vertices
yields a construction for the lower bound.

Remark 5.44. The superlinear lower bounds constructed in Subsection 5.2.4 are in fact
constructions for hypergraphs without monochromatic cliques in the 2-shadow. Thus, the
same lower bounds hold.

5.4 Ramsey numbers of trace-cliques

Throughout this section, we assume that a, b are positive integers.

Lemma 5.45. Let t ≥ a+ 1, s ≥ b+ 1. Then

Ra+b+1(TK
(a+1)
t , TK(b+1)

s ) ≤ Ra+b+1(TK
(a+1)
t−1 , TK(b+1)

s ) + s− b.

Proof. Let N = Ra+b+1(TK
(a+1)
t−1 , TK

(b+1)
s ) + s− b, and H be a 2-edge-colored (blue and

red) complete (a + b + 1)-uniform hypergraph on N vertices. Let H′ be an induced

subhypergraph of H on Ra+b+1(TK
(a+1)
t−1 , TK

(b+1)
s ) = N − (s − b) vertices, obtained by

removing a set Y of s − b vertices. Then H′ contains either a blue TK
(a+1)
t−1 or a red

TK
(b+1)
s . In the second case we are done, so let us assume that H′ contains a blue

TK
(a+1)
t−1 with core X. Let Z be a set of b vertices of H′ which does not intersect X (there

is such a set since v(H′) ≥ v(TK
(a+1)
t−1 ) ≥ t − 1 + b) and put S = Y ∪ Z. Consider the

edges of the form A ∪ B where A ⊆ X, |X|= a and B ⊆ S, |B|= b + 1. If for some fixed
B, A ∪ B is blue for every subset A of X of size a, then pick v ∈ B ∩ Y , and together
with these edges and the edges defining the blue TK

(a+1)
t−1 , X ∪ {v} is the core of a blue

TK
(a+1)
t−1 . If this is not the case, then for any B ⊂ S of size b + 1, there exists AB ⊆ S

such that AB ∪ B is red, and therefore, S together with these edges is the core of a red
TK

(b+1)
s .
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Theorem 5.46 (Salia, Tompkins, Wang, Zamora. [79]). Let t ≥ a+ 1, s ≥ b+ 1. Then

Ra+b+1(TK
(a+1)
t , TK(b+1)

s ) ≤ (t− a)(s− b) + a+ b.

Proof. We are going to prove this result by induction on t, the base case is where t = a+1,
we have that Ra+b+1(TK

(a+1)
a+1 , TK

(b+1)
s ) = s + a = (s − b) + b + a, so the result follows.

Now assume that for some t− 1 ≥ a+ 1 the result is true, then by Lemma 5.45 we have

Ra+b+1(TK
(a+1)
t , TK(b+1)

s ) ≤ Ra+b+1(TK
(a+1)
t−1 , TK(b+1)

s ) + s− b
≤ (t− 1− a)(s− b) + a+ b+ s− b
= (t− a)(s− b) + a+ b.

Proposition 5.47. Suppose that t ≥ a+ 1 ≥ 3 and s ≥ 2. Then

Ra+1(SK
(a)
t , TKs) ≤ t+ max{Ra+1(SK

(a)
t−1, TKs), R

a+1(SK
(a)
t , TKs−1)}.

Proof. Let H be an (a+ 1)-uniform hypergraph with vertex set V of size

N = t+ max{Ra+1(SK
(a)
t−1, TKs), R

a+1(SK
(a)
t , TKs−1)}.

Since N > Ra+1(SK
(a)
t−1, TKs), it follows that we can find either a blue SK

(a)
t−1 or a red

TKs. In the latter case, we are done, so assume there is a blue SK
(a)
t−1 with defining

vertices X and suspension vertex u. Now, if for some v ∈ V \(X ∪ {u}) it holds that for
every set A ⊆ X of size a − 1 we have that A ∪ {v, u} is blue, then we can add v to X

and obtain a blue SK
(a)
t . Otherwise suppose that for every v we can find a set Av such

that Av ∪ {v, u} is red. Let V ′ = V \ (X ∪ {u}). Note that |V ′| ≥ Ra+1(SK
(a)
t , TKs−1)}.

It follows that we can find either a blue SK
(a)
t or a red TKs−1 in H[V ′]. If we find a blue

SK
(a)
t , we are done. Otherwise suppose we can find a red TKs−1 defined on the set Y .

Then we can extend Y to a red TKs by adding to Y the vertex u together with the edges
Av ∪ {v, u} for every v ∈ Y since Av does not intersect V ′.

Corollary 5.48. Suppose that t ≥ a ≥ 2 and s ≥ 2. Then

Ra+1(SK
(a)
t , TKs) ≤

(
t

2

)
+ (s− 1)t.

Proof. This bound follows by induction on s + t from Proposition 5.47. The case when
s = 2 or t = a are trivial. Assume we had the bound for smaller values of s + t and
observe that Proposition 5.47 and induction imply that Ra+1(SK

(a)
t , TKs) is bounded by

t+ max

((
t− 1

2

)
+ (s− 1)(t− 1),

(
t

2

)
+ (s− 2)t

)
≤
(
t

2

)
+ (s− 1)t,

as required.

Proposition 5.49. Suppose that t ≥ a+ 1 and s ≥ 2. Then

Ra+1(SK
(a)
t , ∂Ks) ≥ (s− 1)

⌊
t

a

⌋
+ 1.
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Proof. Take a vertex set of size (s− 1)
⌊
t
a

⌋
and divide it into s− 1 classes V1, V2, . . . , Vs−1

of size at most
⌊
t
a

⌋
. Color every hyperedge which intersects each Vi in at most 1 with red,

and color every other hyperedge blue. Clearly this construction has no red ∂Ks. We will
now show it has no blue SK

(a)
t . Indeed, suppose that X is the core of the blue suspension

and v is the suspension vertex.
Let Vi1 , . . . , Vik denote the classes which have nonempty intersection with X ∪ {v},

then t + 1 = |X ∪ {v}| =
∑k

j=1

∣∣(X ∪ {v}) ∩ Vij ∣∣ ≤ kt
a

. It follows that k > a. Suppose,
without loss of generality, that v ∈ Via+1 . Then we may take xj ∈ X ∩Vij for j = 1, . . . , a
so that the edge {x1, . . . , xa, v} is red, and thus not a member of a blue suspension,
contradiction.

Thus, we have the following corollaries.

Corollary 5.50. Suppose that t ≥ a+ 1 and s ≥ 2. Then

Ra+1(SK
(a)
t , TKs) ≥ (s− 1)

⌊
t

a

⌋
+ 1.

Corollary 5.51. Ra+1(SK
(a)
t , TKt) = Θa(t

2).

Proposition 5.52. Suppose that t ≥ a+ 2 and s ≥ b+ 2. Then

Ra+b+1(HK
(a+1)
t , TK(b+1)

s ) ≤M + t+ b

(
t

a+ 1

)
− b,

where M = max
(
Ra+b+1(HK

(a+1)
t−1 , TK

(b+1)
s ), Ra+b+1(HK

(a+1)
t , TK

(b+1)
s−1 )

)
.

Proof. Let H be an (a+ b+ 1)-uniform hypergraph with vertex set V of size

N = M + t+ b

(
t

a+ 1

)
− b.

Since N > M , we can find either a blue HK
(a+1)
t−1 or a red TK

(b+1)
s . If the latter case

occurs we are done, so assume there is a blue HK
(a+1)
t−1 with core X of size t− 1 and set

of expansion vertices X ′ of size
(
t−1
a+1

)
b. Now let v be a vertex not in X ∪X ′. We will try

to extend X together with v. Let A1, A2, . . . , A(t−1
a ) be an ordering of the subsets of X of

size a. Let V1 = V \(X ∪X ′ ∪ {v}) and set X1 = X ′. For each i = 1, 2 . . . ,
(
t−1
a

)
, if there

is a set Bi of size b in Vi such that that Bi ∪ Ai ∪ {v} is blue, then set Vi+1 = Vi\Bi and
Xi+1 = Xi∪Bi, otherwise we stop. If we can do this for every i then the set X∪{v} defines

a blue HK
(a+1)
t with expansion set X(t−1

a ). If not, then there is an index i such that we

have to stop. This means that for every set B of size b in Vi we have that Ai∪B∪{v} is red.
Now the size of Vi is N−(t−1)−

(
t−1
a+1

)
b−(i−1)b−1 ≥ N− t−

(
t−1
a+1

)
b−(

(
t−1
a

)
−1)b = M.

So by the definition of M , we can find either a blue HK
(a+1)
t using Vi or a red TK

(b+1)
s−1 .

In the first case we are done, so suppose we have a red TK
(b+1)
s−1 with defining vertices Y .

Now we can extend Y together with v to a red TK
(b+1)
s , since for every B ⊆ Y of size b

we have that the edge B ∪ Ai ∪ {v} is red.

Corollary 5.53. Suppose that t ≥ a+ 1 and s ≥ b+ 1. Then

Ra+b+1(HK
(a+1)
t , TK(b+1)

s ) ≤ b

(
t+ 1

a+ 2

)
+

(
t+ 1

2

)
− tb+ s

(
b

(
t

a+ 1

)
+ t− b

)
.
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5.5 Ramsey number of expansion and suspension hy-

pergraphs

5.5.1 Expansion hypergraphs and Proof of Theorem 5.9

In this section, we give an upper bound on R3(HKt, HKs). Recall that Hr(Kt) is the
the r-graph obtained from the complete graph Kt by enlarging each edge by a set of
(r− 2) distict new vertices. Moreover, Rr(Hr(Kt), H

r(Kt)) is the smallest integer n such
that every 2-edge-coloring of the complete r-uniform hypergraph H on n vertices contains
a monochromatic Hr(Kt). For ease of reference, we will use Rr(HKt, HKt) to denote
Rr(Hr(Kt), H

r(Kt)). We first prove the following lemma.

Lemma 5.54. For s, t ≥ 2, we have that

R3(HKt+1, HKs+1) ≤ max{R3(HKt+1, HKs), R
3(HKt, HKs+1)}+ 2st.

Proof. Without loss of generality, we assume that t ≤ s. Let

N = max{R3(HKt+1, HKs), R
3(HKt, HKs+1)}+ 2st

and HN be a 2-edge-colored compete 3-uniform hypergraph on N vertices. Let

W = {v1, v2, . . . , v2st} ⊂ V (HN)

and H′ = H[V (HN)\W ].
Note that |H′|≥ R3(HKt, HKs+1). Thus by definition of Ramsey number, there exists

either a blue expansion of Kt or a red expansion of Ks+1. If the latter happens, we are
done. Thus, assume that we have a blue expansion Hb of Kt. Note that Hb has

(
t
2

)
+ t

vertices. Let {u1, . . . ut} be the core of Hb. Let F = V (H)\V (Hb).

Claim 5.55. Suppose that HN does not have a blue expansion of Kt+1. Then for every
v ∈ W , there exists some u in the core of Hb such that {v, u, w} is colored red for all w
except at most (t− 1) elements from F\{v}.

Proof. Fix a vertex v ∈ W . Construct a bipartite graph G = A ∪ B where A =
{u1, . . . , ut} and B = F\{v}. For ui ∈ A, w ∈ B, ui is adjacent to w in G if and
only if {v, ui, w} is a blue edge in HN . Note that for every w ∈ B, dG(w) ≤ t. Therefore,
if dG(ui) ≥ t for every ui ∈ A, then there exists a matching of A in G by Hall’s theorem,
which implies that we can extend Hb to a blue expansion of Kt+1 by adding v into the
core of Hb. This contradicts our assumption that HN does not have a blue expansion of
Kt+1. Hence it follows that there exists a vertex v′ ∈ A such that {v, v′, w} is colored red
for all except t− 1 elements of F\{v}. This finishes the proof of Claim 5.55

Now since |W | = 2st, by pigeonhole principle, there exists some u in the core of Hb

so that there exists Wu = {w1, w2, . . . , ws} such that for any w ∈ Wu, the hyperedge
{w, u, w′} is red for all w′ except at most (t− 1) elements of F\{w}. Let M(wi) be the
elements w′ in W such that {u,wi, w′} is blue.

Now let W ′ = Wu ∪ V (Hb) ∪
⋃s
i=1M(wi) and H′′ = HN [V (HN)\W ′]. Note that

|H′′|≥ R3(HKt+1, HKs) since 2st ≥ st+
(
t
2

)
+t. Hence there either exists a blue expansion
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of Kt+1 or there exists a red expansion of Ks. If the former happens, we are done. Hence
assume we have a red expansion Hr of Ks. Suppose {v1, v2, . . . , vs} is the core of Hr. Now
we can extend Hr to a red expansion of Ks+1 by adding u into the core of Hr together
with the red edges in {{u,wi, vi} : i ∈ [s]}. This completes the proof of the lemma.

Now we are ready to show that R3(HKt, HKs) ≤ 2(s+t)st. The proof is by induction
on s+t. We first show that R3(HK2, HKs) ≤ 4s2+8s. This is clearly true since any blue
edge in a 3-uniform hypergraph is a blue expansion of K2. Hence given any 2-edge-colored
complete 3-uniform hypergraph H with 4s2 +8s vertices, if there is no blue edge, then all
edges are red, which implies that we have a red expansion of Ks, since 4s2 + 8s ≥

(
s
2

)
+ s.

Similarly, R3(HKt, HK2) ≤ 4t2 + 8t.
Now assume the theorem holds for HKt′ , HKs′ such that t′+ s′ < t+ s. Without loss

of generality, assume that t ≤ s. Then by the Lemma 5.54,

R3(HKt, HKs) ≤ max{R3(HKt, HKs−1), R
3(HKt−1, HKs)}+ 2(s− 1)(t− 1)

≤ 2(s+ t− 1)t(s− 1) + 2(s− 1)(t− 1)

≤ 2st(s+ t).

Hence we are done by induction.

5.5.2 Ramsey number of suspension hypergraphs

Recall that the r-suspension SKt of the complete graph Kt, is the r-uniform hypergraph
formed by adding a single fixed set of r − 2 distinct new vertices to every edge in Kt.
Clearly, Rr(SKt, SKt) ≤ R2(Kt, Kt) + (r − 2). The proof is simple: let H be a 2-edge-

colored K
(r)

R2(Kt,Kt)+(r−2). Fix a set of (r − 2) vertices S and consider the complete graph

G on the remaining R2(Kt, Kt) vertices, where the color of an edge e in G is the same
color as the hyperedge e∪ S in H. By the definition of the Ramsey number, there exists
a monochromatic clique in G, which gives us the core of the monochromatic SKt in H.

Before we prove the lower bound, let us recall the symmetric version of the Lovász
local lemma [4]:

Lemma 5.56 (Lovász [4]). Let A = {A1, . . . , Aq} be a finite set of events in the probability
space Ω. Suppose that each event Ai is mutually independent of a set of all but at most
d of the other events Aj, and that Pr(Ai) ≤ p for all 1 ≤ i ≤ q. If

ep(d+ 1) < 1,

then

Pr

(
q∧
i=1

Ai

)
> 0.

Now we can show a lower bound of Rr(SKt, SKt) with the local lemma.

Proposition 5.57. Fix t ≥ r ≥ 3. If

e

(
1 +

(
t

2

)(
r

2

)(
n

t− 2

))
21−(t2) < 1,

then Rr(SKt, SKt) > n.
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Proof. Let H be a complete r-uniform hypergraph on n vertices. Color each hyperedge
blue or red randomly and independently with probability 1

2
. For a set of r− 2 vertices S

and another set of t vertices T disjoint from S, let AS,T be the event that the suspension
hypergraph HS,T with T as core and S as the suspending vertex set is monochromatic.
Note that for each fixed S, T ,

Pr(AS,T ) = 21−(t2) = p.

Note that AS,T is mutually independent of all other events AS′,T ′ satisfying
E(HS,T ) ∩ E(HS′,T ′) = ∅. Let us give an upper bound on the number of events AS′,T ′
that AS,T is mutually dependent of. There are

(
t
2

)
choices to pick an edge they share,

which contains r vertices. Among the r vertices, r − 2 of them must be the suspension
vertices. There are

(
r
r−2

)
ways to choose the suspension vertices S ′. There are then at

most
(
n
t−2

)
ways to choose the remaining t− 2 vertices of T . Hence it follows that

d ≤
(
t

2

)(
r

2

)(
n

t− 2

)
.

By the Lovász local lemma, it follows then that if ep(d+ 1) < 1, we have that

Pr

(∧
S,T

AS,T

)
> 0.

Hence there exists a coloring of H without any monochromatic SKt.

Remark 5.58. For any fixed r, this gives asymptotically the same lower bound as Ramsey

number R2(Kt, Kt), i.e. Rr(SKt, SKt) > (1 + o(1))
√
2
e
t
√

2
t
.
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[55] H. Hatami, J. Hladkỳ, D. Král, S. Norine, and A. Razborov. On the number
of pentagons in triangle-free graphs. Journal of Combinatorial Theory, Series A,
120(3):722–732, 2013.

[56] P. E. Haxell, T.  Luczak, Y. Peng, V. Rödl, A. Ruciński, M. Simonovits, and
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