IMPLEMENTACIÓN DE LA TÉCNICA DE REACCIÓN EN CADENA DE LA POLIMERASA (PCR) PARA EL DIAGNÓSTICO DE BRUCELOSIS BOVINA EN COSTA RICA.

Francisco Duarte Martínez

M.Sc Norman Rojas Campos

Tutor

2002
Informe Final de Práctica Dirigida de Graduación presentado a la Facultad de Microbiología de la Universidad de Costa Rica, como requisito parcial para optar por el Título de Licenciado en Microbiología y Química Clínica y grado profesional de Doctor en Microbiología y Química Clínica.

El Tribunal Examinador estuvo integrado por los siguientes miembros:

- Dra. María del Mar Gamboa Coronado
 Presidenta

- Dr. Fernando García Santamaria

- Dr. Norman Rojas Campos

- Dra. Evelyta Rodríguez Cavallini

- Dr. Esteban Chaves Olarte
AGRADECIMIENTOS

El más sincero agradecimiento al Dr. Norma Rojas Campos por su guía y apoyo durante la realización de este trabajo; al personal de la Sección de Bacteriología Médica, y al personal de la escuela de Medicina Veterinaria.
DEDICATORIA

A mis padres, hermanos y amigos.
¡Gracias por todo!
CHELE.
INDICE

I. RESUMEN.. 1

II. INTRODUCCION.. 3
 Generalidades... 3
 Epidemiología.. 4
 Infección, factores de virulencia y evasión del sistema inmune....................... 6
 Diagnóstico... 8

III. OBJETIVOS... 10

IV. MATERIALES Y METODOS.. 11
 Estandarización de la técnica... 11
 Método de extracción de ADN... 11
 Reacción en Cadena de la Polimerasa (PCR)... 13
 Determinación de la especificidad de la técnica... 14
 Determinación de la sensibilidad de la técnica... 15
 Aplicabilidad “in vivo” del método... 15

V. RESULTADOS... 17
 Determinación de la especificidad de la técnica... 17
 Determinación de la sensibilidad de la técnica... 18
 Aplicabilidad in vivo del método.. 21

VI. DISCUSION Y CONCLUSIONES... 23

VII. BIBLIOGRAFIA.. 27
RESUMEN

Duarte Martínez, Francisco Javier
Implementación de la técnica de Reacción en Cadena de la Polimerasa (PCR) para el Diagnóstico de Brucelosis Bovina en Costa Rica.
Tesis Microbiología Y Química Clínica.-San José,C.R.:
29.:il - 24 refs

Se propone la estandarización de una técnica de Reacción en Cadena de la Polimerasa (PCR) para el diagnóstico de brucelosis bovina en Costa Rica. El diagnóstico molecular está dirigido hacia la amplificación y detección de una secuencia de inserción denominada IS6501 específica del género Brucella.

La especificidad del método fue evaluada utilizando bacterias relacionadas y no realcionadas filogenéticamente con el género Brucella. La sensibilidad se determinó por medio de la detección de ADN purificado de B. abortus 2308 en plasma y por medio de la detección de B. abortus 2308 en leche, suero humano y sangre total bovina. Además, se evaluó la aplicabilidad in vivo de la metodología inoculando roedores con B. abortus 2308. Se ensayó entonces la detección del ADN de Brucella en muestras de sangre y de bazo extraídas de los animales.

El método se muestra promisorio para el diagnostico de brucelosis ya que con respecto a la especificidad de la prueba, no se detectaron reacciones cruzadas con ninguno de los siguientes microorganismos: Ochrobactrum anthropi 3301, Agrobacterium
tumefaciens 547, *Vibrio cholerae*, *Salmonella* sp, *Escherichia coli*, *Staphylococcus aureus*, *Listeria monocytogenes*, *Alcaligenes xiloxidans*, *Yersinia enterocolítica*, y *Streptococcus pyogenes*. Las primeras dos especies se encuentran relacionadas filogenéticamente con el género *Brucella*. Con respecto a la sensibilidad fue posible detectar hasta 74 pg de ADN *Brucella* purificado en muestras de suero humano. Sangre bovina total, leche y suero humano el límite de detección del método se estableció en 1×10^4 UFC/ml para sangre y suero y en 1×10^8 UFC/ml en leche. Durante la valoración *in vivo* de la aplicabilidad de la técnica el patógeno pudo ser detectado a nivel de bazo, pero no en sangre periférica.

Palabras clave: ADN; *B. abortus* 2308; Brucelosis; Especificidad; PCR; Sensibilidad; Secuencia de inserción

Facultad de Microbiología.
INTRODUCCIÓN

Generalidades

La brucelosis es una enfermedad zoonótica de distribución mundial, se le conoce también como fiebre del Mediterráneo, fiebre de Malta, fiebre de Gibraltar, fiebre de Chipre o fiebre ondulante. En 1887, Sir David Bruce aisló a partir del bazo de soldados británicos el agente etiológico de este mal y lo denominó *Micrococcus melitensis*. En 1920 Meyer y Shaw lo reclasificaron y le confirieron el género *Brucella*, en honor a su descubridor (3).

Los microorganismos pertenecientes al género *Brucella* son cocobacilos Gram negativos, aerobios estrictos, no esporulados, no móviles y carencientes de cápsula. Utilizando métodos bioquímicos convencionales presentan reacción positiva tanto para prueba de catalasa como para la de oxidasa. Generan sulfuro de hidrógeno y poseen la enzima ureasa. Son parásitos intracelulares facultativos y ciertas especies necesitan una atmósfera enriquecida en CO₂ para poder crecer en cultivos axénicos (7).

Tradicionalmente el género *Brucella* se ha dividido en seis especies que encuentran sus reservorios en distintos animales:

- *Brucella abortus* en ganado bovino
- *Brucella melitensis* en ganado caprino
- *Brucella suis* en cerdos
- *Brucella canis* en caninos
- *Brucella ovis* en ovejas y
Brucella neotomae en la rata del desierto.

Las primeras cuatro especies son patógenos potenciales para el ser humano (4). Estudios de hibridización de ADN demuestran que los miembros de este género poseen más de un 95% de homología lo que sugiere que se trata de una sola especie (Brucella melitensis) con biovariedades (2). Sin embargo, la afinidad que estos microorganismos exhiben por sus respectivos hospederos y la tradición hacen que la nomenclatura antigua siga aún en vigencia (1,2).

Epidemiología

La distribución geográfica de esta enfermedad es amplia, siendo el Mediterráneo, algunos países árabes, México, Centro y Sur América los lugares más afectados (4); en muchos países de América Latina este mal presenta una incidencia elevada (Cuadro 1).

Costa Rica se considera un país de alta incidencia con respecto a la brucelosis. Estudios de campo han reportado una seroprevalencia contra antígenos del lipopolisacárido de B. abortus de hasta un 20.5 % (6).

<table>
<thead>
<tr>
<th>País</th>
<th>G. Bovino B. abortus</th>
<th>G. Caprino B. meliTensis</th>
<th>G. Porcino B. suis</th>
<th>G. Ovino B. ovis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Belice</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Bolivia</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Brazil</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Chile</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Colombia</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ecuador</td>
<td>++</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>El Salvador</td>
<td>++</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Guatemala</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Haiti</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Honduras</td>
<td>?</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Jamaica</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mexico</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>++</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Perú</td>
<td>++</td>
<td>ND</td>
<td>ND</td>
<td>++</td>
</tr>
<tr>
<td>Paraguay</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Uruguay</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Venezuela</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>?</td>
</tr>
</tbody>
</table>

:- Ausente.
+: Incidencia esporádica.
++: Alta incidencia.
ND: No hay datos.
G: Ganado

La brucelosis ocasiona severas pérdidas a la ganadería:

Abortos, infertilidad, esterilidad, muerte de terneros, disminución en la producción de leche, interrupción de programas de mejoramiento genético, crecimiento retardado del ganado y depreciación del mismo son algunos de los efectos adversos que conlleva la infección por *Brucella*. Los animales sanos una vez enfermos permanecen así de por vida y es factible encontrar bestias con signos como artritis y linfadenopatías (21).

Los animales infectados eliminan el microorganismo a través de diversas secreciones como el calostro, leche, semen, exudados vaginales y orina. Sin embargo, la mayor cantidad de estos gérmenes es excretada durante el parto o el aborto. Los fetos expulsados, así como
las placentas y sus fluidos son productos altamente contaminados, y representan serios focos de infección para los demás animales del hato, así como para el ser humano. De esta manera se contaminan pastos, suelos, aguas e instalaciones (21); la gran resistencia a la desecación que posee esta bacteria le permite perdurar por largos períodos de tiempo en ambientes poco propicios (7).

La infección en humanos suele llevarse a cabo por vía oral, pero también puede ocurrir a través de mucosas conjuntivales, nasofaringeas y genitales (21). Se ha reportado que las abrasiones en la piel representan otra vía de infección; inclusive se demostró experimentalmente que *Brucella abortus* es capaz de penetrar a través de piel intacta (7). El consumo de leche sin pasteurizar (y sus derivados) es la manera más común de infección. La brucelosis se considera además una enfermedad ocupacional donde los granjeros, carniceros, veterinarios y personal de laboratorio son grupos de riesgo (7,21).

Las manifestaciones clínicas son variadas y pueden cursar desde una infección asintomática hasta una enfermedad seria y debilitante. La sintomatología es inespecífica e incluye fiebre, escalofríos, pérdida de peso, dolor de cabeza y fatiga. El desarrollo de esplenomegalia y linfadenopatías es frecuente. Pueden presentarse además serias complicaciones como endocarditis, artritis y espondilitis (4).

Infección, factores de virulencia y evasión del sistema inmune

Una vez que *Brucella* invade a un organismo se multiplica a nivel de ganglios linfáticos. Posteriormente se disemina vía hematogéna a órganos como el bazo, hígado, linfáticos, médula ósea y riñón (13). La bacteria además presenta tropismo por órganos y
tejidos ricos en eritritol (un alcohol de cuatro carbonos que favorece su crecimiento). La placenta, el útero, el epidídimo y glándulas mamarias se vuelven focos de infección (13). Una vez que *Brucella* invade dichas regiones, se desencadena una reacción inflamatoria que acarrea la disminución en la producción de leche, abortos e infertilidad, entre otras cosas (3).

La brucelosis bovina es provocada principalmente por *B. abortus*, sin embargo *B. melitensis* el agente etiológico más frecuente de brucelosis humana, ha sido reportado como patógeno emergente en ganado bovino. La patogénesis de la enfermedad no está aún bien dilucidada, pero se sabe que este microorganismo puede infectar tanto células fagocíticas como no fagocíticas (2). En los fagocitos no profesionales y en las células no fagocíticas, *Brucella abortus* tiende a localizarse y replicarse en el retículo endoplasmático rugoso (14, 15).

En los polimorfonucleares y monocitos, varios mecanismos le permiten a la bacteria evadir la respuesta microbicida del hospedero. En los fagocitos profesionales *Brucella* puede inhibir la fusión fagosoma-lisosoma gracias a la producción de AMP y GMP. Por otra parte, la bacteria posee mieloperoxidasas y superóxido dismutasa que le permiten resistir el estallido respiratorio de la célula infectada, resguardándola de los derivados reactivos del oxígeno(2,15).

El lipopolisacárido (LPS) de *Brucella* es de gran importancia ya que es poco tóxico para las células fagocíticas, lo cual evita la muerte de las mismas una vez parasitadas por el microorganismo. Además el LPS no es buen inductor de interferón (INF), ni del factor de necrosis tumoral (TNF) lo que favorece una pobre respuesta inmune frente al patógeno (15).
Diagnóstico

El diagnóstico definitivo de brucelosis es el aislamiento del microorganismo en cultivos axénicos. Por tratarse de un microorganismo fastidioso, este procedimiento requiere a veces hasta 30 días de incubación para recuperar el patógeno (4). Se recurrió entonces a la utilización de técnicas serológicas para evidenciar la infección o previa exposición al agente (13).

La respuesta humoral en infecciones brucelares suele caracterizarse por un aumento en las IgM en las fases iniciales, con una cambio de isotipo a IgG entre la primera y segunda semana. La persistencia de la infección, una reinfección o una recaída se traducen en el estancamiento o en un nuevo aumento de los títulos de anticuerpos anti-Brucella. Las técnicas serológicas más utilizadas son Rosa de Bengala, seroaglutinación (en tubo o en placa) y ELISA para IgM, IgG e IgA (13).

Sin embargo, existen algunos problemas en cuanto a su interpretación. Títulos débilmente positivos (menores de 1/80) pueden ser consecuencia de una simple exposición al agente y no reflejan infección. Se reportan así mismo reacciones cruzadas entre los anticuerpos anti-LPS brucelar y el LPS de Escherichia hartmanni, Escherichia coli O:157, Salmonella O:30, Stenotrophomonas maltophilia, Vibrio cholerae O:1, Yersinia enterocolitica O:9, Campylobacter foetus y Francisella tularensis; causas considerables de falsos positivos (2,13). Además debe de considerarse que en enfermedades crónicas se producen anticuerpos IgG sin poder aglutinante responsables de falsos negativos sobre
todo en las técnicas de seroaglutinación y que el ganado infectado y el vacunado producen respuestas humorales similares (16,17).

Para tratar de superar los inconvenientes que caracterizan a los aislamientos y a los métodos inmunológicos, se ha recurrido a técnicas de diagnóstico molecular, entre las que se encuentra la Reacción en Cadena de la Polimerasa (PCR). Esta posee límites de detección bajos, es sumamente específica y permite detectar bacterias no viables (12,23).

La sensibilidad de la PCR puede ser incrementada amplificando secuencias repetitivas de ADN, como son las secuencias de inserción (IS). Todas las especies del género *Brucella* poseen de 10 a 40 copias de una secuencia de inserción denominada IS6501. La utilización de imprimadores ("primers") específicos para esta secuencia, conocidos como ISP1 e ISP2, ha permitido en condiciones experimentales la detección de hasta 10 bacterias por mililitro (11). Teniendo en cuenta lo anterior, se pretende implementar en Costa Rica un método diagnóstico para brucelosis por medio de PCR que permita obtener sensibilidad y especificidad elevadas. Se pretende así mismo reducir el tiempo de respuesta del laboratorio y que no se esté sujeto a ninguno de los inconvenientes que presentan las técnicas diagnósticas convencionales.
OBJETIVOS

Objetivo general

Implementar en Costa Rica una técnica de Reacción en Cadena de la Polimerasa (PCR) para la detección específica de *Brucella*.

Objetivos específicos

1) Optimizar una metodología de Reacción en Cadena de la Polimerasa (PCR) para el diagnóstico de brucelosis utilizando los imprimadores ISP1 e ISP2 de la secuencia de inserción IS6501 (11).

2) Evaluar la especificidad de la técnica utilizando bacterias relacionadas y no relacionadas filogenéticamente con el género *Brucella*.

3) Determinar la sensibilidad de la metodología propuesta, por medio de ADN purificado de *B. abortus* 2308.

4) Ensayar la funcionalidad de la técnica en diferentes matrices biológicas (sangre total, suero y leche).

5) Valorar la aplicabilidad *in vivo* del método utilizando ratones infectados con *B. abortus* 2308.
MATERIALES Y METODOS

Estandarización de la técnica

Las bacterias que se utilizaron en este estudio fueron: *Brucella abortus* 2308 (cepa silvestre virulenta, de morfología colonial lisa), *Brucella abortus* 45/20 (cepa vacunal atenuada, de morfología colonial rugosa), *Ochrobactrum anthropi* 3301, *Agrobacterium tumefaciens* 547, *Vibrio cholerae*, *Salmonella* sp, *Escherichia coli*, *Staphylococcus aureus*, *Listeria monocytogenes*, *Alcaligenes xylosoxidans*, *Yersinia enterocolitica*, y *Streptococcus pyogenes*. Todas ellas se cultivaron en Agar Sangre por 48-72 horas a 37°C y fueron suministradas por la bacterioteca de la Facultad de Microbiología de la Universidad de Costa Rica.

La sangre bovina total, la leche y los sueros de bovinos (tanto sanos como enfermos) fueron suministradas por la Escuela de Medicina Veterinaria de la Universidad Nacional, el plasma humano fue cedido por el banco de sangre del Hospital San Juan de Dios y el suero humano fue recolectado por donación voluntaria. Trece roedores sanos fueron donados por el Instituto Clodomiro Picado.

Método de extracción de ADN

Se preparó una suspensión densa del microorganismo en 3 ml de buffer PBS 1X. Con la ayuda de un vórtex, se homogeneizó y luego se centrífugó durante 15 minutos a 3000 rpm. Se decantó el sobrenadante y el botón se resuspendió y homogeneizó mecánicamente en 1 ml de PBS 1X.
A 500 μl de la suspensión anteriormente preparada, se le añadieron 100 μl de buffer de lisis NET (50 mM NaCl, 125 mM EDTA, 125 mM Tris-HCl pH 7.6) y 100 μl de SDS (Duodecilsulfato de sodio) un detergente aniónico al 10%, con la finalidad de romper la membrana celular y liberar el contenido citoplasmático de la bacteria (incluyendo el ADN) (18, 19).

Con el fin de minimizar o eliminar los interferentes que pudieran producir falsos negativos al implementar la técnica de PCR, se ha recomendado un lavado múltiple de la muestra (10). Éste se llevó a cabo (5 veces) utilizando 100 μl de NET y 100 μl de SDS; entre cada uno de ellos, se centrífugó la muestra a 13 000 rpm durante cinco minutos, descartando sistemáticamente el sobrenadante.

Posteriormente la muestra se colocó en un baño María a 100 ºC y se incubó durante 15 minutos, con el fin de destruir por completo la membrana bacteriana. Se enfrió luego el espécimen sobre hielo. Una vez frío, se le agregó 3 μl de proteinasa K (20 mg/ml) y se incubó a 55 ºC por al menos 1.5 horas. Esta enzima tiene la función de eliminar aquellas proteínas que suelen contaminar las extracciones de ADN.

La precipitación de los detritos celulares de la muestra se realizó por medio de la adición de sales caotrópicas: 100 μl de NaCl 5.0 M y 80 μl de CTAB (Bromuro de cetiltrimetilamonio) al 10% en una solución de NaCl 0.7 M fueron incorporados a la mezcla, la cual se incubó a 65 ºC durante 10 minutos.

La extracción se llevó a cabo agregándole a la muestra un volumen igual de Fenol - Cloroformo - Alcohol Isoamilo (25:24:1), posteriormente se agitó vigorosamente el
especímen con ayuda de un vortex. Se centrífugó a 13 000 rpm durante cinco minutos, se recuperó el sobrenadante el cual se sometió al mismo proceso dos veces más.

La fase acuosa obtenida en el paso anterior, se extrajo nuevamente utilizando esta vez una mezcla de Cloroformo - Alcohol Isoamilo (24:1). La fase superior se separó del resto de la solución y se precipitó el ADN con 2 - 2.5 volúmenes de etanol (ETOH) 95 % a -20 °C durante toda la noche.

Finalmente se centrífugó la muestra (cinco minutos a 13000 rpm) y se lavó dos veces con 1 ml de ETOH 70%. Se decantó el alcohol, se dejó secar el contenedor a temperatura ambiente y se resuspendió el ADN extraído a un volumen de 30 µl con agua destilada estéril. Se determinó espectrofotométricamente su absorbancia a una longitud de onda de 260 nm y se estimó su concentración (20).

Reacción en Cadena de la Polimerasa (PCR)

Con el fin de estandarizar una técnica de PCR específica para el género *Brucella* se utilizaron los imprimadores ISP1 e ISP2. Se espera que el resultado de la amplificación del material genético bacteriano produzca una banda de 600 pb aproximadamente (11).

La secuencia de los imprimadores es la siguiente:

ISP1: 5’- GGTTGTTAAAGGAGACAAGC - 3’

ISP2: 5’- GACGATAGCGTTTCAACTTG - 3’

La composición de la mezcla maestra (Master Mix) que se utilizó para llevar a cabo la reacción de amplificación se especifica en el Cuadro 2.
Cuadro 2: Concentraciones y volúmenes de los reactivos utilizados para estandarizar la reacción de PCR.

<table>
<thead>
<tr>
<th>Reactivos</th>
<th>Concentración</th>
<th>Volumen necesario para una reacción de 25 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer</td>
<td>10 X</td>
<td>2.5 µl</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>25 Mm</td>
<td>5 µl</td>
</tr>
<tr>
<td>dNTP's</td>
<td>2.5 Mm</td>
<td>2 µl</td>
</tr>
<tr>
<td>ISP1</td>
<td>10 Mm</td>
<td>1 µl</td>
</tr>
<tr>
<td>ISP2</td>
<td>10 Mm</td>
<td>1 µl</td>
</tr>
<tr>
<td>ADN</td>
<td>-</td>
<td>2 µl</td>
</tr>
<tr>
<td>Taq polimerasa</td>
<td>50 U/l</td>
<td>1 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>-</td>
<td>10.5 µl</td>
</tr>
</tbody>
</table>

En un termociclador GeneAmp PCR System 2400 Perkin-Elmer, New Jersey, U.S.A. la muestra se sometió a 35 ciclos de amplificación los cuales consistían en:

- Desnaturalización a 94 ºC durante 1 minuto
- Hibridación (“Annealing”) a 56 ºC durante 1 minuto
- Extensión a 72 ºC durante 1 min y una extensión final a 72 ºC durante 1 min.

La corrida electroforética se llevó a cabo en gel de agarosa (al 1%) a 100 mV durante 40 minutos con una fuente Foto/foce 250, Fotodyne Incorporated, WI, U.S.A.

La visualización de los productos de amplificación (por fluorescencia) se realizó con bromuro de etidio (1 mg/ml) en un transiluminador ultravioleta Foto/Phoresis modelo 1-1430, Fotodyne Incorporated, WI, U.S.A.

Determinación de la especificidad de la técnica

Con el fin de evaluar la especificidad de la técnica, se seleccionaron bacterias relacionadas y no relacionadas filogenéticamente con el género *Brucella* (9,10). Después de obtener el cultivo puro de estos microorganismos, se suspendió una cantidad adecuada de
bacterias (2 a 3 asadas llenas) en 1 ml PBS estéril. La suspensión se homogeneizó con ayuda de un vortex y se sometió al proceso de extracción y amplificación anteriormente descrito.

Determinación de la sensibilidad de la técnica

Se hicieron diluciones decimales de ADN purificado de *B. abortus* 2308 en plasma humano y se determinó la máxima dilución a la cual éste pudiese ser detectado.

Sangre total bovina, suero humano y leche se inocularon con una suspensión de *B. abortus* 2308 con el fin de obtener una concentración final de 1 x 10⁹ UFC/ml. Se diluyeron las muestras de manera decimal (en su correspondiente matriz) y se determinó en cada una de ellas la máxima dilución a la cual se detectó ADN *Brucella*.

Aplicabilidad in vivo del método

Diez sueros provenientes de vacunos sanos y diez sueros provenientes de animales infectados se valoraron por PCR y se determinó la presencia de ADN *Brucella* (21).

Bajo la misma premisa 13 ratones de 22 g se infectaron vía intraperitoneal con 0.1 ml de una suspensión de *B. abortus* 2308 (1 x 10⁸ bacterias/ml); se mantuvieron tres roedores no infectados como controles. Se sangraron los tres ratones control y tres infectados recolentando la sangre en capilares heparinizados. Con las muestra recolectadas en tiempos predeterminados, se prepararon mezclas de sangre tanto para los animales testigo como para los infectados y se analizaron por la técnica de PCR. El bazo de un ratón
infectado se extirpó el mismo día de sangría para evaluar la funcionalidad del método en un tejido distinto al sanguíneo.
RESULTADOS

Determinación de la especificidad de la técnica

Cuadro 3: Determinación de la especificidad de la técnica de PCR utilizando cepas de *Brucella abortus*, especies filogenéticamente relacionadas y filogenéticamente distantes.

<table>
<thead>
<tr>
<th>Bacterias</th>
<th>PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filogenéticamente relacionadas</td>
<td></td>
</tr>
<tr>
<td>Brucella abortus 2308</td>
<td>+</td>
</tr>
<tr>
<td>Brucella abortus 45/20</td>
<td>+</td>
</tr>
<tr>
<td>Ochrobactrum anthropi 3301</td>
<td>-</td>
</tr>
<tr>
<td>Agrobacterium tumefaciens 547</td>
<td>-</td>
</tr>
<tr>
<td>Filogenéticamente distantes</td>
<td></td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>-</td>
</tr>
<tr>
<td>Salmonella sp</td>
<td>-</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>-</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>-</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>-</td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>-</td>
</tr>
<tr>
<td>Alcaligenes sylosoxidans</td>
<td>-</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>-</td>
</tr>
</tbody>
</table>

- : Negativo.
+ : Detección de una banda de amplificación de 600 pb aproximadamente.

Unicamente se evidenciaron señales de amplificación con B. abortus 2308 y con B. abortus 45/20. Ninguno de los otros microorganismos evaluados presentó algún tipo de señal por medio de esta técnica.

Determinación de la sensibilidad de la técnica

Cuadro 4: Determinación de la sensibilidad de la técnica de PCR en plasma humano (inoculado con ADN purificado de Brucella abortus 2308).

<table>
<thead>
<tr>
<th>Cantidad de ADN</th>
<th>PCR</th>
<th>Dilución</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4 ng</td>
<td>+</td>
<td>1/1</td>
</tr>
<tr>
<td>7.4 ng</td>
<td>+</td>
<td>1/10</td>
</tr>
<tr>
<td>0.74 ng</td>
<td>+</td>
<td>1/100</td>
</tr>
<tr>
<td>74 pg</td>
<td>+</td>
<td>1/1000</td>
</tr>
<tr>
<td>7.4 pg</td>
<td>-</td>
<td>1/10000</td>
</tr>
</tbody>
</table>

- : Negativo.
+ : Detección de una banda de amplificación de 600 pb aproximadamente.
Fig 2: Valoración de la sensibilidad de la técnica de PCR en plasma utilizando diluciones decimales de ADN purificado de *B. abortus* 2308. **Pozo 1:** Marcador de peso molecular 50 pb. **Pozo 2:** 74 ng de ADN purificado de *B. abortus*. **Pozo 3:** 7.4 ng de ADN. **Pozo 4:** 0.74 ng de ADN. **Pozo 5:** 74 pg de ADN. **Pozo 6:** 7.4 pg de ADN.

Se detectó una cantidad de hasta 74 pg de ADN en suero por medio de esta metodología.

Cuadro 5: Evaluación de la sensibilidad de la técnica de PCR en sangre total bovina, plasma humano y leche inoculados con *Brucella abortus* 2308.

<table>
<thead>
<tr>
<th>Cantidad de Brucella abortus 2308 (UFC/ml)</th>
<th>Sangre bovina</th>
<th>Suero humano</th>
<th>Leche</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1×10^8</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1×10^7</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>1×10^6</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>1×10^5</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>1×10^4</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>1×10^3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- : Negativo.
+ : Detección de una banda de amplificación de 600 pb aproximadamente.
Fig 3: Determinación de la sensibilidad de la técnica de PCR en sangre total bovina por medio de diluciones decimales de *B. abortus* 2308. **Pozo 1:** Marcador de peso molecular 50 pb. **Pozo 2:** Control (+). **Pozo 3:** 1×10^5 UFC/ml. **Pozo 4:** 1×10^4 UFC/ml. **Pozo 5:** 1×10^3 UFC/ml.

Fig 4: Determinación de la sensibilidad de la técnica de PCR en suero por medio de diluciones decimales *B. abortus* 2308. **Pozo 1:** Marcador de peso molecular 50 pb. **Pozo 2:** 1×10^7 UFC/ml. **Pozo 3:** 1×10^6 UFC/ml. **Pozo 4:** 1×10^5 UFC/ml. **Pozo 5:** 1×10^4 UFC/ml. **Pozo 6:** Control positivo.
Se obtuvo como límite de detección 1×10^4 UFC/ml tanto en suero humano como en sangre bovina total. Sin embargo en leche, la PCR evidenció una sensibilidad bastante baja, detectando únicamente 1×10^8 UFC/ml.

Aplicabilidad *in vivo* del método

a) Los 20 sueros bovinos utilizados en el estudio (10 provenientes de animales sanos y 10 de enfermos) no presentaron en ningún caso señales de amplificación.

b) Cuadro 6: **Señal detectada por PCR** en muestras provenientes de roedores inoculados *intraperitonealmente* con *Brucella abortus* 2308, en días posteriores a la infección.

<table>
<thead>
<tr>
<th>Día post-infección</th>
<th>Mezcla de sangre control</th>
<th>Mezcla de sangre infectada</th>
<th>Bazo de ratón infectado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>ND</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- : Negativo
+ : Detección de una banda de amplificación de 600 pb aproximadamente.
ND: No se determinó.
Fig 5: Determinación de la efectividad de la técnica en ratones infectados con *B. abortus* 2308. **Pozo 1:** Marcador de peso molecular 50 bp. **Pozo 2:** Mezcla de sangre heparinizada 1° día post infección. **Pozo 3:** Mezcla de sangre heparinizada 3° día post infección. **Pozo 4:** Mezcla de sangre heparinizada 5° día post infección. **Pozo 5:** Mezcla de sangre heparinizada 7° día post infección. **Pozo 6:** Control positivo. **Pozo 7:** Marcador de peso molecular 50 bp. **Pozo 8:** Bazo de ratón 1° día post infección. **Pozo 9:** Bazo de ratón 5° día post infección. **Pozo 10:** Bazo de ratón 7° día post infección. **Pozo 11:** Mezcla de sangre heparinizada de los sujetos control negativo 1° día post infección. **Pozo 12:** Mezcla de sangre heparinizada de los sujetos control negativo 7° día post infección.

No se evidenció la presencia de ADN *Brucella* en la sangre de los roedores infectados; sin embargo, se detectó material genético bacteriano en el tejido esplénico el 1° y quinto día post-infección.
DISCUSION Y CONCLUSIONES

La técnica de PCR que se estandarizó en este estudio se mostró promisoria para el diagnóstico rápido y certero de la brucelosis bovina. Si bien utilizando métodos microbiológicos convencionales el aislamiento de *Brucella* puede tardar hasta 30 días, por medio de este procedimiento se pudo detectar el microorganismo en un período mínimo de 48 horas.

Debido a la especificidad de los imprimadores utilizados (ISP1 e IPS2) esta técnica parece no estar sujeta a reacciones cruzadas con otros microorganismos. En 1998 se estandarizó una técnica de PCR en la cual los imprimadores estaban dirigidos contra una secuencia del ARNr 16S del género *Brucella*, sin embargo presentó reacciones cruzadas con los géneros *Ochrobactrum* y *Agrobacterium* (3). A pesar de que estas bacterias están filogenéticamente relacionadas con *Brucella*, la utilización de imprimadores para la secuencia de inserción IS6501 (11) evitó que bacterias del género *Ochrobactrum*, y del género *Agrobacterium* dieran resultados falsos positivos a la hora de amplificar el ADN bacteriano (Fig.6).
amplificar su material genético. La sensibilidad del método aumentó considerablemente al amplificar fragmentos cortos de ADN.

Diversas matrices inoculadas con B. abortus 2308 fueron procesadas por esta metodología; se determinó que tanto el suero como la sangre total son las muestras más apropiadas para el diagnóstico de brucelosis por PCR. En ambas muestras se detectó un mínimo de 1×10^4 UFC/ml. Las muestras de sangre y suero deben de ser lavadas varias veces puesto que la hemoglobina y sus derivados son inhibidores del proceso de amplificación de ADN (8).

La leche parece poseer algunos inhibidores de la PCR, en ella sólo se pudo detectar un mínimo de 1.0×10^8 UFC/ml. Sin embargo, se han reportado límites de detección de 2×10^5 UFC/ml (19). Es necesario identificar en un futuro estos inhibidores para poder minimizar o eliminar su efecto, ya que la leche es la muestra de más fácil recolección (no se necesitan capacitación como para tomar una muestra de sangre), además, el volumen recolectado suele ser elevado (litros).

Por otra parte, no fue posible amplificar ADN a partir de las muestras de suero bovino infectadas. Sin embargo, no se debe olvidar que la cantidad de muestras utilizadas no es significativa y la investigación en este campo debe proseguir, puesto que se reporta que esta es una muestra adecuada para el diagnóstico de brucelosis por PCR (24). Se debe destacar también que se desconocía el estatus del bovino al momento de la toma de muestra. Durante este estudio no se manejó ningún tipo de información epidemiológica, ni médico-veterinaria (número de partos, abortos u otro tipo de enfermedades) que pudiese aclarar el porqué de los resultados de laboratorio.
En sangre de ratones infectados, no se detectó ADN bacteriano, posiblemente esto pudo deberse al uso de heparina como anticoagulante. Esta molécula, así como el grupo Heme, el EDTA y los fosfatos (H₃PO₄⁻) se han reportado como inhibidores de la PCR (5,8). La utilización de este anticoagulante, así como el pequeño volumen de muestra utilizado deben haber diezmado la sensibilidad del método, traduciéndose en resultados falsos negativos. Pudo haberse solventado este inconveniente, utilizando citrato como anticoagulante y aumentando el volumen de muestra a tratar.

Fue posible detectar la presencia de B. abortus en el bazo de roedores infectados (Fig 5), lo que respalda la confiabilidad del método, puesto que permite recuperar ADN bacteriano de matrices sumamente complejas como es el tejido esplénico. El resultado negativo en el bazo recuperado a los 7 días post-infección pudo deberse la gran número de leucocitos que se encontraban en este órgano. Se ha reportado que cantidades superiores a los 4 μg de ADN leucocitario suelen inhibir la PCR (8). Sin embargo parecía más factible que la respuesta inmune del ratón (a los 7 días post-infección) sea lo suficientemente efectiva como para minimizar la cantidad de Brucella a nivel esplénico, llevando los niveles de infección por debajo de los límites de detección del método.

Es vital proseguir con ésta investigación para afinar los límites de detección de la técnica. Así como puede ser de gran utilidad en el campo de la medicina veterinaria, la Reacción en Cadena de la Polimerasa para el diagnóstico de brucelosis puede encontrar aplicaciones clínicas en Costa Rica como ya lo ha hecho en otros países (24).
BIBLIOGRAFÍA

